Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 489
Filtrar
1.
Cell ; 165(7): 1762-1775, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27315483

RESUMEN

Maternal obesity during pregnancy has been associated with increased risk of neurodevelopmental disorders, including autism spectrum disorder (ASD), in offspring. Here, we report that maternal high-fat diet (MHFD) induces a shift in microbial ecology that negatively impacts offspring social behavior. Social deficits and gut microbiota dysbiosis in MHFD offspring are prevented by co-housing with offspring of mothers on a regular diet (MRD) and transferable to germ-free mice. In addition, social interaction induces synaptic potentiation (LTP) in the ventral tegmental area (VTA) of MRD, but not MHFD offspring. Moreover, MHFD offspring had fewer oxytocin immunoreactive neurons in the hypothalamus. Using metagenomics and precision microbiota reconstitution, we identified a single commensal strain that corrects oxytocin levels, LTP, and social deficits in MHFD offspring. Our findings causally link maternal diet, gut microbial imbalance, VTA plasticity, and behavior and suggest that probiotic treatment may relieve specific behavioral abnormalities associated with neurodevelopmental disorders. VIDEO ABSTRACT.


Asunto(s)
Trastorno del Espectro Autista/microbiología , Dieta Alta en Grasa , Microbioma Gastrointestinal , Obesidad/complicaciones , Conducta Social , Animales , Disbiosis/fisiopatología , Femenino , Vida Libre de Gérmenes , Vivienda para Animales , Limosilactobacillus reuteri , Masculino , Ratones , Ratones Endogámicos C57BL , Oxitocina/análisis , Oxitocina/metabolismo , Embarazo , Área Tegmental Ventral
2.
Semin Cell Dev Biol ; 146: 57-69, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36535877

RESUMEN

During lytic replication, herpesviruses express their genes in a temporal cascade culminating in expression of "late" genes. Two subfamilies of herpesviruses, the beta- and gammaherpesviruses (including human herpesviruses cytomegalovirus, Epstein-Barr virus, and Kaposi's sarcoma-associated herpesvirus), use a unique strategy to facilitate transcription of late genes. They encode six essential viral transcriptional activators (vTAs) that form a complex at a subset of late gene promoters. One of these vTAs is a viral mimic of host TATA-binding protein (vTBP) that recognizes a strikingly minimal cis-acting element consisting of a modified TATA box with a TATTWAA consensus sequence. vTBP is also responsible for recruitment of cellular RNA polymerase II (Pol II). Despite extensive work in the beta/gammaherpesviruses, the function of the other five vTAs remains largely unknown. The vTA complex and Pol II assemble on the promoter into a viral preinitiation complex (vPIC) to facilitate late gene transcription. Here, we review the properties of the vTAs and the promoters on which they act.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 8 , Humanos , Herpesvirus Humano 4/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Herpesvirus Humano 8/genética , Factores de Transcripción/metabolismo , Transcripción Genética/genética
3.
Brain ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808482

RESUMEN

Comprehensive understanding of the neural circuits involving the ventral tegmental area is essential for elucidating the anatomo-functional mechanisms governing human behaviour as well as the therapeutic and adverse effects of deep brain stimulation for neuropsychiatric diseases. While the ventral tegmental area has been successfully targeted with deep brain stimulation for different neuropsychiatric diseases, the axonal connectivity of the region has not been fully understood. Here using fiber micro-dissections in human cadaveric hemispheres, population-based high-definition fiber tractography, and previously reported deep brain stimulation hotspots, we find that the ventral tegmental area participates in an intricate network involving the serotonergic pontine nuclei, basal ganglia, limbic system, basal forebrain, and prefrontal cortex, which is implicated in the treatment of obsessive-compulsive disorder, major depressive disorder, Alzheimer's disease, cluster headaches, and aggressive behaviors.

4.
J Neurosci ; 43(17): 3081-3093, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37001989

RESUMEN

Nicotine engages dopamine neurons in the ventral tegmental area (VTA) to encode reward and drive the development of nicotine addiction, however how nicotine alters a stress associated VTA population remains unclear. Here, we used male and female CRF1-GFP mice and nicotine vapor exposure to examine the effects of nicotine in VTA corticotropin-releasing factor receptor 1 (CRF1) neurons. We use immunohistochemistry and electrophysiology to examine neuronal activity, excitability, and inhibitory signaling. We found that VTA CRF1 neurons are mainly dopaminergic and project to the nucleus accumbens (NAc; VTA-NAcCRF1 neurons). VTA-NAcCRF1 neurons show greater phasic inhibition in naive females and greater focal nicotine-induced increases in firing in naive males. Following acute nicotine vapor exposure, phasic inhibition was not altered, but focal nicotine-induced tonic inhibition was enhanced in females and diminished in males. Acute nicotine vapor exposure did not affect firing in VTA-NAcCRF1 neurons, but females showed lower baseline firing and higher focal nicotine-induced firing. Activity (cFos) was increased in the CRF1 dopaminergic VTA population in both sexes, but with greater increases in females. Following chronic nicotine vapor exposure, both sexes displayed reduced basal phasic inhibition and the sex difference in tonic inhibition following acute vapor exposure was no longer observed. Additionally, activity of the CRF1 dopaminergic VTA population was no longer elevated in either sex. These findings reveal sex-dependent and exposure-dependent changes in mesolimbic VTA-NAc CRF1 neuronal activity, inhibitory signaling, and nicotine sensitivity following nicotine vapor exposure. These changes potentially contribute to nicotine-dependent behaviors and the intersection between stress, anxiety, and addiction.SIGNIFICANCE STATEMENT Nicotine is known to engage reward systems in the brain historically centering the neurotransmitter dopamine however, how nicotine impacts other neurons in the reward pathway is less clear. The current study investigates the impact of acute and chronic electronic nicotine vapor exposure in a genetically-defined cell population containing the stress receptor corticotropin-releasing factor 1 (CRF1) that is located in the reward circuitry. This study employs functional measures of neuronal activity and identifies important sex differences in nicotine's effects across time and exposure.


Asunto(s)
Nicotina , Área Tegmental Ventral , Ratones , Femenino , Masculino , Animales , Área Tegmental Ventral/fisiología , Nicotina/farmacología , Caracteres Sexuales , Núcleo Accumbens , Neuronas Dopaminérgicas/metabolismo , Dopamina/metabolismo
5.
J Neurosci ; 43(44): 7276-7293, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37684032

RESUMEN

The parabrachial nucleus (PBN) interfaces between taste and feeding systems and is also an important hub for relaying distress information and threats. Despite that the PBN sends projections to the ventral tegmental area (VTA), a heterogeneous brain region that regulates motivational behaviors, the function of the PBN-to-VTA connection remains elusive. Here, by using male mice in several behavioral paradigms, we discover that VTA-projecting PBN neurons are significantly engaged in contextual fear, restraint or mild stress but not palatable feeding, visceral malaise, or thermal pain. These results suggest that the PBN-to-VTA input may relay negative emotions under threat. Consistent with this notion, optogenetic activation of PBN-to-VTA glutamatergic input results in aversion, which is sufficient to override palatable feeding. Moreover, in a palatable food-reinforced operant task, we demonstrate that transient optogenetic activation of PBN-to-VTA input during food reward retrieval disengages instrumental food-seeking behaviors but spares learned action-outcome association. By using an activity-dependent targeting approach, we show that VTA DA neurons are disengaged by the PBN afferent activation, implicating that VTA non-DA neurons may mediate PBN afferent regulation. We further show that optogenetic activation of VTA neurons functionally recruited by the PBN input results in aversion, dampens palatable feeding, and disengages palatable food self-administration behavior. Finally, we demonstrate that transient activation of VTA glutamatergic, but not GABAergic, neurons recapitulates the negative regulation of the PBN input on food self-administration behavior. Together, we reveal that the PBN-to-VTA input conveys negative affect, likely through VTA glutamatergic neurons, to disengage instrumental food-seeking behaviors.SIGNIFICANCE STATEMENT The PBN receives multiple inputs and thus is well positioned to route information of various modalities to engage different downstream circuits to attend or respond accordingly. We demonstrate that the PBN-to-VTA input conveys negative affect and then triggers adaptive prioritized responses to address pertinent needs by withholding ongoing behaviors, such as palatable food seeking or intake shown in the present study. It has evolutionary significance because preparing to cope with stressful situations or threats takes priority over food seeking to promote survival. Knowing how appropriate adaptive responses are generated will provide new insights into circuitry mechanisms of various coping behaviors to changing environmental stimuli.


Asunto(s)
Núcleos Parabraquiales , Área Tegmental Ventral , Ratones , Masculino , Animales , Área Tegmental Ventral/fisiología , Núcleos Parabraquiales/fisiología , Alimentos , Neuronas GABAérgicas , Emociones , Recompensa
6.
Eur J Neurosci ; 59(7): 1567-1584, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38314648

RESUMEN

The spontaneously hypertensive rat (SHR) is a selectively bred animal strain that is frequently used to model attention-deficit hyperactivity disorder (ADHD) because of certain genetically determined behavioural characteristics. To test the hypothesis that the characteristically altered response to positive reinforcement in SHRs may be due to altered phasic dopamine response to reward, we measured phasic dopamine signals in the SHRs and Sprague Dawley (SD) rats using in vivo fast-scan cyclic voltammetry. The effects of the dopamine reuptake inhibitor, methylphenidate, on these signals were also studied. Phasic dopamine signals during the pairing of a sensory cue with electrical stimulation of midbrain dopamine neurons were significantly smaller in the SHRs than in the SD rats. Over repeated pairings, the dopamine response to the sensory cue increased, whereas the response to the electrical stimulation of dopamine neurons decreased, similarly in both strains. However, the final amplitude of the response to the sensory cue after pairing was significantly smaller in SHRs than in the SD rats. Methylphenidate increased responses to sensory cues to a significantly greater extent in the SHRs than in the SD rats, due largely to differences in the low dose effect. At a higher dose, methylphenidate increased responses to sensory cues and electrical stimulation similarly in SHRs and SD rats. The smaller dopamine responses may explain the reduced salience of reward-predicting cues previously reported in the SHR, whereas the action of methylphenidate on the cue response suggests a potential mechanism for the therapeutic effects of low-dose methylphenidate in ADHD.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Metilfenidato , Ratas , Animales , Metilfenidato/farmacología , Metilfenidato/uso terapéutico , Ratas Endogámicas SHR , Dopamina , Ratas Endogámicas WKY , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Estimulantes del Sistema Nervioso Central/farmacología
7.
Annu Rev Neurosci ; 39: 297-324, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27145915

RESUMEN

To benefit from opportunities and cope with challenges in the environment, animals must adapt their behavior to acquire rewards and to avoid punishments. Maladaptive changes in the neuromodulatory systems and neural circuits for reward and aversion can lead to manifestation of several prominent psychiatric disorders including addiction and depression. Recent progress is pushing the boundaries of knowledge on two major fronts in research on reward and aversion: First, new layers of complexity have been reported on the functions of dopamine (DA) and serotonin (5-HT) neuromodulatory systems in reward and aversion. Second, specific circuit components in the neural pathways that encode reward and aversion have begun to be identified. This review aims to outline historic perspectives and new insights into the functions of DA and 5-HT systems in coding the distinct components of rewards. It also highlights recent advances in neural circuit studies enabled by new technologies, such as cell-type-specific electrophysiology and tracing, and optogenetics-based behavioral manipulation. This knowledge may provide guidance for developing novel treatment strategies for neuropsychiatric diseases related to the malfunction of the reward system.


Asunto(s)
Encéfalo/efectos de los fármacos , Dopamina/farmacología , Enfermedades del Sistema Nervioso/terapia , Vías Nerviosas/fisiología , Recompensa , Serotonina/farmacología , Animales , Encéfalo/fisiología , Dopamina/metabolismo , Humanos , Serotonina/metabolismo
8.
Synapse ; 78(1): e22284, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37996987

RESUMEN

Dopamine (DA) is involved in stress and stress-related illnesses, including many psychiatric disorders. Corticotropin-releasing factor (CRF) plays a role in stress responses and targets the ventral midbrain DA system, which is composed of DA and non-DA cells, and divided into specific subregions. Although CRF inputs to the midline A10 nuclei ("classic VTA") are known, in monkeys, CRF-containing terminals are also highly enriched in the expanded A10 parabrachial pigmented nucleus (PBP) and in the A8 retrorubral field subregions. We characterized CRF-labeled synaptic terminals on DA (tyrosine hydroxylase, TH+) and non-DA (TH-) cell types in the PBP and A8 regions using immunoreactive electron microscopy (EM) in male and female macaques. CRF labeling was present mostly in axon terminals, which mainly contacted TH-negative dendrites in both subregions. Most CRF-positive terminals had symmetric profiles. In both PBP and A8, CRF symmetric (putative inhibitory) synapses onto TH-negative dendrites were significantly greater than asymmetric (putative excitatory) profiles. This overall pattern was similar in males and females, despite shifts in the size of these effects between regions depending on sex. Because stress and gonadal hormone shifts can influence CRF expression, we also did hormonal assays over a 6-month time period and found little variability in basal cortisol across similarly housed animals at the same age. Together our findings suggest that at baseline, CRF-positive synaptic terminals in the primate PBP and A8 are poised to regulate DA indirectly through synaptic contacts onto non-DA neurons.


Asunto(s)
Bencenoacetamidas , Hormona Liberadora de Corticotropina , Dopamina , Piperidonas , Humanos , Animales , Masculino , Femenino , Dopamina/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Macaca/metabolismo , Terminales Presinápticos/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
9.
Int J Mol Sci ; 25(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791298

RESUMEN

Tobacco use disorder represents a significant public health challenge due to its association with various diseases. Despite awareness efforts, smoking rates remain high, partly due to ineffective cessation methods and the spread of new electronic devices. This study investigated the impact of prolonged nicotine exposure via a heat-not-burn (HnB) device on selected genes and signaling proteins involved in inflammatory processes in the rat ventral tegmental area (VTA) and nucleus accumbens (NAc), two brain regions associated with addiction to different drugs, including nicotine. The results showed a reduction in mRNA levels for PPARα and PPARγ, two nuclear receptors and anti-inflammatory transcription factors, along with the dysregulation of gene expression of the epigenetic modulator KDM6s, in both investigated brain areas. Moreover, decreased PTEN mRNA levels and higher AKT phosphorylation were detected in the VTA of HnB-exposed rats with respect to their control counterparts. Finally, significant alterations in ERK 1/2 phosphorylation were observed in both mesolimbic areas, with VTA decrease and NAc increase, respectively. Overall, the results suggest that HnB aerosol exposure disrupts intracellular pathways potentially involved in the development and maintenance of the neuroinflammatory state. Moreover, these data highlight that, similar to conventional cigarettes, HnB devices use affects specific signaling pathways shaping neuroinflammatory process in the VTA and NAc, thus triggering mechanisms that are currently considered as potentially relevant for the development of addictive behavior.


Asunto(s)
Núcleo Accumbens , Área Tegmental Ventral , Animales , Ratas , Área Tegmental Ventral/metabolismo , Área Tegmental Ventral/efectos de los fármacos , Masculino , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efectos de los fármacos , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/etiología , PPAR gamma/metabolismo , PPAR gamma/genética , Transducción de Señal/efectos de los fármacos , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Humo/efectos adversos , Nicotina/efectos adversos , Ratas Wistar , Nicotiana/efectos adversos , Tabaquismo/metabolismo , Fosforilación/efectos de los fármacos
10.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892125

RESUMEN

A total of 3102 neurons were recorded before and following acute and chronic methylphenidate (MPD) administration. Acute MPD exposure elicits mainly increases in neuronal and behavioral activity in dose-response characteristics. The response to chronic MPD exposure, as compared to acute 0.6, 2.5, or 10.0 mg/kg MPD administration, elicits electrophysiological and behavioral sensitization in some animals and electrophysiological and behavioral tolerance in others when the neuronal recording evaluations were performed based on the animals' behavioral responses, or amount of locomotor activity, to chronic MPD exposure. The majority of neurons recorded from those expressing behavioral sensitization responded to chronic MPD with further increases in firing rate as compared to the initial MPD responses. The majority of neurons recorded from animals expressing behavioral tolerance responded to chronic MPD with decreases in their firing rate as compared to the initial MPD exposures. Each of the six brain areas studied-the ventral tegmental area, locus coeruleus, dorsal raphe, nucleus accumbens, prefrontal cortex, and caudate nucleus (VTA, LC, DR, NAc, PFC, and CN)-responds significantly (p < 0.001) differently to MPD, suggesting that each one of the above brain areas exhibits different roles in the response to MPD. Moreover, this study demonstrates that it is essential to evaluate neuronal activity responses to psychostimulants based on the animals' behavioral responses to acute and chronic effects of the drug from several brain areas simultaneously to obtain accurate information on each area's role in response to the drug.


Asunto(s)
Conducta Animal , Núcleo Caudado , Metilfenidato , Neuronas , Núcleo Accumbens , Corteza Prefrontal , Área Tegmental Ventral , Animales , Metilfenidato/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Ratas , Neuronas/efectos de los fármacos , Neuronas/fisiología , Neuronas/metabolismo , Núcleo Caudado/efectos de los fármacos , Núcleo Caudado/fisiología , Núcleo Caudado/metabolismo , Masculino , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/fisiología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiología , Conducta Animal/efectos de los fármacos , Locus Coeruleus/efectos de los fármacos , Locus Coeruleus/fisiología , Ratas Sprague-Dawley , Núcleo Dorsal del Rafe/efectos de los fármacos , Núcleo Dorsal del Rafe/fisiología , Núcleo Dorsal del Rafe/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología
11.
J Neurosci ; 42(32): 6186-6194, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35794014

RESUMEN

Midbrain dopamine neurons play central physiological roles in voluntary movement, reward learning, and motivated behavior. Inhibitory signaling at somatodendritic dopamine D2 receptor (D2R) synapses modulates excitability of dopamine neurons. The neuropeptide neurotensin is expressed by many inputs to the midbrain and induces LTD of D2R synaptic currents (LTDDA); however, the source of neurotensin that is responsible for LTDDA is not known. Here we show, in brain slices from male and female mice, that LTDDA is driven by neurotensin released by dopamine neurons themselves. Optogenetic stimulation of dopamine neurons was sufficient to induce LTDDA in the substantia nigra, but not the VTA, and was dependent on neurotensin receptor signaling, postsynaptic calcium, and vacuolar-type H+-ATPase activity in the postsynaptic cell. These findings reveal a novel form of signaling between dopamine neurons involving release of the peptide neurotensin, which may act as a feedforward mechanism to increase dopamine neuron excitability.SIGNIFICANCE STATEMENT Dopamine neurons in the midbrain play a critical role in reward learning and the initiation of movement. Aberrant dopamine neuron function is implicated in a range of diseases and disorders, including Parkinson's disease, schizophrenia, obesity, and substance use disorders. D2 receptor-mediated PSCs are produced by a rare form of dendrodendritic synaptic transmission between dopamine neurons. These D2 receptor-mediated PSCs undergo LTD following application of the neuropeptide neurotensin. Here we show that release of neurotensin by dopamine neurons themselves is sufficient to induce LTD of dopamine transmission in the substantia nigra. Neurotensin signaling therefore mediates a second form of interdopamine neuron communication and may provide a mechanism by which dopamine neurons maintain excitability when nigral dopamine is elevated.


Asunto(s)
Neuronas Dopaminérgicas , Neurotensina/metabolismo , Sustancia Negra/metabolismo , Animales , Dopamina , Neuronas Dopaminérgicas/metabolismo , Femenino , Masculino , Ratones , Neuropéptidos/metabolismo
12.
J Transl Med ; 21(1): 543, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580725

RESUMEN

BACKGROUND: The ventral tegmental area (VTA) contains heterogeneous cell populations. The dopaminergic neurons in VTA play a central role in reward and cognition, while CamKIIα-positive neurons, composed mainly of glutamatergic and some dopaminergic neurons, participate in the reward learning and locomotor activity behaviors. The differences in brain-wide functional and structural networks between these two neuronal subtypes were comparatively elucidated. METHODS: In this study, we applied a method combining Designer Receptors Exclusively Activated by Designer Drugs (DREADD) and fMRI to assess the cell type-specific modulation of whole-brain neural networks. rAAV encoding the cre-dependent hM3D was injected into the right VTA of DAT-cre or CamKIIα-cre transgenic rats. The global brain activities elicited by DREADD stimulation were then detected using BOLD-fMRI. Furthermore, the cre-dependent antegrade transsynaptic viral tracer H129ΔTK-TT was applied to label the outputs of VTA neurons. RESULTS: We found that DREADD stimulation of dopaminergic neurons induced significant BOLD signal changes in the VTA and several VTA-related regions including mPFC, Cg and Septum. More regions responded to selective activation of VTA CamKIIα-positive neurons, resulting in increased BOLD signals in VTA, Insula, mPFC, MC_R (Right), Cg, Septum, Hipp, TH_R, PtA_R, and ViC_R. Along with DREADD-BOLD analysis, further neuronal tracing identified multiple cortical (MC, mPFC) and subcortical (Hipp, TH) brain regions that are structurally and functionally connected by VTA dopaminergic and CamKIIα-positive neurons. CONCLUSIONS: Our study dissects brain-wide structural and functional networks of two neuronal subtypes in VTA and advances our understanding of VTA functions.


Asunto(s)
Imagen por Resonancia Magnética , Área Tegmental Ventral , Ratas , Animales , Área Tegmental Ventral/diagnóstico por imagen , Área Tegmental Ventral/fisiología , Imagen por Resonancia Magnética/métodos , Encéfalo , Neuronas Dopaminérgicas/fisiología
13.
Neurobiol Learn Mem ; 205: 107845, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37865264

RESUMEN

The presentation of novel stimuli induces a reliable dopamine release in the insular cortex (IC) from the ventral tegmental area (VTA). The novel stimuli could be associated with motivational and emotional signals induced by cortical glutamate release from the basolateral amygdala (BLA). Dopamine and glutamate are essential for acquiring and maintaining behavioral tasks, including visual and taste recognition memories. In this study, we hypothesize that the simultaneous activation of dopaminergic and glutamatergic projections to the neocortex can underlie synaptic plasticity. High-frequency stimulation of the BLA-IC circuit has demonstrated a reliable long-term potentiation (LTP), a widely acknowledged synaptic plasticity that underlies memory consolidation. Therefore, the concurrent optogenetic stimulation of the insula's glutamatergic and dopaminergic terminal fibers would induce reliable LTP. Our results confirmed that combined photostimulation of the VTA and BLA projections to the IC induces a slow-onset LTP. We also found that optogenetically-induced LTP in the IC relies on both glutamatergic NMDA receptors and dopaminergic D1/D5 receptors, suggesting that the combined effects of these neurotransmitters can trigger synaptic plasticity in the neocortex. Overall, our findings provide compelling evidence supporting the essential role of both dopaminergic and glutamatergic projections in modulating synaptic plasticity within the IC. Furthermore, our results suggest that the synergistic actions of these projections have a pivotal influence on the formation of motivational memories.


Asunto(s)
Complejo Nuclear Basolateral , Potenciación a Largo Plazo , Ratas , Animales , Potenciación a Largo Plazo/fisiología , Área Tegmental Ventral/fisiología , Corteza Insular , Ratas Wistar , Dopamina/farmacología , Glutamatos/farmacología
14.
Neurobiol Learn Mem ; 202: 107760, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37119849

RESUMEN

Excitatory pyramidal (PYR) cell activation of interneurons (INT) produces network oscillations that underlie cognitive processes in the hippocampus (CA1). Neural projections from the ventral tegmental area (VTA) to the hippocampus contribute to novelty detection by modulating CA1 PYR and INT activity. The role of the VTA in the VTA-hippocampus loop is mostly attributed to the dopamine neurons although the VTA glutamate-releasing terminals are dominant in the hippocampus. Because of the traditional focus on VTA dopamine circuits, how VTA glutamate inputs modulate PYR activation of INT in CA1 neuronal ensembles is poorly understood and has not been distinguished from the VTA dopamine inputs. By combining CA1 extracellular recording with VTA photostimulation in anesthetized mice, we compared the effects of VTA dopamine and glutamate input on CA1 PYR/INT connections. Stimulation of VTA glutamate neurons shortened PYR/INT connection time without altering the synchronization or connectivity strength. Conversely, activation of VTA dopamine inputs delayed CA1 PYR/INT connection time and increased the synchronization in putative pairs. Taken together, we conclude that VTA dopamine and glutamate projections produce tract-specific effects on CA1 PYR/INT connectivity and synchrony. As such, selective activation or co-activation of these systems will likely produce a range of modulatory effects on local CA1 circuits.


Asunto(s)
Dopamina , Área Tegmental Ventral , Ratones , Animales , Dopamina/fisiología , Hipocampo/fisiología , Ácido Glutámico , Neuronas Dopaminérgicas/fisiología
15.
Brain Behav Immun ; 113: 145-155, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37453452

RESUMEN

Dopamine transmission from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) regulates important aspects of motivation and is influenced by the neuroimmune system. The neuroimmune system is a complex network of leukocytes, microglia and astrocytes that detect and remove foreign threats like bacteria or viruses and communicate with each other to regulate non-immune (e.g neuronal) cell activity through cytokine signaling. Inflammation is a key regulator of motivational states, though the effects of specific cytokines on VTA circuitry and motivation are largely unknown. Therefore, electrophysiology, neurochemical, immunohistochemical and behavioral studies were performed to determine the effects of the anti-inflammatory cytokine interleukin-10 (IL-10) on mesolimbic activity, dopamine transmission and conditioned behavior. IL-10 enhanced VTA dopamine firing and NAc dopamine levels via decreased VTA GABA currents in dopamine neurons. The IL-10 receptor was localized on VTA dopamine and non-dopamine cells. The IL-10 effects on dopamine neurons required post-synaptic phosphoinositide 3-kinase activity, and IL-10 appeared to have little-to-no efficacy on presynaptic GABA terminals. Intracranial IL-10 enhanced NAc dopamine levels in vivo and produced conditioned place aversion. Together, these studies identify the IL-10R on VTA dopamine neurons as a potential regulator of motivational states.


Asunto(s)
Dopamina , Área Tegmental Ventral , Dopamina/farmacología , Neuronas Dopaminérgicas/fisiología , Interleucina-10/farmacología , Fosfatidilinositol 3-Quinasas , Núcleo Accumbens , Ácido gamma-Aminobutírico/farmacología
16.
Horm Behav ; 155: 105412, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37633226

RESUMEN

Stress-related disorders predominately affect females, yet preclinical models of chronic stress exclusively use males especially in models where social stressors are studied. Here, we implemented a 21-day novel social defeat paradigm in which a female and male C57 intruder are simultaneously placed in the cage of a territorial, resident CD-1 male mouse, and the resident proceeds to attack both intruders. Mice were given access to a regular laboratory diet, high in carbohydrates, and a palatable diet, high in fat. Chronic social defeat stress using this paradigm resulted in increased caloric intake in male and female mice, with the effects being more pronounced in females. We observed sex differences in high fat diet intake in response to stress, which was correlated with higher levels of plasma ghrelin observed in female mice but not male mice. Furthermore, females exposed to chronic stress displayed changes in growth hormone secretatogue receptor (ghsr) and neuropeptide-y (npy) expression in the arcuate nucleus of the hypothalamus, potentially increasing ghrelin sensitivity and inducing changes in diet choice and caloric intake. Behavioral results show that females tended to spend more time interacting during the social interaction test, compared to males who displayed higher vigilance towards the stranger mouse. Overall, our results highlight unique neurometabolic alterations in female mice in response to stress that is not present in male mice and may be important for coping with chronic stress and sustaining reproductive function.

17.
Cell Mol Life Sci ; 79(6): 341, 2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35660973

RESUMEN

In Lesch-Nyhan disease (LND), deficiency of the purine salvage enzyme hypoxanthine guanine phosphoribosyl transferase (HGprt) leads to a characteristic neurobehavioral phenotype dominated by dystonia, cognitive deficits and incapacitating self-injurious behavior. It has been known for decades that LND is associated with dysfunction of midbrain dopamine neurons, without overt structural brain abnormalities. Emerging post mortem and in vitro evidence supports the hypothesis that the dopaminergic dysfunction in LND is of developmental origin, but specific pathogenic mechanisms have not been revealed. In the current study, HGprt deficiency causes specific neurodevelopmental abnormalities in mice during embryogenesis, particularly affecting proliferation and migration of developing midbrain dopamine (mDA) neurons. In mutant embryos at E14.5, proliferation was increased, accompanied by a decrease in cell cycle exit and the distribution and orientation of dividing cells suggested a premature deviation from their migratory route. An abnormally structured radial glia-like scaffold supporting this mDA neuronal migration might lie at the basis of these abnormalities. Consequently, these abnormalities were associated with an increase in area occupied by TH+ cells and an abnormal mDA subpopulation organization at E18.5. Finally, dopaminergic innervation was disorganized in prefrontal and decreased in HGprt deficient primary motor and somatosensory cortices. These data provide direct in vivo evidence for a neurodevelopmental nature of the brain disorder in LND. Future studies should not only focus the specific molecular mechanisms underlying the reported neurodevelopmental abnormalities, but also on optimal timing of therapeutic interventions to rescue the DA neuron defects, which may also be relevant for other neurodevelopmental disorders.


Asunto(s)
Síndrome de Lesch-Nyhan , Animales , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/metabolismo , Síndrome de Lesch-Nyhan/genética , Síndrome de Lesch-Nyhan/metabolismo , Mesencéfalo/metabolismo , Ratones
18.
Proc Natl Acad Sci U S A ; 117(15): 8611-8615, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32229573

RESUMEN

Electrical or optogenetic stimulation of lateral hypothalamic (LH) GABA neurons induces rapid vigorous eating in sated animals. The dopamine system has been implicated in the regulation of feeding. Previous work has suggested that a subset of LH GABA neurons projects to the ventral tegmental area (VTA) and targets GABA neurons, inhibiting them and thereby disinhibiting dopaminergic activity and release. Furthermore, stimulation-induced eating is attenuated by dopamine lesions or receptor antagonists. Here we explored the involvement of dopamine in LH stimulation-induced eating. LH stimulation caused sated mice to pick up pellets of standard chow with latencies that varied based on stimulation intensity; once food was picked up, animals ate for the remainder of the 60-s stimulation period. However, lesion of VTA GABA neurons failed to disrupt this effect. Moreover, direct stimulation of VTA or substantia nigra dopamine cell bodies failed to induce food approach or eating. Looking further, we found that some LH GABA fibers pass through the VTA to more caudal sites, where they synapse onto neurons near the locus coeruleus (LC). Similar eating was induced by stimulation of LH GABA terminals or GABA cell bodies in this peri-LC region. Lesion of peri-LC GABA neurons blocked LH stimulation-induced eating, establishing them as a critical downstream circuit element for LH neurons. Surprisingly, lesions did not alter body weight, suggesting that this system is not involved in the hunger or satiety mechanisms that govern normal feeding. Thus, we present a characterization of brain circuitry that may promote overeating and contribute to obesity.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Neuronas GABAérgicas/metabolismo , Área Hipotalámica Lateral/fisiología , Área Tegmental Ventral/fisiología , Animales , Conducta Animal , Dopamina/metabolismo , Neuronas Dopaminérgicas/citología , Femenino , Neuronas GABAérgicas/citología , Área Hipotalámica Lateral/citología , Masculino , Ratones , Vías Nerviosas , Receptores de GABA-A/metabolismo , Recompensa , Área Tegmental Ventral/citología , Ácido gamma-Aminobutírico/metabolismo
19.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36768606

RESUMEN

Advancing the understanding of the relationship between perinatal nicotine addiction and the reward mechanism of the brain is crucial for uncovering and implementing new treatments for addiction control and prevention. The mesolimbic pathway of the brain, also known as the reward pathway, consists of two main areas that regulate dopamine (DA) and addiction-related behaviors. The ventral tegmental area (VTA) releases DA when stimulated, causing the propagation of neuronal firing along the pathway. This ends in the release of DA into the extracellular space of the nucleus accumbens (NAc), which is directly modulated by the uptake of DA. Much research has been conducted on the effects of nicotine addiction, but little research has been conducted concerning nicotine addiction and the mesolimbic pathway regarding maturation due to the small brain size. In this study, we apply our novel microstimulation experimental system to rat pups that have been perinatally exposed to nicotine. By using our self-fabricated photo-stimulation (PS) device, we can stimulate the VTA and collect dialysate, which is then used to estimate DA released into the NAc. The proposed platform has demonstrated the potential to monitor neural pathways as the pups mature.


Asunto(s)
Nicotina , Tabaquismo , Ratas , Animales , Nicotina/farmacología , Nicotina/metabolismo , Área Tegmental Ventral/metabolismo , Tabaquismo/metabolismo , Optogenética , Núcleo Accumbens/metabolismo , Neuronas/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo
20.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37762450

RESUMEN

Peripheral mechanoreceptor-based treatments such as acupuncture and chiropractic manipulation have shown success in modulating the mesolimbic dopamine (DA) system originating in the ventral tegmental area (VTA) of the midbrain and projecting to the nucleus accumbens (NAc) of the striatum. We have previously shown that mechanoreceptor activation via whole-body vibration (WBV) ameliorates neuronal and behavioral effects of chronic ethanol exposure. In this study, we employ a similar paradigm to assess the efficacy of WBV as a preventative measure of neuronal and behavioral effects of morphine withdrawal in a Wistar rat model. We demonstrate that concurrent administration of WBV at 80 Hz with morphine over a 5-day period significantly reduced adaptations in VTA GABA neuronal activity and NAc DA release and modulated expression of δ-opioid receptors (DORs) on NAc cholinergic interneurons (CINs) during withdrawal. We also observed a reduction in behavior typically associated with opioid withdrawal. WBV represents a promising adjunct to current intervention for opioid use disorder (OUD) and should be examined translationally in humans.


Asunto(s)
Terapia por Acupuntura , Morfina , Humanos , Ratas , Animales , Ratas Wistar , Vibración/uso terapéutico , Interneuronas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda