Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cardiol Young ; : 1-4, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752301

RESUMEN

Hypertrophic cardiomyopathy in children has diverse causes. Mitochondrial diseases, a rare aetiology leading to cardiomyopathy in 20-40% of affected children, predominantly present as hypertrophic cardiomyopathy. Diagnosis is challenging due to inconsistent genotype-phenotype correlation, resulting in various clinical presentations. We present a case of a one-month-old infant with severe hypertrophic cardiomyopathy and cardiac tamponade. Genetic diagnosis revealed a Valyl-tRNA synthetase 2 (VARS2) gene mutation, linking it to mitochondrial encephalopathy-cardiomyopathy. This case highlights novel variants and expands the understanding of hypertrophic cardiomyopathy aetiology in infants.

2.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35806332

RESUMEN

Mutations in mitochondrial aminoacyl-tRNA synthetases (mtARSs) have been reported in patients with mitochondriopathies: most commonly encephalopathy, but also cardiomyopathy. Through a GWAS, we showed possible associations between mitochondrial valyl-tRNA synthetase (VARS2) dysregulations and non-ischemic cardiomyopathy. We aimed to investigate the possible consequences of VARS2 depletion in zebrafish and cultured HEK293A cells. Transient VARS2 loss-of-function was induced in zebrafish embryos using Morpholinos. The enzymatic activity of VARS2 was measured in VARS2-depleted cells via northern blot. Heterozygous VARS2 knockout was established in HEK293A cells using CRISPR/Cas9 technology. BN-PAGE and SDS-PAGE were used to investigate electron transport chain (ETC) complexes, and the oxygen consumption rate and extracellular acidification rate were measured using a Seahorse XFe96 Analyzer. The activation of the integrated stress response (ISR) and possible disruptions in mitochondrial fatty acid oxidation (FAO) were explored using RT-qPCR and western blot. Zebrafish embryos with transient VARS2 loss-of-function showed features of heart failure as well as indications of CNS and skeletal muscle involvements. The enzymatic activity of VARS2 was significantly reduced in VARS2-depleted cells. Heterozygous VARS2-knockout cells showed a rearrangement of ETC complexes in favor of complexes III2, III2 + IV, and supercomplexes without significant respiratory chain deficiencies. These cells also showed the enhanced activation of the ISR, as indicated by increased eIF-2α phosphorylation and a significant increase in the transcript levels of ATF4, ATF5, and DDIT3 (CHOP), as well as disruptions in FAO. The activation of the ISR and disruptions in mitochondrial FAO may underlie the adaptive changes in VARS2-depleted cells.


Asunto(s)
Valina-ARNt Ligasa , Pez Cebra , Animales , Ácidos Grasos , Antígenos HLA/genética , Mitocondrias/genética , Valina-ARNt Ligasa/genética , Pez Cebra/genética
3.
BMC Med Genet ; 20(1): 77, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31064326

RESUMEN

BACKGROUND: Mitochondrial respiratory chain consists of five complexes encoded by nuclear and mitochondrial genomes. Mitochondrial aminoacyl-tRNA synthetases are key enzymes in the synthesis of such complexes. Bi-allelic variants of VARS2, a nuclear gene encoding for valyl-tRNA (Val-tRNA) synthetase, are associated to several forms of mitochondrial encephalopathies or cardiomyoencephalopathies. Among these, the rare homozygous c.1100C > T (p.Thr367Ile) mutation variably presents with progressive developmental delay, axial hypotonia, limbs spasticity, drug-resistant epilepsy leading, in some cases, to premature death. Yet only six cases, of which three are siblings, harbouring this homozygous mutation have been described worldwide. CASE PRESENTATION: Hereby, we report two additional cases of two non-related young girls from Sardinia, born from non-consanguineous and healthy parents, carrying the aforesaid homozygous VARS2 variant. At onset both the patients presented with worsening psychomotor delay, muscle hypotonia and brisk tendon reflexes. Standard genetic tests were normal, as well as metabolic investigations. Brain MRI showed unspecific progressive abnormalities, such as corpus callosum hypoplasia (patient A) and cerebellar atrophy (patient A and B). Diagnosis was reached by adopting massive parallel next generation sequencing. Notably clinical phenotype of the first patient appears to be milder compared to previous known cases. The second patient eventually developed refractory epilepsy and currently presents with severe global impairment. Because no specific treatment is available as yet, both patients are treated with supporting antioxidant compounds along with symptomatic therapies. CONCLUSIONS: Given the paucity of clinical data about this very rare mitochondrial encephalopathy, our report might contribute to broaden the phenotypic spectrum of the disorder. Moreover, noteworthy, three out of five pedigrees so far described belong to the Northern Sardinia ethnicity.


Asunto(s)
Antígenos HLA/genética , Encefalomiopatías Mitocondriales/genética , Valina-ARNt Ligasa/genética , Niño , Preescolar , Electroencefalografía , Femenino , Homocigoto , Humanos , Imagen por Resonancia Magnética , Encefalomiopatías Mitocondriales/diagnóstico por imagen , Encefalomiopatías Mitocondriales/fisiopatología , Mutación , Fenotipo
4.
Hum Mutat ; 39(4): 563-578, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29314548

RESUMEN

In recent years, an increasing number of mitochondrial disorders have been associated with mutations in mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs), which are key enzymes of mitochondrial protein synthesis. Bi-allelic functional variants in VARS2, encoding the mitochondrial valyl tRNA-synthetase, were first reported in a patient with psychomotor delay and epilepsia partialis continua associated with an oxidative phosphorylation (OXPHOS) Complex I defect, before being described in a patient with a neonatal form of encephalocardiomyopathy. Here we provide a detailed genetic, clinical, and biochemical description of 13 patients, from nine unrelated families, harboring VARS2 mutations. All patients except one, who manifested with a less severe disease course, presented at birth exhibiting severe encephalomyopathy and cardiomyopathy. Features included hypotonia, psychomotor delay, seizures, feeding difficulty, abnormal cranial MRI, and elevated lactate. The biochemical phenotype comprised a combined Complex I and Complex IV OXPHOS defect in muscle, with patient fibroblasts displaying normal OXPHOS activity. Homology modeling supported the pathogenicity of VARS2 missense variants. The detailed description of this cohort further delineates our understanding of the clinical presentation associated with pathogenic VARS2 variants and we recommend that this gene should be considered in early-onset mitochondrial encephalomyopathies or encephalocardiomyopathies.


Asunto(s)
Antígenos HLA/genética , Encefalomiopatías Mitocondriales , ATPasas de Translocación de Protón Mitocondriales/deficiencia , Valina-ARNt Ligasa/genética , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/metabolismo , Encefalomiopatías Mitocondriales/fisiopatología , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Mutación Missense , Fosforilación Oxidativa , Filogenia
5.
BMC Med Genet ; 19(1): 202, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30458719

RESUMEN

BACKGROUND: Genetic defects in the mitochondrial aminoacyl-tRNA synthetase are important causes of mitochondrial disorders. VARS2 is one of the genes encoding aminoacyl-tRNA synthetases. Recently, an increasing number of pathogenic variants of VARS2 have been reported. CASE PRESENTATION: We report the novel compound heterozygous pathogenic VARS2 mutations c.643 C > T (p. His215Tyr) and c.1354 A > G (p. Met452Val) in a female infant who presented with poor sucking at birth, poor activity, hyporeflexia, hypertonia, persistent pulmonary hypertension of newborn (PPHN), metabolic acidosis, severe lactic acidosis, expansion and hypertrophic cardiomyopathy. These heterozygous mutations were carried individually by the proband's parents and elder sister; the two mutations segregated in the family and were the cause of the disease in the proband.The c.643 C > T (p. His215Tyr) mutation was not described in the ExaC, GNomAD and 1000 Genomes Project databases, and the frequency of c.1354 A > G (p. Met452Val) was < 0.001 in these gene databases.The two mutated amino acids were located in a highly conserved region of the VARS2 protein that is important for its interaction with the cognate tRNA. The two missense mutations were predicted by online tools to be damaging and deleterious. CONCLUSIONS: Our report expands the spectrum of known pathogenicVARS2 variants associated with mitochondrial disorders in humans.VARS2 deficiency may cause a severe neonatal presentation with structural cardiac abnormalities.


Asunto(s)
Acidosis Láctica/genética , Cardiomiopatía Hipertrófica/genética , Antígenos HLA/genética , Paro Cardíaco/genética , Enfermedades Mitocondriales/genética , Mutación Missense , Síndrome de Circulación Fetal Persistente/genética , Valina-ARNt Ligasa/genética , Acidosis Láctica/diagnóstico , Acidosis Láctica/metabolismo , Acidosis Láctica/fisiopatología , Adulto , Alelos , Cardiomiopatía Hipertrófica/diagnóstico , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatía Hipertrófica/fisiopatología , Preescolar , Resultado Fatal , Femenino , Expresión Génica , Frecuencia de los Genes , Paro Cardíaco/diagnóstico , Paro Cardíaco/metabolismo , Paro Cardíaco/fisiopatología , Heterocigoto , Humanos , Recién Nacido , Masculino , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/fisiopatología , Linaje , Síndrome de Circulación Fetal Persistente/diagnóstico , Síndrome de Circulación Fetal Persistente/metabolismo , Síndrome de Circulación Fetal Persistente/fisiopatología
6.
Metab Brain Dis ; 32(1): 267-270, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27502409

RESUMEN

VARS2 encodes a mitochondrial aminoacyl-tRNA-synthetase. Mutations in VARS2 have recently been identified as a cause of mitochondrial encephalomyopathy in three individuals. However, clinical information remained scarce. Exome sequencing lead us to identify compound heterozygous pathogenic VARS2 variants in a boy presenting with severe lactic acidosis, hypertrophic cardiomyopathy, epilepsy, and abnormalities on brain imaging including hypoplasia of corpus callosum and cerebellum as well as a massive lactate peak on MR-spectroscopy. Studies in patient-derived fibroblasts confirmed the functional relevance of the identified VARS2 variants. Our report expands the phenotypic spectrum associated with this rare mitochondrial defect, in that VARS2 deficiency may also cause severe neonatal presentations with cardiac involvement and structural brain abnormalities.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Epilepsia/genética , Antígenos HLA/genética , Encefalomiopatías Mitocondriales/genética , Mutación , Valina-ARNt Ligasa/genética , Análisis Mutacional de ADN , Exoma , Humanos , Masculino
7.
Liver Int ; 35(8): 1934-40, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25404243

RESUMEN

BACKGROUND & AIMS: Hepatitis B virus (HBV) infection is the most serious risk factor for chronic hepatitis B (CHB), cirrhosis, and hepatocellular carcinoma. Recently, several genome-wide association studies (GWASs) identified important variants associated with the risk of CHB in Asian populations. Specifically, our previous GWAS identified the VARS2-SFTA2 gene region as one of the genetic risk loci for CHB. METHODS: To further characterize this association and to isolate possible causal variants within it, we performed an additional association study by genotyping more SNPs in the vicinity of the VARS2 and SFTA2 genes. In all, 14 SNPs of VARS2-SFTA2 were analysed among a total of 3902 subjects (1046 cases and 2856 controls). RESULTS: Logistic regression analysis revealed that six SNPs, including the previously reported rs2532932, were significantly associated with the risk of CHB (P = 1.7 × 10(-10) ~0.002). Further linkage disequilibrium and conditional analysis identified two variants (rs9394021 and rs2517459) as new markers of genetic risk factors for CHB rather than the reported SNP from our previous study (rs2532932). To evaluate the cumulative risk for CHB based on all known genetic factors, genetic risk score (GRS) were calculated. As anticipated, the distribution of the number of risk alleles in cases vs. controls clearly differed according to the GRS. Similarly, the odds ratios (ORs) were increased (OR = 0.32-3.97). CONCLUSION: Our findings show that common variants in the VARS2-SFTA2 gene region are significantly associated with CHB in a Korean population, which may be useful in further understanding genetic susceptibility to CHB.


Asunto(s)
Predisposición Genética a la Enfermedad/epidemiología , Antígenos HLA/genética , Hepatitis B Crónica/etnología , Hepatitis B Crónica/genética , Polimorfismo de Nucleótido Simple , Valina-ARNt Ligasa/genética , Adulto , Pueblo Asiatico/genética , Estudios de Casos y Controles , Intervalos de Confianza , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Hepatitis B/genética , Hospitales Universitarios , Humanos , Incidencia , Corea (Geográfico)/epidemiología , Modelos Logísticos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Medición de Riesgo
8.
Hum Mutat ; 35(8): 983-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24827421

RESUMEN

By way of whole-exome sequencing, we identified a homozygous missense mutation in VARS2 in one subject with microcephaly and epilepsy associated with isolated deficiency of the mitochondrial respiratory chain (MRC) complex I and compound heterozygous mutations in TARS2 in two siblings presenting with axial hypotonia and severe psychomotor delay associated with multiple MRC defects. The nucleotide variants segregated within the families, were absent in Single Nucleotide Polymorphism (SNP) databases and are predicted to be deleterious. The amount of VARS2 and TARS2 proteins and valyl-tRNA and threonyl-tRNA levels were decreased in samples of afflicted patients according to the genetic defect. Expression of the corresponding wild-type transcripts in immortalized mutant fibroblasts rescued the biochemical impairment of mitochondrial respiration and yeast modeling of the VARS2 mutation confirmed its pathogenic role. Taken together, these data demonstrate the role of the identified mutations for these mitochondriopathies. Our study reports the first mutations in the VARS2 and TARS2 genes, which encode two mitochondrial aminoacyl-tRNA synthetases, as causes of clinically distinct, early-onset mitochondrial encephalopathies.


Asunto(s)
Antígenos HLA/genética , Mitocondrias/genética , Encefalomiopatías Mitocondriales/genética , Mutación , Treonina-ARNt Ligasa/genética , Valina-ARNt Ligasa/genética , Línea Celular , Niño , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Antígenos HLA/metabolismo , Heterocigoto , Homocigoto , Humanos , Lactante , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Mitocondrias/enzimología , Mitocondrias/patología , Encefalomiopatías Mitocondriales/enzimología , Encefalomiopatías Mitocondriales/patología , Polimorfismo Genético , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia de Treonina/genética , ARN de Transferencia de Treonina/metabolismo , ARN de Transferencia de Valina/genética , ARN de Transferencia de Valina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Treonina-ARNt Ligasa/metabolismo , Valina-ARNt Ligasa/metabolismo
9.
World J Clin Cases ; 10(24): 8749-8754, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36157797

RESUMEN

BACKGROUND: The mitochondrial respiratory chain defects have become the most common cause of neurometabolic disorders in children and adults, which can occur at any time in life, often associated with neurological dysfunction, and lead to chronic disability and premature death. Approximately one-third of patients with mitochondrial disease have biochemical defects involving multiple respiratory chain complexes, suggesting defects in protein synthesis within the mitochondria. We here report a child with VARS2 gene mutations causing mitochondrial disease. CASE SUMMARY: A girl, aged 3 years and 4 mo, had been unable to sit and crawl alone since birth, with obvious seizures and microcephaly. Brain magnetic resonance imaging showed symmetrical, flaky, long T1-weighted and low T2-weighted signals in the posterior part of the bilateral putamen with a high signal shadow. T2 fluid-attenuated inversion recovery imaging showed a slightly high signal and diffusion-weighted imaging showed an obvious high signal. Whole-exome gene sequencing revealed a compound heterozygous mutation in the VARS2 gene, c.1163(exon11)C>T and c.1940(exon20)C>T, which was derived from the parents. The child was diagnosed with combined oxidative phosphorylation deficiency type 20. CONCLUSION: In this patient, mitochondrial disorders including Leigh syndrome and MELAS syndrome (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes) were ruled out, and combined oxidative phosphorylation deficiency type 20 was diagnosed, expanding the phenotypic spectrum of the disease.

10.
Front Pediatr ; 9: 660076, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33937156

RESUMEN

Mitochondriopathies represent a wide spectrum of miscellaneous disorders with multisystem involvement, which are caused by various genetic changes. The establishment of the diagnosis of mitochondriopathy is often challenging. Recently, several mutations of the VARS2 gene encoding the mitochondrial valyl-tRNA synthetase were associated with early onset encephalomyopathies or encephalocardiomyopathies with major clinical features such as hypotonia, developmental delay, brain MRI changes, epilepsy, hypertrophic cardiomyopathy, and plasma lactate elevation. However, the correlation between genotype and phenotype still remains unclear. In this paper we present a male Caucasian patient with a recurrent c.1168G>A (p.Ala390Thr) and a new missense biallelic variant c.2758T>C (p.Tyr920His) in the VARS2 gene which were detected by whole exome sequencing (WES). VARS2 protein was reduced in the patient's muscle. A resulting defect of oxidative phosphorylation (OXPHOS) was proven by enzymatic assay, western blotting and immunohistochemistry from a homogenate of skeletal muscle tissue. Clinical signs of our patient included hyperlactatemia, hypertrophic cardiomyopathy (HCM) and pulmonary hypertension, which led to early death at the age of 47 days without any other known accompanying signs. The finding of novel variants in the VARS2 gene expands the spectrum of known mutations and phenotype presentation. Based on our findings we recommend to consider possible mitochondriopathy and to include the analysis of the VARS2 gene in the genetic diagnostic algorithm in cases with early manifesting and rapidly progressing HCM with hyperlactatemia.

11.
Ups J Med Sci ; 124(4): 273-277, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31623496

RESUMEN

Background: Mitochondrial disorders are heterogeneous clinical syndromes caused by defective activity in the mitochondrial respiratory chain, resulting in a faulty oxidative phosphorylation system. These inherited disorders are individually rare, and furthermore they are phenotypic variables. The genetically characterized mitochondrial disorders are rarely associated with epileptic encephalopathies.Case presentation: We present the clinical phenotype, biochemical analysis, and electrographic and neuro-radiological features of a 5-month-old girl with epileptic encephalopathy, microcephaly, severe psychomotor delay, hypertrophic cardiomyopathy, and abnormal MRI scan. Using whole-genome sequencing technique, compound heterozygous mutations of the VARS2 gene were revealed, with one previously unreported frameshift mutation.Conclusion: Our report extends the phenotypic spectrum of VARS2-related disorders with an initial presentation of epileptic encephalopathy and early death due to malignant arrhythmia.


Asunto(s)
Encefalopatías/genética , Epilepsia/genética , Antígenos HLA/genética , Enfermedades Mitocondriales/genética , Valina-ARNt Ligasa/genética , Anomalías Múltiples , Cardiomiopatía Hipertrófica/genética , Resultado Fatal , Femenino , Mutación del Sistema de Lectura , Heterocigoto , Humanos , Lactante , Imagen por Resonancia Magnética , Microcefalia/genética , Fenotipo , Trastornos Psicomotores/genética , Secuenciación Completa del Genoma
12.
J Mol Med (Berl) ; 97(11): 1557-1566, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31529142

RESUMEN

The VARS2 gene encodes a mitochondrial valyl-transfer RNA synthetase which is used in mitochondrial translation. To date, several patients with VARS2 pathogenic variants have been described in the literature. These patients have features of lactic acidosis with encephalomyopathy. We present a case of an infant with lactic acidosis, failure to thrive, and severe primary pulmonary hypertension who was found to be a compound heterozygote for two novel VARS2 variants (c.1940C>T, p.(Thr647Met) and c.2318G>A, p.(Arg773Gln)). The patient was treated with vitamin supplements and a carbohydrate-restricted diet. The lactic acidosis and failure to thrive resolved, and he showed good growth and development. Functional studies and molecular analysis employed a yeast model system and the VAS1 gene (yeast homolog of VARS2). VAS1 genes harboring either one of two mutations corresponding to the two novel variants in the VARS2 gene, exhibited partially reduced function in haploid yeast strains. A combination of both VAS1 variant alleles in a diploid yeast cell exhibited a more significant decrease in oxidative metabolism-dependent growth and in the oxygen consumption rate (reminiscent of the patient who carries two mutant VARS2 alleles). Our results demonstrate the pathogenicity of the biallellic novel VARS2 variants. KEY MESSAGES: • A case of an infant who is a compound heterozygote for two novel VARS2 variants. • This infant displayed lactic acidosis, failure to thrive, and pulmonary hypertension. • Treatment of the patient with a carbohydrate-restricted diet resulted in good growth and development. • Studies with the homologous yeast VAS1 gene showed reduced function of corresponding single mutant in haploid yeast strains. • A combination of both VAS1 variant alleles in diploid yeast exhibited a more significant decrease in function, thereby confirming the pathogenicity of the biallellic novel VARS2 variants.


Asunto(s)
Insuficiencia de Crecimiento/genética , Insuficiencia de Crecimiento/metabolismo , Antígenos HLA/genética , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Valina-ARNt Ligasa/genética , Alelos , Secuencia de Aminoácidos , Heterocigoto , Humanos , Lactante , Masculino , Mutación/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de ADN
13.
JIMD Rep ; 42: 113-119, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29478218

RESUMEN

INTRODUCTION: Combined oxidative phosphorylation deficiency 20 (COXPD20) is a mitochondrial respiratory chain complex (RC) disorder, caused by disease-causing variants in the VARS2 gene, which encodes a mitochondrial aminoacyl-tRNA synthetase. Here we describe a patient with fatal mitochondrial encephalopathy caused by a homozygous VARS2 gene missense variant. CASE REPORT: We report the case of a girl, the first child of non-consanguineous and healthy parents, born from an uneventful term pregnancy, who presented, in the neonatal period, major hypotonia and microcephaly. At 4 months of age she showed poor eye contact, nystagmus, global psychomotor development delay and failure to thrive, without dysmorphic features. Focal seizures started at 24 months which evolved to a severe epileptic encephalopathy and finally to super refractory status epilepticus, leading to her death at 28 months of age. Etiologic investigation encompassing metabolic and genetic causes failed to disclose a diagnosis. Post-mortem exome sequencing allowed the identification of a pathogenic variant in VARS2 gene in the homozygous state (c.1100C > T, p.Thr367Ile) in the patient, inherited from her heterozygous parents, leading to the diagnosis of COXPD2. CONCLUSION: To the best of our knowledge, this is the fifth case described in the literature of a child with disease-causing variant in VARS2. With this report we expand the knowledge about the phenotype associated with this very rare mitochondrial defect, further emphasizing the use of exome sequencing as a very powerful diagnostic tool.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda