Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Int Microbiol ; 26(4): 1009-1020, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37067733

RESUMEN

Ectoine is a natural amino acid derivative and one of the most widely used compatible solutes produced by Halomonas species that affects both cellular growth and osmotic equilibrium. The positive effects of UV mutagenesis on both biomass and ectoine content production in ectoine-producing strains have yet to be reported. In this study, the wild-type H. campaniensis strain XH26 (CCTCCM2019776) was subjected to UV mutagenesis to increase ectoine production. Eight rounds of mutagenesis were used to generate mutated XH26 strains with different UV-irradiation exposure times. Ectoine extract concentrations were then evaluated among all strains using high-performance liquid chromatography analysis, alongside whole genome sequencing with the PacBio RS II platform and comparison of the wild-type strain XH26 and the mutant strain G8-52 genomes. The mutant strain G8-52 (CCTCCM2019777) exhibited the highest cell growth rate and ectoine yields among mutated strains in comparison with strain XH26. Further, ectoine levels in the aforementioned strain significantly increased to 1.51 ± 0.01 g L-1 (0.65 g g-1 of cell dry weight), representing a twofold increase compared to wild-type cells (0.51 ± 0.01 g L-1) when grown in culture medium for ectoine accumulation. Concomitantly, electron microscopy revealed that mutated strain G8-52 cells were obviously shorter than wild-type strain XH26 cells. Moreover, strain G8-52 produced a relatively stable ectoine yield (1.50 g L-1) after 40 days of continuous subculture. Comparative genomics analysis suggested that strain XH26 harbored 24 mutations, including 10 nucleotide insertions, 10 nucleotide deletions, and unique single nucleotide polymorphisms. Notably, the genes orf00723 and orf02403 (lipA) of the wild-type strain mutated to davT and gabD in strain G8-52 that encoded for 4-aminobutyrate-2-oxoglutarate transaminase and NAD-dependent succinate-semialdehyde dehydrogenase, respectively. Consequently, these genes may be involved in increased ectoine yields. These results suggest that continuous multiple rounds of UV mutation represent a successful strategy for increasing ectoine production, and that the mutant strain G8-52 is suitable for large-scale fermentation applications.


Asunto(s)
Halomonas , Halomonas/genética , Halomonas/metabolismo , Rayos Ultravioleta , Genómica , Nucleótidos/metabolismo
2.
Environ Dev Sustain ; 25(2): 1258-1275, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35002483

RESUMEN

Microalgae-based biofuel is considered as one of the most promising sources of alternative energy because it is sustainable and does not pose threats to the environment and food security. However, attempts in improving microalgal strains to attain the ideal characteristics for biofuel application are yet to unravel. In this study, random UV-C mutagenesis was employed to generate starch-deficient mutants of indigenous Chlorella vulgaris to enhance its productivity. Out of 872 colonies, two isolated mutants (cvm5 and cvm6) were isolated and showed significant increase in cell concentrations by > 1.47-fold and > 1.04-fold, respectively. However, mutant cells exhibited smaller in size which might contributed to the significant decrease in their biomass. Moreover, gathered data revealed that the total lipid content of cvm5 was enhanced significantly (75%, > 1.3-fold increase). Additionally, triacylglycerol (TAG) content of the said mutant constitutes 48% of the dry cell weight (DCW) while cvm6 consist of 41% of the DCW. These promising and novel findings suggest that the two generated and isolated mutants are good candidates for future commercial biofuel production, especially in the Philippines. In addition, these findings may contribute on the prior knowledge of the usage of UV-C for microalgal strain development.

3.
Biochem Biophys Res Commun ; 637: 93-99, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36384069

RESUMEN

Land plants exhibit various adaptation responses to unfavorable water environments, such as drought and flooding. The phytohormone abscisic acid (ABA) and ethylene play essential roles in plant adaptation to drought and flooding, respectively. It remains largely unknown how plants integrate environmental information for water availability. In the moss Physcomitrium patens, we recently reported that not only ethylene/flooding signaling but also ABA/osmostress signaling are mediated by ethylene receptor-related sensor histidine kinases (ETR-HKs). Subfamily I ETR-HKs of this moss were found to interact with a RAF kinase (ARK) and were required for ABA-dependent activation of SNF1-related protein kinase 2 (SnRK2) via ARK activation. To elucidate the mechanisms of ARK regulation by ETR-HKs, here we employed targeted in vivo mutagenesis of PpHK5, a member of subfamily I ETR-HKs. Analyses of ABA-insensitive Pphk5 mutants indicated that PpHK5 mutations affecting the interaction with ARK resulted in loss of PpHK5 function to activate ABA signaling. We also identified a PpHK5 mutation that does not affect ARK interaction but resulted in loss of PpHK5 function. These results suggest that physical interaction between ETR-HK and ARK is essential but not sufficient for the regulation of ARK activity, and the C-terminal response regulator domain is involved in regulating ARK activation.


Asunto(s)
Bryopsida , Histidina Quinasa/genética , Bryopsida/genética , Mutagénesis , Mutación , Etilenos , Ácido Abscísico
4.
J Appl Microbiol ; 130(3): 878-890, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32706912

RESUMEN

AIMS: Yeasts produce 2-phenylethanol (2-PE) from sugars via de novo synthesis; however, its synthesis is limited due to feedback inhibition on the isofunctional 3-deoxy-d-arabino-heptulosonate-7-phosphate (DAHP) synthases (Aro3p and Aro4p). This work aimed to select Kluyveromyces marxianus mutant strains with improved capacity to produce 2-PE from sugars. METHODS AND RESULTS: Kluyveromyces marxianus CCT 7735 mutant strains were selected from UV irradiation coupled with screening of p-fluoro-dl-phenylalanine (PFP) tolerant strains on culture medium without l-Phe addition. Most of them produced 2-PE titres higher than the parental strain and the Km_PFP41 mutant strain stood out for displaying the highest 2-PE specific production rate. Moreover it showed higher activity of DAHP synthase than the parental strain. We sequenced both ARO3 and ARO4 genes of Km_PFP41 mutant and identified mutations in ARO4 which caused changes in both size and conformation of the Aro4p. These changes seem to be associated with the enhanced activity of DAHP synthase and improved production of 2-PE exhibited by that mutant strain. CONCLUSIONS: The Km_PFP41 mutant strain presented improved 2-PE production via de novo synthesis and enhanced DAHP synthase activity. SIGNIFICANCE AND IMPACT OF THE STUDY: The mutant strain obtained in this work may be exploited as a yeast cell factory for high-level synthesis of 2-PE.


Asunto(s)
3-Desoxi-7-Fosfoheptulonato Sintasa/metabolismo , Proteínas Fúngicas/metabolismo , Kluyveromyces/metabolismo , Alcohol Feniletílico/metabolismo , 3-Desoxi-7-Fosfoheptulonato Sintasa/química , 3-Desoxi-7-Fosfoheptulonato Sintasa/genética , Secuencia de Bases , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Kluyveromyces/genética , Mutagénesis , Mutación , Conformación Proteica , p-Fluorofenilalanina/metabolismo
5.
Mol Plant Microbe Interact ; 33(8): 1008-1021, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32370643

RESUMEN

Powdery mildews are obligate biotrophic fungal pathogens causing important diseases of plants worldwide. Very little is known about the requirements for their pathogenicity at the molecular level. This is largely due to the inability to culture these organisms in vitro or to modify them genetically. Here, we describe a mutagenesis procedure based on ultraviolet (UV) irradiation to accumulate mutations in the haploid genome of the barley powdery mildew pathogen Blumeria graminis f. sp. hordei. Exposure of B. graminis f. sp. hordei conidia to different durations of UV-C radiation (10 s to 12 min) resulted in a reduced number of macroscopically visible fungal colonies. B. graminis f. sp. hordei colony number was negatively correlated with exposure time and the total number of consecutive cycles of UV irradiation. Dark incubation following UV exposure further reduced fungal viability, implying that photoreactivation is an important component of DNA repair in B. graminis f. sp. hordei. After several rounds of UV mutagenesis, we selected two mutant isolates in addition to the parental B. graminis f. sp. hordei K1 isolate for whole-genome resequencing. By combining automated prediction of sequence variants and their manual validation, we identified unique UV-induced mutations in the genomes of the two isolates. Most of these mutations were in the up- or downstream regions of genes or in the intergenic space. Some of the variants detected in genes led to predicted missense mutations. As an additional insight, our bioinformatic analyses revealed a complex population structure within supposedly clonal B. graminis f. sp. hordei isolates.


Asunto(s)
Ascomicetos , Genoma Fúngico/efectos de la radiación , Mutagénesis , Enfermedades de las Plantas/microbiología , Ascomicetos/genética , Ascomicetos/patogenicidad , Ascomicetos/efectos de la radiación , Secuenciación de Nucleótidos de Alto Rendimiento , Hordeum/microbiología , Análisis de Secuencia de ADN , Rayos Ultravioleta
6.
Appl Microbiol Biotechnol ; 102(4): 1651-1661, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29279956

RESUMEN

The bleomycins (BLMs) are important clinical drugs extensively used in combination chemotherapy for the treatment of various cancers. Dose-dependent lung toxicity and the development of drug resistance have restricted their wide applications. 6'-Deoxy-BLM Z, a recently engineered BLM analogue with improved antitumor activity, has the potential to be developed into the next-generation BLM anticancer drug. However, its low titer in the recombinant strain Streptomyces flavoviridis SB9026 has hampered current efforts, which require sufficient compound, to pursue preclinical studies and subsequent clinical development. Here, we report the strain improvement by combined UV mutagenesis and ribosome engineering, as well as the fermentation optimization, for enhanced 6'-deoxy-BLM production. A high producer, named S. flavoviridis G-4F12, was successfully isolated, producing 6'-deoxy-BLM at above 70 mg/L under the optimized fermentation conditions, representing a sevenfold increase in comparison with that of the original producer. These findings demonstrated the effectiveness of combined empirical breeding methods in strain improvement and set the stage for sustainable production of 6'-deoxy-BLM via pilot-scale microbial fermentation.


Asunto(s)
Antibióticos Antineoplásicos/biosíntesis , Bleomicina/biosíntesis , Ingeniería Metabólica/métodos , Mutagénesis , Ribosomas/metabolismo , Streptomyces/metabolismo , Rayos Ultravioleta , Bleomicina/análogos & derivados , Fermentación , Ribosomas/genética , Streptomyces/genética , Streptomyces/aislamiento & purificación , Streptomyces/efectos de la radiación
7.
Appl Microbiol Biotechnol ; 101(13): 5353-5363, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28470335

RESUMEN

Pediococcus acidilactici is a widely used probiotic, and Salmonella enterica serovar Gallinarum (SG) is a significant pathogen in the poultry industry. In this study, we improved the antimicrobial activity of P. acidilactici against SG using UV mutation and genome shuffling (GS). To improve antimicrobial activity against SG, UV mutagenesis was performed against wild-type P. acidilactici (WT), and five mutants showed improved antimicrobial activity. To further improve antimicrobial activity, GS was performed on five UV mutants. Following GS, four mutants showed improved antimicrobial activity compared with the UV mutants and WT. The antimicrobial activity of GS1 was highest among the mutants; however, the activity was reduced when the culture supernatant was treated with proteinase K, suggesting that the improved antimicrobial activity is due to a proteinous substance such as bacteriocin. To validate the activity of GS1 in vivo, we designed multi-species probiotics and performed broiler feeding experiments. Groups consisted of no treatment (NC), avilamycin-treated (PC), probiotic group 1 containing WT (T1), and probiotic group 2 containing GS1 (T2). In broiler feeding experiments, coliform bacteria were significantly reduced in T2 compared with NC, PC, and T1. The cecal microbiota was modulated and pathogenic bacteria were reduced by GS1 oral administration. In this study, GS1 showed improved antimicrobial activity against SG in vitro and reduced pathogenic bacteria in a broiler feeding experiment. These results suggest that GS1 can serve as an efficient probiotic, as an alternative to antibiotics in the poultry industry.


Asunto(s)
Antibiosis , Barajamiento de ADN , Mutagénesis , Pediococcus acidilactici/genética , Pediococcus acidilactici/fisiología , Probióticos , Salmonella/fisiología , Animales , Antibacterianos/farmacología , Antiinfecciosos , Bacteriocinas/biosíntesis , Bacteriocinas/farmacología , Ciego/microbiología , Pollos/microbiología , Medios de Cultivo/química , Endopeptidasa K/metabolismo , Genoma Bacteriano , Pediococcus acidilactici/efectos de los fármacos , Pediococcus acidilactici/efectos de la radiación , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/terapia , Probióticos/química , Salmonella/efectos de los fármacos , Salmonelosis Animal/microbiología , Salmonelosis Animal/terapia
8.
Biotechnol Lett ; 39(2): 289-295, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27812824

RESUMEN

OBJECTIVES: To generate tryptophan-overproducing Bacillus subtilis strains for in situ use in pigs, to reduce the feed cost for farmers and nitrogen pollution. RESULTS: A novel concept has been investigated-to generate B. subtilis strains able to produce tryptophan (Trp) in situ in pigs. Mutagenesis by UV was combined with selection on Trp and purine analogues in an iterative process. Two mutants from different wild types were obtained, mutant 1 (M1) produced 1 mg Trp/l and mutant 2 (M2) 14 mg Trp/l. Genome sequence analysis revealed that M1 had three single nuclear polymorphisms (SNPs) and M2 had two SNPs compared to the wild type strains. In both mutants SNPs were found in genes regulating tryptophan synthesis. Reverse transcription PCR confirmed up-regulation of the tryptophan synthesis genes in both mutants, the expression was up to 3 times higher in M2 than in M1. CONCLUSIONS: Tryptophan-excreting B. subtilis strains were obtained with UV-mutagenesis and analogue selection and can be used in animal feed applications.


Asunto(s)
Bacillus subtilis/metabolismo , Triptófano/metabolismo , Animales , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Mutación , Operón/genética , Porcinos , Rayos Ultravioleta
9.
World J Microbiol Biotechnol ; 33(5): 99, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28429279

RESUMEN

Oleaginous yeasts are considered a promising alternative lipid source for biodiesel fuel production. In this study, we attempted to improve the lipid productivity of the oleaginous yeast Rhodosporidium toruloides through UV irradiation mutagenesis and selection based on ethanol and H2O2 tolerance or cerulenin, a fatty acid synthetase inhibitor. Glucose consumption, cell growth, and lipid production of mutants were evaluated. The transcription level of genes involved in lipid production was also evaluated in mutants. The ethanol and H2O2 tolerant strain 8766 2-31M and the cerulenin resistant strain 8766 3-11C were generated by UV mutagenesis. The 8766 2-31M mutant showed a higher lipid production rate, and the 8766 3-11C mutant produced a larger amount of lipid and had a higher lipid production rate than the wild type strain. Transcriptional analysis revealed that, similar to the wild type strain, the ACL1 and GND1 genes were expressed at significantly low levels, whereas IDP1 and ME1 were highly expressed. In conclusion, lipid productivity in the oleaginous yeast R. toruloides was successfully improved via UV mutagenesis and selection. The study also identified target genes for improving lipid productivity through gene recombination.


Asunto(s)
Basidiomycota/genética , Metabolismo de los Lípidos/efectos de la radiación , Mutagénesis , Basidiomycota/efectos de los fármacos , Basidiomycota/crecimiento & desarrollo , Tolerancia a Medicamentos , Etanol/farmacología , Proteínas Fúngicas/efectos de la radiación , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Peróxido de Hidrógeno/farmacología , Transcriptoma
10.
World J Microbiol Biotechnol ; 33(5): 90, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28390015

RESUMEN

The present research was conducted to define the approaches for enhanced production of rapamycin (Rap) by Streptomyces hygroscopicus microbial type culture collection (MTCC) 4003. Both physical mutagenesis by ultraviolet ray (UV) and chemical mutagenesis by N-methyl-N-nitro-N-nitrosoguanidine (NTG) have been applied successfully for the improvement of Rap production. Enhancing Rap yield by novel sequential UV mutagenesis technique followed by fermentation gives a significant difference in getting economically scalable amount of this industrially important macrolide compound. Mutant obtained through NTG mutagenesis (NTG-30-27) was found to be superior to others as it initially produced 67% higher Rap than wild type. Statistical optimization of nutritional and physiochemical parameters was carried out to find out most influential factors responsible for enhanced Rap yield by NTG-30-27 which was performed using Taguchi orthogonal array approach. Around 72% enhanced production was achieved with nutritional factors at their assigned level at 23 °C, 120 rpm and pH 7.6. Results were analysed in triplicate basis where validation and purification was carried out using high performance liquid chromatography. Stability study and potency of extracted Rap was supported by turbidimetric assay taking Candida albicans MTCC 227 as test organism.


Asunto(s)
Mutagénesis , Sirolimus/metabolismo , Streptomyces/genética , Fermentación , Microbiología Industrial , Metilnitronitrosoguanidina/farmacología , Streptomyces/efectos de los fármacos , Streptomyces/metabolismo , Rayos Ultravioleta
11.
Prep Biochem Biotechnol ; 46(8): 780-787, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26795747

RESUMEN

This study aimed to obtain strains with high glyphosate-degrading ability and improve the ability of glyphosate degradation enzyme by the optimization of fermentation conditions. Spore from Aspergillus oryzae A-F02 was subjected to ultraviolet mutagenesis. Single-factor experiment and response surface methodology were used to optimize glyphosate degradation enzyme production from mutant strain by liquid-state fermentation. Four mutant strains were obtained and named as FUJX 001, FUJX 002, FUJX 003, and FUJX 004, in which FUJX 001 gave the highest total enzyme activity. Starch concentration at 0.56%, GP concentration at 1,370 mg/l, initial pH at 6.8, and temperature at 30°C were the optimum conditions for the improved glyphosate degradation endoenzyme production of A. oryzae FUJX 001. Under these conditions, the experimental endoenzyme activity was 784.15 U/100 ml fermentation liquor. The result (784.15 U/100 ml fermentation liquor) was approximately 14-fold higher than that of the original strain. The result highlights the potential of glyphosate degradation enzyme to degrade glyphosate.


Asunto(s)
Aspergillus oryzae/enzimología , Aspergillus oryzae/efectos de la radiación , Fermentación , Glicina/análogos & derivados , Mutagénesis/efectos de la radiación , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Glicina/metabolismo , Microbiología Industrial/métodos , Rayos Ultravioleta , Glifosato
12.
J Theor Biol ; 364: 7-20, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25195002

RESUMEN

A model of the UV-induced mutation process in Escherichia coli bacteria has been developed taking into account the whole sequence of molecular events starting from initial photo-damage and finishing with the fixation of point mutations. The wild-type phenotype bacterial cells are compared with UV-sensitive repair-deficient mutant cells. Attention is mainly paid to excision repair system functioning as regards induced mutagenesis.


Asunto(s)
Reparación del ADN/efectos de la radiación , Escherichia coli/citología , Escherichia coli/metabolismo , Modelos Biológicos , Mutagénesis/efectos de la radiación , Respuesta SOS en Genética/efectos de la radiación , Rayos Ultravioleta , Daño del ADN , Replicación del ADN , ADN Bacteriano/biosíntesis , Escherichia coli/efectos de la radiación , Proteínas de Escherichia coli/metabolismo , Cinética , Tasa de Mutación
13.
Mar Drugs ; 13(10): 6138-51, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26426027

RESUMEN

Marine diatoms have recently gained much attention as they are expected to be a promising resource for sustainable production of bioactive compounds such as carotenoids and biofuels as a future clean energy solution. To develop photosynthetic cell factories, it is important to improve diatoms for value-added products. In this study, we utilized UVC radiation to induce mutations in the marine diatom Phaeodactylum tricornutum and screened strains with enhanced accumulation of neutral lipids and carotenoids. Adaptive laboratory evolution (ALE) was also used in parallel to develop altered phenotypic and biological functions in P. tricornutum and it was reported for the first time that ALE was successfully applied on diatoms for the enhancement of growth performance and productivity of value-added carotenoids to date. Liquid chromatography-mass spectrometry (LC-MS) was utilized to study the composition of major pigments in the wild type P. tricornutum, UV mutants and ALE strains. UVC radiated strains exhibited higher accumulation of fucoxanthin as well as neutral lipids compared to their wild type counterpart. In addition to UV mutagenesis, P. tricornutum strains developed by ALE also yielded enhanced biomass production and fucoxanthin accumulation under combined red and blue light. In short, both UV mutagenesis and ALE appeared as an effective approach to developing desired phenotypes in the marine diatoms via electromagnetic radiation-induced oxidative stress.


Asunto(s)
Diatomeas/metabolismo , Mutagénesis/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , Rayos Ultravioleta , Biomasa , Carotenoides/metabolismo , Cromatografía Liquida/métodos , Diatomeas/genética , Radiación Electromagnética , Metabolismo de los Lípidos/efectos de la radiación , Espectrometría de Masas/métodos , Mutación , Xantófilas/metabolismo
14.
Indian J Microbiol ; 55(4): 440-6, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26543270

RESUMEN

Pravastatin is one of the most popular cholesterol-lowering drugs. Its industrial production represents a two-stage process including the microbial production of compactin and its further biocatalytic conversion to pravastatin. To increase a conversion rate, a higher compactin content in fermentation medium should be used; however, high compactin concentrations inhibit microbial growth. Therefore, the improvement of the compactin resistance of a producer still remains a relevant problem. A multi-step random UV mutagenesis of a Streptomyces xanthochromogenes strain RIA 1098 and the further selection of high-yield compactin-resistant mutants have resulted in a highly productive compactin-resistant strain S 33-1. After the fermentation medium improvement, the maximum bioconversion rate of this strain has reached 91 % at the daily compactin dose equal to 1 g/L and still remained high (83 %) even at the doubled dose (2 g/L). A 1-year study of the mutant strain stability has proved a stable inheritance of its characteristics that provides this strain to be very promising for the pravastatin-producing industry.

15.
Water Res ; 257: 121722, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38723359

RESUMEN

The development of wastewater treatment processes capable of reducing and fixing carbon is currently a hot topic in the wastewater treatment field. Microalgae possess a natural carbon-fixing advantage, and microalgae that can symbiotically coexist with indigenous bacteria in actual wastewater attract more significant attention. Ultraviolet (UV) mutagenesis and dissolved organic carbon (DOC) acclimation were applied to strengthen the carbon-fixing performance of microalgae in this study. The mechanisms associated with microalgal water purification ability, gene regulation at the molecular level and photosynthetic potential under different trophic modes resulting from carbon fixation and transformation were disclosed. The superior performance of Chlorella sp. MHQ2 was eventually screened out among a large number of mutants generated from 3 wild-type Chlorella strains. Results indicated that the dry cell weight of the optimal species Chlorella sp. HQ mutant MHQ2 was 1.91 times that of the wild strain in the pure algal system, more carbon from municipal wastewater (MW) were transferred to the microalgae and re-entered into the biological cycle through resource utilization. In addition, COD, NH3-N and TP removal efficiencies of MW by Chlorella sp. MHQ2 were found to increase to 95.8% (1.1-times), 96.4% (1.4-times), and 92.9% (1.2-times), respectively, under the extra DOC supply and the assistance of indigenous bacteria in the MW. In the transcriptome analysis of the logarithmic phase, the glycolytic pathway was inhibited, and the pentose phosphate pathway was mainly carried out for microalgal life activities, further promoting efficient energy utilization. Upon analysis of carbon capture capacity and photosynthetic potential in trophic mode, the addition of NaHCO3 increased the photosynthetic rate of Chlorella sp. MHQ2 in mixotrophy whereas it was attenuated in autotrophy. This study could provide a new perspective for the study of resource utilization and microalgae carbon- fixing mechanisms in the actual wastewater treatment process.


Asunto(s)
Carbono , Chlorella , Microalgas , Fotosíntesis , Aguas Residuales , Microalgas/genética , Carbono/metabolismo , Chlorella/genética , Mutagénesis , Eliminación de Residuos Líquidos
16.
J Biotechnol ; 381: 36-48, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38190850

RESUMEN

Macrolactins are a type of compound with complex macrolide structure which mainly be obtained through microbiological fermentation now. They have excellent antifungal, antibacterial and antitumor activity. In order to improve macrolactins production, Bacillus siamensis YB304 was used as the research object, and a mutant Mut-K53 with stable genetic characters was selected by UV-ARTP compound mutagenesis. The yield of macrolactins was 156.46 mg/L, 3.95 times higher than original strain. The metabolic pathway changes and regulatory mechanism of macrolactins were analyzed by quantitative proteomics combined with parallel reaction monitoring. This study revealed that 1794 proteins were extracted from strain YB304 and strain Mut-K53, most of them were related to metabolism. After UV-ARTP compound mutagenesis treatment, the expression of 628 proteins were significantly changed, of which 299 proteins were significantly up-regulated. KEGG pathway analysis showed that differentially expression proteins mainly distributed in biological process, cellular component, and molecular function processing pathways. Such as utilization of carbon sources, glycolysis pathway, and amino acid metabolism pathway. Furthermore, key precursor substances such as acyl-CoA and amino acids of macrolactin biosynthesis are mostly up-regulated, which are one of the main reasons for increased production of macrolactin.This study will provide a new way to increase the yield of macrolactins through mutagenesis breeding and proteomics.


Asunto(s)
Bacillus , Proteómica , Bacillus/genética , Bacillus/química , Mutagénesis , Macrólidos
17.
Sci Total Environ ; 940: 173753, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-38838494

RESUMEN

The food and beverage industries in Mexico generate substantial effluents, including nejayote, cheese-whey, and tequila vinasses, which pose significant environmental challenges due to their extreme physicochemical characteristics and excessive organic load. This study aimed to assess the potential of Chlorella vulgaris in bioremediating these complex wastewaters while also producing added-value compounds. A UV mutagenesis treatment (40 min) enhanced C. vulgaris adaptability to grow in the effluent conditions. Robust growth was observed in all three effluents, with nejayote identified as the optimal medium. Physicochemical measurements conducted pre- and post-cultivation revealed notable reductions of pollutants in nejayote, including complete removal of nitrogen and phosphates, and an 85 % reduction in COD. Tequila vinasses exhibited promise with a 66 % reduction in nitrogen and a 70 % reduction in COD, while cheese-whey showed a 17 % reduction in phosphates. Regarding valuable compounds, nejayote yielded the highest pigment (1.62 mg·g-1) and phenolic compound (3.67 mg·g-1) content, while tequila vinasses had the highest protein content (16.83 %). The main highlight of this study is that C. vulgaris successfully grew in 100 % of the three effluents (without additional water or nutrients), demonstrating its potential for sustainable bioremediation and added-value compound production. When grown in 100 % of the effluents, they become a sustainable option since they don't require an input of fresh water and therefore do not contribute to water scarcity. These findings offer a practical solution for addressing environmental challenges in the food and beverage industries within a circular economy framework.


Asunto(s)
Biodegradación Ambiental , Chlorella vulgaris , Eliminación de Residuos Líquidos , Aguas Residuales , Chlorella vulgaris/metabolismo , Aguas Residuales/química , México , Eliminación de Residuos Líquidos/métodos , Bebidas , Industria de Alimentos , Contaminantes Químicos del Agua/análisis , Residuos Industriales/análisis
18.
Bioresour Technol ; 394: 130283, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38163489

RESUMEN

The current research discusses a multidimensional bioprocess development, that includes bioprospecting, strain improvement, media optimisation, and applications of the extracted enzyme. A potent alkalophilic polygalacturonase (PG) producing bacterial strain was isolated and identified as a novel Glutamicibacter sp. Furthermore, strain improvement by UV and chemical mutagenesis not only improved the enzyme (PGmut) production but also enhanced its temperature optima from 37 °C to 50 °C. The use of solid substrate fermentation, followed bystatistical optimisation through PB and RSM, substantially increasedPGmut production. A 10-fold increase in enzyme production (632 U/gm) was observed when sugarcane bagasse with a pH of 10.5, 66.8 % moisture, and an inoculum size of 10.15 % was used. The model's accuracy was supported by p-value (p < 0.0001), and an R2 of 0.9940. A pilot-scale experiment, demonstrated ≈ 62,229 U/100 gm PG activity. Additionally, the enzyme's efficacy in demucilization of coffee beans, and bioscouring of jute fibre indicated that it is a valuable biocatalyst.


Asunto(s)
Poligalacturonasa , Saccharum , Poligalacturonasa/metabolismo , Celulosa , Bioprospección , Saccharum/metabolismo , Fermentación
19.
J Agric Food Chem ; 72(2): 1190-1202, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38175798

RESUMEN

10-Hydroxy-2-decenoic acid (10-HDA) is an important component of royal jelly, known for its antimicrobial, anti-inflammatory, blood pressure-lowering, and antiradiation effects. Currently, 10-HDA biosynthesis is limited by the substrate selectivity of acyl-coenzyme A dehydrogenase, which restricts the technique to a two-step process. This study aimed to develop an efficient and simplified method for synthesizing 10-HDA. In this study, ACOX from Candida tropicalis 1798, which catalyzes 10-hydroxydecanoyl coenzyme A desaturation for 10-HDA synthesis, was isolated and heterologously coexpressed with FadE, Macs, YdiI, and CYP in Escherichia coli/SK after knocking out FadB, FadJ, and FadR genes. The engineered E. coli/AKS strain achieved a 49.8% conversion of decanoic acid to 10-HDA. CYP expression was improved through ultraviolet mutagenesis and high-throughput screening, increased substrate conversion to 75.6%, and the synthesis of 10-HDA was increased to 0.628 g/L in 10 h. This is the highest conversion rate and product concentration achieved in the shortest time to date. This study provides a simple and efficient method for 10-HDA biosynthesis and offers an effective method for developing strains with high product yields.


Asunto(s)
Escherichia coli , Ácidos Grasos Monoinsaturados , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Ácidos Grasos/metabolismo , Antiinflamatorios
20.
J Theor Biol ; 332: 30-41, 2013 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-23643530

RESUMEN

A theoretical study is performed of the possible role of the methyl-directed mismatch repair system in the ultraviolet-induced mutagenesis of Escherichia coli bacterial cells. For this purpose, mathematical models of the SOS network, translesion synthesis and mismatch repair are developed. Within the proposed models, the key pathways of these repair systems were simulated on the basis of modern experimental data related to their mechanisms. Our model approach shows a possible mechanistic explanation of the hypothesis that the bacterial mismatch repair system is responsible for attenuation of mutation frequency during ultraviolet-induced SOS response via removal of the nucleotides misincorporated by DNA polymerase V (the UmuD'2C complex).


Asunto(s)
Reparación de la Incompatibilidad de ADN/efectos de la radiación , Escherichia coli/metabolismo , Modelos Biológicos , Mutagénesis/efectos de la radiación , Respuesta SOS en Genética/efectos de la radiación , Rayos Ultravioleta , Escherichia coli/genética , Mutación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda