Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Eur J Oper Res ; 304(1): 339-352, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33776195

RESUMEN

Post COVID-19 vaccine development, nations are now getting ready to face another challenge: how to effectively distribute vaccines amongst the masses to quickly achieve herd immunity against the infection. According to some experts, herd immunity for COVID-19 can be achieved by inoculating 67% of the population. India may find it difficult to achieve this service level target, owing to several infrastructural deficiencies in its vaccine supply chain. Effect of these deficiencies is to cause frequent lead time disruptions. In this context, we develop a novel modelling approach to identify few nodes, which require additional inventory allocations (strategic inventory reserves) to ensure minimum service level (67%) under the possibility of lead time disruptions. Later, through an illustrative case study on distribution of Japanese Encephalitis vaccine, we identify conditions under which strategic inventory reserve policy cannot be practically implemented to meet service level targets. Nodes fulfilling these conditions are termed as critical nodes and must be overhauled structurally to make the implementation of strategic inventory policy practically viable again. Structural overhauling may entail installation of better cold storage facilities, purchasing more quality transport vans, improving reliability of transport network, and skills of cold storage manager by training. Ideally, conditions for identifying critical nodes for COVID-19 vaccine distribution must be derived separately by substituting COVID-19 specific parametric values in our model. In the absence of the required data for COVID-19 scenario, JE specific criteria can be used heuristically to identify critical nodes and structurally overhaul them later for efficiently achieving service level targets.

2.
Expert Syst Appl ; 214: 119009, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36312907

RESUMEN

The COVID-19 pandemic has affected people's lives worldwide. Among various strategies being applied to addressing such a global crisis, public vaccination has been arguably the most appropriate approach to control a pandemic. However, vaccine supply chain and management have become a new challenge for governments. In this study, a solution for the vaccine supply chain is presented to address the hurdles in the public vaccination program according to the concerns of the government and the organizations involved. For this purpose, a robust bi-level optimization model is proposed. At the upper level, the risk of mortality due to the untimely supply of the vaccine and the risk of inequality in the distribution of the vaccine is considered. All costs related to the vaccine supply chain are considered at the lower level, including the vaccine supply, allocation of candidate centers for vaccine injection, cost of maintenance and injection, transportation cost, and penalty cost due to the vaccine shortage. In addition, the uncertainty of demand for vaccines is considered with multiple scenarios of different demand levels. Numerical experiments are conducted based on the vaccine supply chain in Kermanshah, Iran, and the results show that the proposed model significantly reduces the risk of mortality and inequality in the distribution of vaccines as well as the total cost, which leads to managerial insights for better coordination of the vaccination network during the COVID-19 pandemic.

3.
J Bus Res ; 156: 113480, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36506475

RESUMEN

Vaccination offers health, economic, and social benefits. However, three major issues-vaccine quality, demand forecasting, and trust among stakeholders-persist in the vaccine supply chain (VSC), leading to inefficiencies. The COVID-19 pandemic has exacerbated weaknesses in the VSC, while presenting opportunities to apply digital technologies to manage it. For the first time, this study establishes an intelligent VSC management system that provides decision support for VSC management during the COVID-19 pandemic. The system combines blockchain, internet of things (IoT), and machine learning that effectively address the three issues in the VSC. The transparency of blockchain ensures trust among stakeholders. The real-time monitoring of vaccine status by the IoT ensures vaccine quality. Machine learning predicts vaccine demand and conducts sentiment analysis on vaccine reviews to help companies improve vaccine quality. The present study also reveals the implications for the management of supply chains, businesses, and government.

4.
Socioecon Plann Sci ; 85: 101378, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35966449

RESUMEN

With the discovery of the COVID-19 vaccine, what has always been worrying the decision-makers is related to the distribution management, the vaccination centers' location, and the inventory control of all types of vaccines. As the COVID-19 vaccine is highly demanded, planning for its fair distribution is a must. University is one of the most densely populated areas in a city, so it is critical to vaccinate university students so that the spread of this virus is curbed. As a result, in the present study, a new stochastic multi-objective, multi-period, and multi-commodity simulation-optimization model has been developed for the COVID-19 vaccine's production, distribution, location, allocation, and inventory control decisions. In this study, the proposed supply chain network includes four echelons of manufacturers, hospitals, vaccination centers, and volunteer vaccine students. Vaccine manufacturers send the vaccines to the vaccination centers and hospitals after production. The students with a history of special diseases such as heart disease, corticosteroids, blood clots, etc. are vaccinated in hospitals because of accessing more medical care, and the rest of the students are vaccinated in the vaccination centers. Then, a system dynamic structure of the prevalence of COVID -19 in universities is developed and the vaccine demand is estimated using simulation, in which the demand enters the mathematical model as a given stochastic parameter. Thus, the model pursues some goals, namely, to minimize supply chain costs, maximize student desirability for vaccination, and maximize justice in vaccine distribution. To solve the proposed model, Variable Neighborhood Search (VNS) and Whale Optimization Algorithm (WOA) algorithms are used. In terms of novelties, the most important novelties in the simulation model are considering the virtual education and exerted quarantine effect on estimating the number of the vaccines. In terms of the mathematical model, one of the remarkable contributions is paying attention to social distancing while receiving the injection and the possibility of the injection during working and non-working hours, and regarding the novelties in the solution methodology, a new heuristic method based on a meta-heuristic algorithm called Modified WOA with VNS (MVWOA) is developed. In terms of the performance metrics and the CPU time, the MOWOA is discovered with a superior performance than other given algorithms. Moreover, regarding the data, a case study related to the COVID-19 pandemic period in Tehran/Iran is provided to validate the proposed algorithm. The outcomes indicate that with the demand increase, the costs increase sharply while the vaccination desirability for students decreases with a slight slope.

5.
Socioecon Plann Sci ; 87: 101602, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37255585

RESUMEN

As an abrupt epidemic occurs, healthcare systems are shocked by the surge in the number of susceptible patients' demands, and decision-makers mostly rely on their frame of reference for urgent decision-making. Many reports have declared the COVID-19 impediments to trading and global economic growth. This study aims to provide a mathematical model to support pharmaceutical supply chain planning during the COVID-19 epidemic. Additionally, it aims to offer new insights into hospital supply chain problems by unifying cold and non-cold chains and considering a wide range of pharmaceuticals and vaccines. This approach is unprecedented and includes an analysis of various pharmaceutical features such as temperature, shelf life, priority, and clustering. To propose a model for planning the pharmaceutical supply chains, a mixed-integer linear programming (MILP) model is used for a four-echelon supply chain design. This model aims to minimize the costs involved in the pharmaceutical supply chain by maintaining an acceptable service level. Also, this paper considers uncertainty as an intrinsic part of the problem and addresses it through the wait-and-see method. Furthermore, an unexplored unsupervised learning method in the realm of supply chain planning has been used to cluster the pharmaceuticals and the vaccines and its merits and drawbacks are proposed. A case of Tehran hospitals with real data has been used to show the model's capabilities, as well. Based on the obtained results, the proposed approach is able to reach the optimum service level in the COVID conditions while maintaining a reduced cost. The experiment illustrates that the hospitals' adjacency and emergency orders alleviated the service level significantly. The proposed MILP model has proven to be efficient in providing a practical intuition for decision-makers. The clustering technique reduced the size of the problem and the time required to solve the model considerably.

6.
J Clean Prod ; 370: 133423, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-35975192

RESUMEN

This study develops a vaccine supply chain (VSC) to ensure sustainable distribution during a global crisis in a developing economy. In this study, a multi-objective mixed-integer programming (MIP) model is formulated to develop the VSC, ensuring the entire network's economic performance. This is achieved by minimizing the overall cost of vaccine distribution and ensuring environmental and social sustainability by minimizing greenhouse gas (GHG) emissions and maximizing job opportunities in the entire network. The shelf-life of vaccines and the uncertainty associated with demand and supply chain (SC) parameters are also considered in this study to ensure the robustness of the model. To solve the model, two recently developed metaheuristics-namely, the multi-objective social engineering optimizer (MOSEO) and multi-objective feasibility enhanced particle swarm optimization (MOFEPSO) methods-are used, and their results are compared. Further, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) model has been integrated into the optimization model to determine the best solution from a set of non-dominated solutions (NDSs) that prioritize environmental sustainability. The results are analyzed in the context of the Bangladeshi coronavirus disease (COVID-19) vaccine distribution systems. Numerical illustrations reveal that the MOSEO-TOPSIS model performs substantially better in designing the network than the MOFEPSO-TOPSIS model. Furthermore, the solution from MOSEO results in achieving better environmental sustainability than MOFEPSO with the same resources. Results also reflect that the proposed MOSEO-TOPSIS can help policymakers establish a VSC during a global crisis with enhanced economic, environmental, and social sustainability within the healthcare system.

7.
Omega ; 110: 102637, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35291647

RESUMEN

The worldwide COVID-19 pandemic sparked such a wave of concern that made access to vaccines more necessary than before. As the vaccine inaccessibility in developing countries has made pandemic eradication more difficult, this study has presented a mathematical model of a sustainable SC for the COVID-19 vaccine that covers the economic, environmental and social aspects and provides vaccine both domestically and internationally. It has also proposed a robust data-driven model based on a polyhedral uncertainty set to address the unjust worldwide vaccine distribution as an uncertain parameter. It is acceptably robust and is also less conservative than its classical counterparts. For validation, the model has been implemented in a real case in Iran, and the results have shown that it is 21% less conservative than its classical rivals (Box and Polyhedral convex uncertainty sets) in facing the uncertain parameter. As a result, the model proposes the construction of two domestic vaccine production centers, including Pasteur Institute and Razi Institute, and five foreign distributors in Tehran, Isfahan, Ahvaz, Kermanshah, and Bandar Abbas strategically.

8.
Int J Prod Econ ; 239: 108193, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34121813

RESUMEN

The COVID-19 outbreak has demonstrated the diverse challenges that supply chains face to significant disruptions. Vaccine supply chains are no exception. Therefore, it is elemental that challenges to the COVID-19 vaccine supply chain (VSC) are identified and prioritized to pave the way out of this pandemic. This study combines the decision-making trial and evaluation laboratory (DEMATEL) method with intuitionistic fuzzy sets (IFS) to explore the key challenges of the COVID-19 VSC. The IFS theory tackles the uncertainty of key challenges while DEMATEL addresses the interlaced causal relationships among crucial challenges to the COVID-19 VSC. This work identifies 15 challenges and reveals that 'Limited number of vaccine manufacturing companies', 'Inappropriate coordination with local organizations', 'Lack of vaccine monitoring bodies', 'Difficulties in monitoring and controlling vaccine temperature', and 'Vaccination cost and lack of financial support for vaccine purchase' are the most critical challenges. The causal interactions along with mutual relationships among these challenges are also scrutinized, and implications for sustainable development goals (SDGs) are drawn. The results offer practical guidelines for stakeholders and government policy makers around the world to develop an improved VSC for the COVID-19 virus.

9.
Sci Rep ; 14(1): 22829, 2024 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-39353990

RESUMEN

The recent pandemic caused by COVID-19 is considered an unparalleled disaster in history. Developing a vaccine distribution network can provide valuable support to supply chain managers. Prioritizing the assigned available vaccines is crucial due to the limited supply at the final stage of the vaccine supply chain. In addition, parameter uncertainty is a common occurrence in a real supply chain, and it is essential to address this uncertainty in planning models. On the other hand, blockchain technology, being at the forefront of technological advancements, has the potential to enhance transparency within supply chains. Hence, in this study, we develop a new mathematical model for designing a COVID-19 vaccine supply chain network. In this regard, a multi-channel network model is designed to minimize total cost and maximize transparency with blockchain technology consideration. This addresses the uncertainty in supply, and a scenario-based multi-stage stochastic programming method is presented to handle the inherent uncertainty in multi-period planning horizons. In addition, fuzzy programming is used to face the uncertain price and quality of vaccines. Vaccine assignment is based on two main policies including age and population-based priority. The proposed model and method are validated and tested using a real-world case study of Iran. The optimum design of the COVID-19 vaccine supply chain is determined, and some comprehensive sensitivity analyses are conducted on the proposed model. Generally, results demonstrate that the multi-stage stochastic programming model meaningfully reduces the objective function value compared to the competitor model. Also, the results show that one of the efficient factors in increasing satisfied demand and decreasing shortage is the price of each type of vaccine and its agreement.


Asunto(s)
Cadena de Bloques , Vacunas contra la COVID-19 , COVID-19 , Vacunas contra la COVID-19/provisión & distribución , Vacunas contra la COVID-19/economía , Incertidumbre , Humanos , COVID-19/prevención & control , COVID-19/epidemiología , SARS-CoV-2 , Modelos Teóricos , Pandemias/prevención & control , Irán
10.
Comput Ind Eng ; 175: 108885, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36505091

RESUMEN

Currently, the global spread of COVID-19 is taking a heavy toll on the lives of the global population. There is an urgent need to improve and strengthen the coordination of vaccine supply chains in response to this severe pandemic. In this study, we consider a vaccine supply chain based on a combination of artificial intelligence and blockchain technologies and model the supply chain as a two-player dynamic game with inventory level as the dynamic equation of the system. The study focuses on the applicability and effectiveness of the two technologies in the vaccine supply chain and provides management insights. The impact of the application of the technologies on environmental performance is also considered in the model. We also examine factors such as the number of people vaccinated, positive and side effects of vaccines, vaccine decay rate, revenue-sharing/cost-sharing ratio, and commission ratio. The results are as follows: the correlation between the difficulty in obtaining certified vaccines and the profit of a vaccine manufacturer is not monotonous; the vaccine manufacturer is more sensitive to changes in the vaccine attenuation rate. The study's major conclusions are as follows: First, the vaccine supply chain should estimate the level of consumers' difficulty in obtaining a certified vaccine source and the magnitude of the production planning and demand forecasting error terms before adopting the two technologies. Second, the application of artificial intelligence (AI) technology is meaningful in the vaccine supply chain when the error terms satisfy a particular interval condition.

11.
Procedia Comput Sci ; 217: 366-375, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36687283

RESUMEN

Vaccination is one of the most effective ways to prevent and control the outbreak of infectious diseases. The vaccine supply chain differs from the traditional supply chains because of the perishability of the products, which need strict transport and warehousing conditions to guarantee the health and safety of people. In addition, in case of pandemics, the big amount of doses requested for the implementation of a mass vaccination campaign forces governments to design a proper logistic network and plan a rapid and efficient distribution of vaccines. This paper studies the organization of allocation and distribution of the covid-19 vaccines in Italy. The main criticalities in managing the vaccine supply chain have been identified and, because of its peculiarities, the blockchain has been considered a suitable technology to solve them. A simulation model has been developed to reproduce the current distribution of vaccines in Italy, and a future scenario with blockchain has been studied. The findings show that it is possible to improve the performance of the vaccine supply chain and make it more resilient by implementing the blockchain technology.

12.
J Ind Inf Integr ; : 100485, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37359315

RESUMEN

In the present era of the pandemic, vaccination is necessary to prevent severe infectious diseases, i.e., COVID-19. Specifically, vaccine safety is strongly linked to global health and security. However, the main concerns regarding vaccine record forgery and counterfeiting of vaccines are still common in the traditional vaccine supply chains. The conventional vaccine supply chains do not have proper authentication among all supply chain entities. Blockchain technology is an excellent contender to resolve the issues mentioned above. Although, blockchain based vaccine supply chains can potentially satisfy the objectives and functions of the next-generation supply chain model. However, its integration with the supply chain model is still constrained by substantial scalability and security issues. So, the current blockchain technology with traditional Proof-of-Work (PoW) consensus is incompatible with the next-generation vaccine supply chain framework. This paper introduces a model named "VaccineChain" - a novel checkpoint-assisted scalable blockchain based secure vaccine supply chain. VaccineChain guarantees the complete integrity and immutability of vaccine supply records to combat counterfeited vaccines over the supply chain. The dynamic consensus algorithm with various validating difficulty levels supports the efficient scalability of VaccineChain. Moreover, VaccineChain includes anonymous authentication among entities to provide selective revocation. This work also consists of a use case example of a secure vaccine supply chain using checkpoint assisted scalable blockchain with customized transaction generation-rule and smart contracts to demonstrate the application of VaccineChain. The comprehensive security analysis with standard theoretical proofs ensures the computational infeasibility of VaccineChain. Further, the detailed performance analysis with test simulations shows the practicability of VaccineChain.

13.
Vaccines (Basel) ; 11(3)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36992189

RESUMEN

Given the recent emergence of Rift Valley Fever (RVF) in Rwanda and its profound impact on livelihoods and health, improving RVF prevention and control strategies is crucial. Vaccinating livestock is one of the most sustainable strategies to mitigate the impact of RVF on health and livelihoods. However, vaccine supply chain constraints severely limit the effectiveness of vaccination programs. In the human health sector, unmanned aerial vehicles, i.e., drones, are increasingly used to improve supply chains and last-mile vaccine delivery. We investigated perceptions of whether delivering RVF vaccines by drone in Rwanda might help to overcome logistical constraints in the vaccine supply chain. We conducted semi-structured interviews with stakeholders in the animal health sector and Zipline employees in Nyagatare District in the Eastern Province of Rwanda. We used content analysis to identify key themes. We found that stakeholders in the animal health sector and Zipline employees believe that drones could improve RVF vaccination in Nyagatare. The primary benefits study participants identified included decreased transportation time, improved cold chain maintenance, and cost savings.

14.
Front Public Health ; 11: 1178929, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998286

RESUMEN

[This corrects the article DOI: 10.3389/fpubh.2022.935400.].

15.
Vaccine X ; 14: 100312, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37234593

RESUMEN

Drones (uncrewed aerial vehicles or UAVs) introduce new opportunities to improve vaccine distribution systems, particularly in regions with limited transportation infrastructure where maintaining the cold chain is challenging. This paper addresses the use of drones to deliver vaccines to hard-to-reach populations using a novel optimization model to strategically design a multimodal vaccine distribution network. The model is illustrated in a case study for distributing routine childhood vaccines in Vanuatu, a South Pacific island nation with limited transportation infrastructure. Our research incorporates multiple drone types, recharging of drones, a cold chain travel time limit, transshipment delays for switching transport modes, and practical limits on the vaccine paths and drone trips. The goal is to locate facilities (distribution centers, drone bases, and relay stations) and design vaccine paths to minimize transportation costs, including the fixed costs for facilities and transportation links and variable costs for transportation through the network. Results show large potential cost savings and improved service quality provided by incorporating drones in a multimodal vaccine distribution system. Results also show the impact of introducing drones on the usage of other more expensive or slower transport modes.

16.
Ann Oper Res ; : 1-24, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35194284

RESUMEN

Vaccination is a well-known method to protect the public against an epidemic outbreak, e.g., COVID-19. To this end, the government of a country or region would strive to achieve its target of vaccination coverage. Limited by the total vaccine capacity of public hospitals, the government may need to cooperate with private hospitals or clinics for more vaccination. Exploring in this paper government coordination of public and private resources for vaccination, we model a vaccine system consisting of a public hospital, a profit-maximizing private clinic, and self-interested individuals, under three scenarios: (1) without information sharing (concerning vaccine inventory and vaccine price), (2) with information sharing and subsidy, and (3) with information sharing and allocation. We find that, under scenario (1), the vaccine demand is fully satisfied by the public hospital and the private clinic cannot make any profit. Under scenario (2), the private clinic is willing to enter the vaccine market with a positive profit-maximizing vaccination coverage. Under scenario (3), the socially optimal vaccination coverage may be lower than that under scenario (1). Moreover, we conduct a sensitivity analysis to generate practical implications of the research findings for vaccination policy-making. Our results provide both theoretical and managerial insights on vaccine supply decision, government intervention, and vaccination coverage.

17.
J Ambient Intell Humaniz Comput ; : 1-25, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35692508

RESUMEN

Vaccination is one of the most efficient ways to restrict and control the spread of epidemic outbreaks such as COVID-19. Due to the limited COVID-19 vaccine supply, an equitable and accessible plan should be prepared to cope with. This research focuses on designing a vaccine supply chain while aiming to achieve an equitable and accessible network. We present a novel mathematical formulation that helps to optimize vaccine distribution to inoculate people with various priority levels to achieve an equitable plan. The transshipment strategy is also incorporated into the model to enhance the accessibility of COVID-19 vaccine types between health facilities. The nature of COVID-19 is dynamic over time due to mutations, and the protection level of each vaccine type against this disease is not exact. Besides, complete information about the demand for different vaccine types is not available. Hence, we use Multi-Stage Stochastic Programming as a reliable strategy that is organized to manage stochastic data in a dynamic environment for the first time in the vaccine supply chain network. The scenarios in this approach are generated using a Monte Carlo simulation method, and then a forward scenario reduction technique is conducted to construct a suitable scenario tree. The practicality and capability of the model are shown in a real-life case of Iran. The results show that the performance of the Multi-Stage Stochastic Programming is significantly improved compared with the two-stage stochastic programming regarding the total cost of the vaccine supply chain and the number of the shortage units.

18.
Front Public Health ; 10: 935400, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35923971

RESUMEN

Objectives: The design of the supply chain determines how effectively any vaccination campaign can be operated. This case study of Switzerland's vaccine supply chain compares its design with public health objectives. It maps the vaccine supply chain in Switzerland as it was set up to handle the first shipments of Covid-19 vaccine in 2021 to enable a more holistic view of supply and demand flows. Recommendations are made to improve emergency logistics of vaccines in the future. Methods: Twenty-six semi-structured interviews with international and Swiss stake-holders were coded and analyzed to arrive at a description of planning and distribution processes. The vaccine supply chain network structure was mapped, linking upstream and downstream flows of material and information. The visualization of nodes and flows was combined with spatial information, including population data. The results are summarized in narrative form to support decision-makers across disciplines. Results: Despite adequate vaccine supply, abundant local endowments and high investment in infrastructure, the 2021 design of Switzerland's vaccine supply chain reduced the potential reach of target populations. The segmentation of catchment populations, collaboration between administrative units and better use of information on geolocation and material flows could have improved the speed and reach of vaccinations during the emergency response phase. Three recommendations are made for supply chain structures to support higher vaccination rates in the future. Conclusions: The visualization identifies design alternatives which could have improved vaccination rates under the prevailing conditions. A supply chain map provides public health officials with a shared view of the vaccine supply chain in order to better match supply with demand. The case study contributes to developed country studies. In order to improve public health outcomes in Switzerland, investments to secure supply, strong national endowments, and excellent infrastructure must be combined with optimized supply chain design.


Asunto(s)
COVID-19 , Vacunas , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Programas de Inmunización , Suiza
19.
Transp Res E Logist Transp Rev ; 163: 102749, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35664528

RESUMEN

Crisis-induced vaccine supply chain management has recently drawn attention to the importance of immediate responses to a crisis (e.g., the COVID-19 pandemic). This study develops a queuing model for a crisis-induced vaccine supply chain to ensure efficient coordination and distribution of different COVID-19 vaccine types to people with various levels of vulnerability. We define a utility function for queues to study the changes in arrival rates related to the inventory level of vaccines, the efficiency of vaccines, and a risk aversion coefficient for vaccinees. A multi-period queuing model considering congestion in the vaccination process is proposed to minimise two contradictory objectives: (i) the expected average wait time of vaccinees and (ii) the total investment in the holding and ordering of vaccines. To develop the bi-objective non-linear programming model, the goal attainment algorithm and the non-dominated sorting genetic algorithm (NSGA-II) are employed for small- to large-scale problems. Several solution repairs are also implemented in the classic NSGA-II algorithm to improve its efficiency. Four standard performance metrics are used to investigate the algorithm. The non-parametric Friedman and Wilcoxon signed-rank tests are applied on several numerical examples to ensure the privilege of the improved algorithm. The NSGA-II algorithm surveys an authentic case study in Australia, and several scenarios are created to provide insights for an efficient vaccination program.

20.
Transp Res E Logist Transp Rev ; 161: 102689, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35431604

RESUMEN

While the swift development and production of a COVID-19 vaccine has been a remarkable success, it is equally crucial to ensure that the vaccine is allocated and distributed in a timely and efficient manner. Prior research on pandemic supply chain has not fully incorporated the underlying factors and constraints in designing a vaccine allocation model. This study proposes an innovative vaccine allocation model to contain the spread of infectious diseases incorporating key contributing factors to the risk of uninoculated people including susceptibility rate and exposure risk. Analyses of the data collected from the state of Victoria in Australia show that a vaccine allocation model can deliver a superior performance in minimizing the risk of unvaccinated people when a multi-period approach is employed and augmenting operational mechanisms including transshipment between medical centers, capacity sharing, and mobile units being integrated into the vaccine allocation model.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda