Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063090

RESUMEN

The urochordate Ciona robusta exhibits numerous functional and morphogenetic traits that are shared with vertebrate models. While prior investigations have identified several analogies between the gastrointestinal tract (i.e., gut) of Ciona and mice, the molecular mechanisms responsible for these similarities remain poorly understood. This study seeks to address this knowledge gap by investigating the transcriptional landscape of the adult stage gut. Through comparative genomics analyses, we identified several evolutionarily conserved components of signaling pathways of pivotal importance for gut development (such as WNT, Notch, and TGFß-BMP) and further evaluated their expression in three distinct sections of the gastrointestinal tract by RNA-seq. Despite the presence of lineage-specific gene gains, losses, and often unclear orthology relationships, the investigated pathways were characterized by well-conserved molecular machinery, with most components being expressed at significant levels throughout the entire intestinal tract of C. robusta. We also showed significant differences in the transcriptional landscape of the stomach and intestinal tract, which were much less pronounced between the proximal and distal portions of the intestine. This study confirms that C. robusta is a reliable model system for comparative studies, supporting the use of ascidians as a model to study gut physiology.


Asunto(s)
Transducción de Señal , Animales , Tracto Gastrointestinal/metabolismo , Ciona/genética , Ciona/metabolismo , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Perfilación de la Expresión Génica
2.
Gen Comp Endocrinol ; 328: 114123, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36075341

RESUMEN

The calcitonin (CT)/CT gene-related peptide (CGRP) family is a peptide gene family that is widely found in bilaterians. CT, CGRP, adrenomedullin (AM), amylin (AMY), and CT receptor-stimulating peptide (CRSP) are members of the CT/CGRP family. In mammals, CT is involved in calcium homeostasis, while CGRP and AM primarily function in vasodilation. AMY and CRSP are associated with anorectic effects. Diversification of the molecular features and physiological functions of the CT/CGRP family in vertebrate lineages have been extensively reported. However, the origin and diversification mechanisms of the vertebrate CT/CGRP family of peptides remain unclear. In this review, the molecular characteristics of CT/CGRP family peptides and their receptors, along with their major physiological functions in mammals and teleosts, are introduced. Furthermore, novel candidates of the CT/CGRP family in cartilaginous fish are presented based on genomic information. The CT/CGRP family peptides and receptors in urochordates and cephalochordates, which are closely related to vertebrates, are also described. Finally, a putative evolutionary scenario of the CT/CGRP family peptides and receptors in chordates is discussed.


Asunto(s)
Depresores del Apetito , Cordados , Neuropéptidos , Hormonas Peptídicas , Adrenomedulina , Animales , Calcitonina/genética , Péptido Relacionado con Gen de Calcitonina/química , Péptido Relacionado con Gen de Calcitonina/genética , Calcio , Peces/genética , Polipéptido Amiloide de los Islotes Pancreáticos , Mamíferos , Proteínas Modificadoras de la Actividad de Receptores , Receptores de Calcitonina/genética , Tomografía Computarizada por Rayos X , Vertebrados
3.
Invertebr Reprod Dev ; 59(sup1): 33-38, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-26136618

RESUMEN

The decline of tissue regenerative potential with the loss of stem cell function is a hallmark of mammalian aging. We study Botryllus schlosseri, a colonial chordate which exhibits robust stem cell-mediated regeneration capacities throughout life. Larvae, derived by sexual reproduction and chordate development, metamorphose to clonal founders that undergo weekly formation of new individuals by budding from stem cells. Individuals are transient structures which die through massive apoptosis, and successive buds mature to replicate an entire new body. As a result, their stem cells, which are the only self-renewing cells in a tissue, are the only cells which remain through the entire life of the genotype and retain the effects of time. During aging, a significant decrease in the colonies' regenerative potential is observed and both sexual and asexual reproductions will eventually halt. When a parent colony is experimentally separated into a number of clonal replicates, they frequently undergo senescence simultaneously, suggesting a heritable factor that determines lifespan in these colonies. The availability of the recently published B. schlosseri genome coupled with its unique life cycle features promotes the use of this model organism for the study of the evolution of aging, stem cells, and mechanisms of regeneration.

4.
Dev Biol ; 384(2): 331-42, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24140189

RESUMEN

During the transition from maternal to zygotic control of development, cell cycle length varies in different lineages, and this is important for their fates and functions. The maternal to zygotic transition (MZT) in metazoan embryos involves a profound remodeling of the cell cycle: S phase length increases then G2 is introduced. Although ß-catenin is the master regulator of endomesoderm patterning at MZT in all metazoans, the influence of maternal ß-catenin on the cell cycle at MZT remains poorly understood. By studying urochordate embryogenesis we found that cell cycle remodeling during MZT begins with the formation of 3 mitotic domains at the 16-cell stage arising from differential S phase lengthening, when endomesoderm is specified. Then, at the 64-cell stage, a G2 phase is introduced in the endoderm lineage during its specification. Strikingly, these two phases of cell cycle remodeling are patterned by ß-catenin-dependent transcription. Functional analysis revealed that, at the 16-cell stage, ß-catenin speeds up S phase in the endomesoderm. In contrast, two cell cycles later at gastrulation, nuclear ß-catenin induces endoderm fate and delays cell division. Such interphase lengthening in invaginating cells is known to be a requisite for gastrulation movements. Therefore, in basal chordates ß-catenin has a dual role to specify germ layers and remodel the cell cycle.


Asunto(s)
Ciclo Celular , Urocordados/embriología , Cigoto/metabolismo , beta Catenina/metabolismo , Animales , Secuencia de Bases , Cartilla de ADN , Femenino , Microscopía Fluorescente , Mitosis , Fase S , Cigoto/citología
5.
Curr Biol ; 33(18): 3872-3883.e6, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37643617

RESUMEN

To gain insight into the evolution of motor control systems at the origin of vertebrates, we have investigated higher-order motor circuitry in the protochordate Oikopleura dioica. We have identified a highly miniaturized circuit in Oikopleura with a projection from a single pair of dopaminergic neurons to a small set of synaptically coupled GABAergic neurons, which in turn exert a disinhibitory descending projection onto the locomotor central pattern generator. The circuit is reminiscent of the nigrostriatopallidal system in the vertebrate basal ganglia, in which disinhibitory circuits release specific movements under the modulatory control of dopamine. We demonstrate further that dopamine is required to optimize locomotor performance in Oikopleura, mirroring its role in vertebrates. A dopamine-regulated disinhibitory locomotor control circuit reminiscent of the vertebrate nigrostriatopallidal system was thus already present at the origin of ancestral chordates and has been maintained in the face of extreme nervous system miniaturization in the urochordate lineage.


Asunto(s)
Cordados , Urocordados , Animales , Dopamina , Vertebrados , Sistema Nervioso
6.
Cell Cycle ; 17(12): 1425-1444, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29969934

RESUMEN

Oogenesis in the urochordate, Oikopleura dioica, occurs in a large coenocyst in which vitellogenesis precedes oocyte selection in order to adapt oocyte production to nutrient conditions. The animal has expanded Cyclin-Dependant Kinase 1 (CDK1) and Cyclin B paralog complements, with several expressed during oogenesis. Here, we addressed functional redundancy and specialization of CDK1 and cyclin B paralogs during oogenesis and early embryogenesis through spatiotemporal analyses and knockdown assays. CDK1a translocated from organizing centres (OCs) to selected meiotic nuclei at the beginning of the P4 phase of oogenesis, and its knockdown impaired vitellogenesis, nurse nuclear dumping, and entry of nurse nuclei into apoptosis. CDK1d-Cyclin Ba translocated from OCs to selected meiotic nuclei in P4, drove meiosis resumption and promoted nuclear envelope breakdown (NEBD). CDK1d-Cyclin Ba was also involved in histone H3S28 phosphorylation on centromeres and meiotic spindle assembly through regulating Aurora B localization to centromeres during prometaphase I. In other studied species, Cyclin B3 commonly promotes anaphase entry, but we found O. dioica Cyclin B3a to be non-essential for anaphase entry during oogenic meiosis. Instead, Cyclin B3a contributed to meiotic spindle assembly though its loss could be compensated by Cyclin Ba.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Ciclina B/metabolismo , Meiosis/fisiología , Oogénesis/fisiología , Urocordados/metabolismo , Urocordados/fisiología , Animales , Proteína Quinasa CDC2/fisiología , Núcleo Celular/metabolismo , Núcleo Celular/fisiología , Femenino , Oocitos/metabolismo , Oocitos/fisiología , Fosforilación/fisiología
7.
Zoological Lett ; 3: 17, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28932414

RESUMEN

BACKGROUND: Hox gene clusters with at least 13 paralog group (PG) members are common in vertebrate genomes and in that of amphioxus. Ascidians, which belong to the subphylum Tunicata (Urochordata), are phylogenetically positioned between vertebrates and amphioxus, and traditionally divided into two groups: the Pleurogona and the Enterogona. An enterogonan ascidian, Ciona intestinalis (Ci), possesses nine Hox genes localized on two chromosomes; thus, the Hox gene cluster is disintegrated. We investigated the Hox gene cluster of a pleurogonan ascidian, Halocynthia roretzi (Hr) to investigate whether Hox gene cluster disintegration is common among ascidians, and if so, how such disintegration occurred during ascidian or tunicate evolution. RESULTS: Our phylogenetic analysis reveals that the Hr Hox gene complement comprises nine members, including one with a relatively divergent Hox homeodomain sequence. Eight of nine Hr Hox genes were orthologous to Ci-Hox1, 2, 3, 4, 5, 10, 12 and 13. Following the phylogenetic classification into 13 PGs, we designated Hr Hox genes as Hox1, 2, 3, 4, 5, 10, 11/12/13.a, 11/12/13.b and HoxX. To address the chromosomal arrangement of the nine Hox genes, we performed two-color chromosomal fluorescent in situ hybridization, which revealed that the nine Hox genes are localized on a single chromosome in Hr, distinct from their arrangement in Ci. We further examined the order of the nine Hox genes on the chromosome by chromosome/scaffold walking. This analysis suggested a gene order of Hox1, 11/12/13.b, 11/12/13.a, 10, 5, X, followed by either Hox4, 3, 2 or Hox2, 3, 4 on the chromosome. Based on the present results and those previously reported in Ci, we discuss the establishment of the Hox gene complement and disintegration of Hox gene clusters during the course of ascidian or tunicate evolution. CONCLUSIONS: The Hox gene cluster and the genome must have experienced extensive reorganization during the course of evolution from the ancestral tunicate to Hr and Ci. Nevertheless, some features are shared in Hox gene components and gene arrangement on the chromosomes, suggesting that Hox gene cluster disintegration in ascidians involved early events common to tunicates as well as later ascidian lineage-specific events.

8.
Elife ; 62017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28121291

RESUMEN

The ascidian embryo is an ideal system to investigate how cell position is determined during embryogenesis. Using 3D timelapse imaging and computational methods we analyzed the planar cell divisions in ascidian early embryos and found that spindles in every cell tend to align at metaphase in the long length of the apical surface except in cells undergoing unequal cleavage. Furthermore, the invariant and conserved cleavage pattern of ascidian embryos was found to consist in alternate planar cell divisions between ectoderm and endomesoderm. In order to test the importance of alternate cell divisions we manipulated zygotic transcription induced by ß-catenin or downregulated wee1 activity, both of which abolish this cell cycle asynchrony. Crucially, abolishing cell cycle asynchrony consistently disrupted the spindle orienting mechanism underpinning the invariant cleavage pattern. Our results demonstrate how an evolutionary conserved cell cycle asynchrony maintains the invariant cleavage pattern driving morphogenesis of the ascidian blastula.


Asunto(s)
División Celular , Huso Acromático , Urocordados/embriología , Animales , Ectodermo/citología , Ectodermo/embriología , Endodermo/citología , Endodermo/embriología , Imagenología Tridimensional , Mesodermo/citología , Mesodermo/embriología , Imagen de Lapso de Tiempo
9.
J Morphol ; 278(10): 1421-1437, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28691238

RESUMEN

Salps are marine planktonic chordates that possess an obligatory alternation of reproductive modes in subsequent generations. Within tunicates, salps represent a derived life cycle and are of interest in considerations of the evolutionary origin of complex anatomical structures and life history strategies. In the present study, the eyes and brains of both the sexual, aggregate blastozooid and the asexual, solitary oozooid stage of Thalia democratica (Forskål, ) were digitally reconstructed in detail based on serial sectioning for light and transmission electron microscopy. The blastozooid stage of T. democratica possesses three pigment cup eyes, situated in the anterior ventral part of the brain. The eyes are arranged in a way that the optical axes of each eye point toward different directions. Each eye is an inverse eye that consists of two different cell types: pigment cells (pigc) and rhabdomeric photoreceptor cells (prcs). The oozooid stage of T. democratica is equipped with a single horseshoe-shaped eye, positioned in the anterior dorsal part of the brain. The opening of the horseshoe-shaped eye points anteriorly. Similar to the eyes of the blastozooid, the eye of the oozooid consists of pigment cells and rhabdomeric photoreceptor cells. The rhabdomeric photoreceptor cells possess apical microvilli that form a densely packed presumably photosensitive receptor part adjacent to the concave side of the pigc. We suggest correspondences of the individual eyes in the blastozooid stage to respective parts of the single horseshoe-shaped eye in the oozooid stage and hypothesize that the differences in visual structures and brain anatomies evolved as a result of the aggregate life style of the blastozooid as opposed to the solitary life style of the oozooid.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/ultraestructura , Ojo/anatomía & histología , Ojo/ultraestructura , Urocordados/anatomía & histología , Urocordados/ultraestructura , Animales , Imagenología Tridimensional
10.
Genome Biol Evol ; 8(10): 3171-3186, 2016 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-27624472

RESUMEN

A preliminary genome sequence has been assembled for the Southern Ocean salp, Salpa thompsoni (Urochordata, Thaliacea). Despite the ecological importance of this species in Antarctic pelagic food webs and its potential role as an indicator of changing Southern Ocean ecosystems in response to climate change, no genomic resources are available for S. thompsoni or any closely related urochordate species. Using a multiple-platform, multiple-individual approach, we have produced a 318,767,936-bp genome sequence, covering >50% of the estimated 602 Mb (±173 Mb) genome size for S. thompsoni Using a nonredundant set of predicted proteins, >50% (16,823) of sequences showed significant homology to known proteins and ∼38% (12,151) of the total protein predictions were associated with Gene Ontology functional information. We have generated 109,958 SNP variant and 9,782 indel predictions for this species, serving as a resource for future phylogenomic and population genetic studies. Comparing the salp genome to available assemblies for four other urochordates, Botryllus schlosseri, Ciona intestinalis, Ciona savignyi and Oikopleura dioica, we found that S. thompsoni shares the previously estimated rapid rates of evolution for these species. High mutation rates are thus independent of genome size, suggesting that rates of evolution >1.5 times that observed for vertebrates are a broad taxonomic characteristic of urochordates. Tests for positive selection implemented in PAML revealed a small number of genes with sites undergoing rapid evolution, including genes involved in ribosome biogenesis and metabolic and immune process that may be reflective of both adaptation to polar, planktonic environments as well as the complex life history of the salps. Finally, we performed an initial survey of small RNAs, revealing the presence of known, conserved miRNAs, as well as novel miRNA genes; unique piRNAs; and mature miRNA signatures for varying developmental stages. Collectively, these resources provide a genomic foundation supporting S. thompsoni as a model species for further examination of the exceptional rates and patterns of genomic evolution shown by urochordates. Additionally, genomic data will allow for the development of molecular indicators of key life history events and processes and afford new understandings and predictions of impacts of climate change on this key species of Antarctic pelagic ecosystems.


Asunto(s)
Genoma , Tasa de Mutación , Urocordados/genética , Animales , Secuencia Conservada , Mutación INDEL , Rasgos de la Historia de Vida , MicroARNs/genética , Anotación de Secuencia Molecular/normas , Sistemas de Lectura Abierta , Polimorfismo de Nucleótido Simple , Ribosomas/genética , Urocordados/clasificación
11.
Cell Cycle ; 14(6): 880-93, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25714331

RESUMEN

Cyclin-dependent kinases (CDKs) are central regulators of eukaryotic cell cycle progression. In contrast to interphase CDKs, the mitotic phase CDK1 is the only CDK capable of driving the entire cell cycle and it can do so from yeast to mammals. Interestingly, plants and the marine chordate, Oikopleura dioica, possess paralogs of the highly conserved CDK1 regulator. However, whereas in plants the 2 CDK1 paralogs replace interphase CDK functions, O. dioica has a full complement of interphase CDKs in addition to its 5 odCDK1 paralogs. Here we show specific sub-functionalization of odCDK1 paralogs during oogenesis. Differential spatiotemporal dynamics of the odCDK1a, d and e paralogs and the meiotic polo-like kinase 1 (Plk1) and aurora kinase determine the subset of meiotic nuclei in prophase I arrest that will seed growing oocytes and complete meiosis. Whereas we find odCDK1e to be non-essential, knockdown of the odCDK1a paralog resulted in the spawning of non-viable oocytes of reduced size. Knockdown of odCDK1d also resulted in the spawning of non-viable oocytes. In this case, the oocytes were of normal size, but were unable to extrude polar bodies upon exposure to sperm, because they were unable to resume meiosis from prophase I arrest, a classical function of the sole CDK1 during meiosis in other organisms. Thus, we reveal specific sub-functionalization of CDK1 paralogs, during the meiotic oogenic program.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Cordados/metabolismo , Meiosis , Oogénesis , Homología de Secuencia de Aminoácido , Animales , Técnicas de Silenciamiento del Gen , Centro Organizador de los Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/ultraestructura , Membrana Nuclear/metabolismo , Fenotipo , ARN Bicatenario/metabolismo
12.
Cell Cycle ; 14(13): 2129-41, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25928155

RESUMEN

The role of the G1-phase Cyclin D-CDK 4/6 regulatory module in linking germline stem cell (GSC) proliferation to nutrition is evolutionarily variable. In invertebrate Drosophila and C. elegans GSC models, G1 is nearly absent and Cyclin E is expressed throughout the cell cycle, whereas vertebrate spermatogonial stem cells have a distinct G1 and Cyclin D1 plays an important role in GSC renewal. In the invertebrate, chordate, Oikopleura, where germline nuclei proliferate asynchronously in a syncytium, we show a distinct G1-phase in which 2 Cyclin D variants are co-expressed. Cyclin Dd, present in both somatic endocycling cells and the germline, localized to germline nuclei during G1 before declining at G1/S. Cyclin Db, restricted to the germline, remained cytoplasmic, co-localizing in foci with the Cyclin-dependent Kinase Inhibitor, CKIa. These foci showed a preferential spatial distribution adjacent to syncytial germline nuclei at G1/S. During nutrient-restricted growth arrest, upregulated CKIa accumulated in arrested somatic endoreduplicative nuclei but did not do so in germline nuclei. In the latter context, Cyclin Dd levels gradually decreased. In contrast, the Cyclin Dbß splice variant, lacking the Rb-interaction domain and phosphodegron, was specifically upregulated and the number of cytoplasmic foci containing this variant increased. This upregulation was dependent on stress response MAPK p38 signaling. We conclude that under favorable conditions, Cyclin Dbß-CDK6 sequesters CKIa in the cytoplasm to cooperate with Cyclin Dd-CDK6 in promoting germline nuclear proliferation. Under nutrient-restriction, this sequestration function is enhanced to permit continued, though reduced, cycling of the germline during somatic growth arrest.


Asunto(s)
Núcleo Celular/metabolismo , Proliferación Celular/fisiología , Ciclina D/biosíntesis , Variación Genética/fisiología , Células Germinativas/metabolismo , Células Gigantes/metabolismo , Secuencia de Aminoácidos , Animales , Núcleo Celular/genética , Cordados no Vertebrados , Ciclina D/genética , Regulación de la Expresión Génica , Datos de Secuencia Molecular
13.
Dev Genes Evol ; 206(6): 370-376, 1997 01.
Artículo en Inglés | MEDLINE | ID: mdl-27747398

RESUMEN

Increased K+ concentration in seawater induces metamorphosis in the ascidian Herdmania momus. Larvae cultivated at 24°C exhibit highest rates of metamorphosis when treated with 40 mM KCl-elevated seawater at 21°C. At 24°C, H. momus larvae develop competence to respond to KCl-seawater and initiate metamorphosis approximately 3 h after hatching. Larval trunks and tails separated from the anterior papillae region, but maintained in a common tunic at a distance of greater than 60 µm, do not undergo metamorphosis when treated with KCl-seawater; normal muscle degradation does not occur in separated tails while ampullae develop from papillae-containing anterior fragments. Normal programmed degradation of myofibrils occurs when posterior fragments are fused to papillae-containing anterior fragments. These data indicate that H. momus settlement and metamorphosis only occurs when larvae have attained competence, and suggest that an anterior signalling centre is stimulated to release a factor that induces metamorphosis.


Asunto(s)
Metamorfosis Biológica , Urocordados/crecimiento & desarrollo , Urocordados/metabolismo , Animales , Australia , Arrecifes de Coral , Larva/metabolismo , Miofibrillas/metabolismo , Potasio/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda