Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Transp Res D Transp Environ ; 115: 103580, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36573137

RESUMEN

While the decrease in air pollutant concentration during the COVID-19 lockdown is well documented, neighborhood-scale and multi-city data have not yet been explored systematically to derive a generalizable quantitative link to the drop in vehicular traffic. To bridge this gap, high spatial resolution air quality and georeferenced traffic datasets were compiled for the city of London during three weeks with significant differences in traffic. The London analysis was then augmented with a meta-analysis of lower-resolution studies from 12 other cities. The results confirm that the improvement in air quality can be partially attributed to the drop of traffic density, and more importantly quantifies the elasticity (0.71 for NO2 & 0.56 for PM2.5) of their linkages. The findings can also inform on the future impacts of the ongoing shift to electric vehicles and micro-mobility on urban air quality.

2.
Environ Geochem Health ; 45(5): 2629-2643, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36068421

RESUMEN

Airborne particulate matter is a serious threat to human health, especially in fast-growing cities. In this study, we carried out a magnetic and elemental study on tree leaves used as passive captors and urban dust from various sites in the city of Santiago, Chile, to assess the reliability of magnetic and elemental measurements to characterize particulate matter pollution from vehicular origin. We found that the magnetic susceptibility and saturation isothermal remanent magnetization measured on urban tree leaves is a good proxy for tracing anthropogenic metallic particles and allow controlling the exposure time for particulate matter collection, in agreement with other studies carried out in large cities. Similar measurements on urban soil can be influenced by particles of detritic (natural) origin, and therefore, magnetic measurements on tree leaves can help to identify hotspots where fine particles are more abundant. Elemental particle-induced X-ray emission analysis of tree leaves showed the presence of a number of elements associated with vehicular emissions, in particular Cu, Zn, Fe, K and S which are present at every site, and As, Se, V, Ni, Sr, Zr, Mo and Pb identified at some sites. We observed a correlation between magnetic parameters and the concentrations of S and Br as well as Cu to a smaller extent. Moreover, this study shows the importance of selecting carefully the tree species as well as the location of trees in order to optimize phytoremediation.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Humanos , Material Particulado/análisis , Árboles , Contaminantes Atmosféricos/análisis , Chile , Reproducibilidad de los Resultados , Monitoreo del Ambiente , Hojas de la Planta/química , Ciudades , Fenómenos Magnéticos
3.
Environ Monit Assess ; 195(9): 1104, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37642730

RESUMEN

One of the policies adopted to reduce vehicular emissions is subway network expansion. This work fitted interrupted regression models to investigate the effects of the inauguration of subway stations on the mean, trend, and seasonality of the NO, NO2, NOx, and PM10 local concentrations. The regions investigated in the city of São Paulo (Brazil) were Pinheiros, Butantã, and St. Amaro. In Pinheiros, after the inauguration of the subway station, there were downward trends for all pollutants. However, these trends were not significantly different from the trends observed before. In Butantã, only regarding NO, there was a significant reduction and seasonal change after the subway station's inauguration. In St. Amaro, no trend in the PM10 concentration was noted. The absence of other transportation and land use policies in an integrative way to the subway network expansion may be responsible for the low air quality improvement. This study highlights that the expansion of the subway network must be integrated with other policies to improve local air quality.


Asunto(s)
Contaminantes Ambientales , Vías Férreas , Brasil , Monitoreo del Ambiente , Transportes
4.
Soc Sci Res ; 111: 102867, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36898795

RESUMEN

Despite growing understanding of racial and class injustice in vehicular air pollution exposure, less is known about the relationship between people's exposure to vehicular air pollution and their contribution to it. Taking Los Angeles as a case study, this study examines the injustice in vehicular PM2.5 exposure by developing an indicator that measures local populations' vehicular PM2.5 exposure adjusted by their vehicle trip distances. This study applies random forest regression models to assess how travel behavior, demographic, and socioeconomic characteristics affect this indicator. The results indicate that census tracts of the periphery whose residents drive longer distances are exposed to less vehicular PM2.5 pollution than tracts in the city center whose residents drive shorter distances. Ethnic minority and low-income tracts emit little vehicular PM2.5 and are particularly exposed to it, while White and high-income tracts generate more vehicular PM2.5 pollution but are less exposed.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Exposición a Riesgos Ambientales/análisis , Etnicidad , Grupos Minoritarios , Contaminación del Aire/análisis
5.
Environ Sci Technol ; 56(11): 6847-6856, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35193357

RESUMEN

Exposure to particulate matter (PM) pollution damages the human brain. Fossil fuel burning for transportation energy accounts for a significant fraction of urban air and climate pollution. While current United States (US) standards limit PM ambient concentrations and emissions, they do not regulate explicitly ultrafine particles (UFP ≤ 100 nm in diameter). There is a growing body of evidence suggesting UFP may play a bigger role inflicting adverse health impacts than has been recognized, and in this perspective, we highlight effects on the brain, particularly of young individuals. UFP penetrate the body through nasal/olfactory, respiratory, gastrointestinal, placenta, and brain-blood barriers, translocating in the bloodstream and reaching the glymphatic and central nervous systems. We discuss one case study. The 21.8 million residents in the Metropolitan Mexico City (MMC) are regularly exposed to fine PM (PM2.5) above the US 12 µg/m3 annual average standards. Alzheimer's disease (AD), Parkinson's disease (PD), and TAR DNA-binding protein (TDP-43) pathologies and nanoparticles (NP ≤ 50 nm in diameter) in critical brain organelles have been documented in MMC children and young adult autopsies. MMC young residents have cognitive and olfaction deficits, altered gait and equilibrium, brainstem auditory evoked potentials, and sleep disorders. Higher risk of AD and vascular dementia associated with residency close to high traffic roadways have been documented. The US is not ready or prepared to adopt ambient air quality or emission standards for UFP and will continue to focus regulations only on the total mass of PM2.5 and PM10. Thus, this approach raises the question: are we dropping the ball? As research continues to answer the remaining questions about UFP sources, exposures, impacts, and controls, the precautionary principle should call us to accelerate and expand policy interventions to abate or eliminate UFP emissions and to mitigate UFP exposures. For residents of highly polluted cities, particularly in the developing world where there is likely older and dirtier vehicles, equipment, and fuels in use and less regulatory oversight, we should embark in a strong campaign to raise public awareness of the associations between high PM pollution, heavy traffic, UFP, NP, and neuropsychiatric outcomes, including dementia. Neurodegenerative diseases evolving from childhood in polluted, anthropogenic, and industrial environments ought to be preventable.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedad de Alzheimer , Nanopartículas , Enfermedades Neurodegenerativas , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/patología , Encéfalo/patología , Niño , Humanos , Material Particulado/análisis , Adulto Joven
6.
Environ Monit Assess ; 194(11): 822, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36149534

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are considered potentially toxic, even carcinogenic, because of their affection to public health and the environment. It is necessary to know their ambient levels and the origin of these pollutants in order to mitigate them. A concerning scenario is the one in which commercial/administrative, industrial, and residential activities coexist. In this context, Gran La Plata (Argentina) presents such characteristics, in addition to the presence of one of the most important petrochemical complexes in the country and intense vehicular traffic. The source apportionment of PAH emission in the region, associated to 10-µm and 2.5-µm particulate matter fractions, was studied. First, different missing value imputation methods were evaluated for PAH databases. GSimp presented a better performance, with mean concentrations of ∑PAHs of 65.8 ± 40.2 ng m-3 in PM10 and 39.5 ± 18.0 ng m-3 in PM2.5. For both fractions, it was found that the highest contribution was associated with low molecular weight PAHs (3 rings), with higher concentrations of anthracene. Emission sources were identified by using principal component analysis (PCA) together with multiple linear regression (MLR) and diagnostic ratios of PAHs. The results showed that the main emission source is associated with vehicular traffic in both fractions. Classification by discriminant analysis showed that emissions can be identified by region and that fluoranthene, benzo(a)anthracene, and anthracene in PM10 and anthracene and phenanthrene in PM2.5 are a characteristic of emissions from the petrochemical complex.


Asunto(s)
Contaminantes Atmosféricos , Fenantrenos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Antracenos/análisis , Argentina , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Fenantrenos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Emisiones de Vehículos/análisis
7.
Bull Environ Contam Toxicol ; 108(6): 1104-1110, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35064787

RESUMEN

In an urban scenario, one of the air pollutants most harmful to human health and environmental is the particulate matter (PM). Considering that urban green areas can contribute to mitigating the effects of PM, this work compares the concentration of PM2.5 in two closer locations in Rio de Janeiro, in order to verify how vegetation cover can actually improve air quality. One is the entrance to the Rebouças Tunnel (RT) and the other is the Rio de Janeiro Botanical Garden (RJBG). For this purpose, PM2.5 samples were taken from September 2017 to March 2018 using a Large Volume Sampler (LVS). The results reveal that RT has a higher concentration of PM2.5 in almost all samples. The RJBG obtains concentrations around 33% less than the other area, suggesting that the presence of urban green areas like the RJBG can reduce PM2.5 levels when compared to places with less vegetation cover, providing better air quality.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , Brasil , Monitoreo del Ambiente/métodos , Humanos , Parques Recreativos , Material Particulado/análisis
8.
Environ Monit Assess ; 193(9): 575, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34392406

RESUMEN

Motor vehicles operating on the road are a significant source of Particulate Matter (PM) emissions depending on the fuels used in the vehicles. Gasoline and Diesel vehicles are directly responsible for the tailpipe PM emissions (specifically PM2.5: particles ≤ 2.5 µm), known as primary PM2.5 emissions. The other major direct emissions from the vehicles, which include volatile organic compounds (VOCs), and nitrogen oxides (NOx) contribute to the formation of secondary organic PM, also known as secondary organic aerosols (SOA), through some inter-related chemical reactions. The SOAs are highly toxic and contribute to a portion of total PM emissions. In this research, emission scenarios of both primary PM2.5 and SOA for a car-dependent expanding Australian city (Adelaide) were analyzed. The variability of traffic characteristics on road was considered and conducted a probabilistic emissions inventory for tailpipe primary PM2.5 and precursors, while statistical analysis of the probable chemical conversion ratios was considered for the SOA inventory. It was found that the tailpipe emissions from the vehicles were higher than the air quality standard, while the SOA contribution from the vehicles was not significantly high but contributed to the increase of total PM concentration. The analysis of the chemical transformation of SOA precursors justified the importance of conducting more detailed emissions modelling for sustainable urban air quality planning.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Contaminantes Atmosféricos/análisis , Australia , Monitoreo del Ambiente , Gasolina/análisis , Material Particulado/análisis , Emisiones de Vehículos/análisis
9.
Environ Monit Assess ; 193(2): 92, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33506380

RESUMEN

The objective of this work was to determine the trace element composition in the nanometric, ultrafine, fine, and coarse particulate matters (PM) found in the surrounding area of the UERJ Chemical Technology Applications Institute, using a MSP 120 MOUDI II cascade impactor. After acid extraction, the elements were analyzed via ICP-OES, and the results obtained were treated statistically. The average concentrations of the nanometric, ultrafine, fine, and coarse particles were 11.8, 8.2, 7.7, and 7.1 µg m-3, respectively. The total average concentration of Cd, Ni, Pb, Cr, and Fe complied with the air quality standards recommended by US EPA and WHO. When compared with other locations, the PM fractions found in this study were 1.1 to 346 times greater. Through the calculation of Pearson's correlation coefficient, a high correlation was observed between most of the trace elements studied, especially in the ultrafine, fine, and coarse fractions, which suggests that they are probably caused by the same sources of vehicular emissions. The enrichment factor was calculated to estimate the possible sources. Since Cd, Cu, Pb, and Mo are enriched by anthropic sources, they are probably influenced by vehicular emissions, in particular the wear on tires and brakes, and the burning of fossil fuel.


Asunto(s)
Contaminantes Atmosféricos , Oligoelementos , Contaminantes Atmosféricos/análisis , Ciudades , Monitoreo del Ambiente , Tamaño de la Partícula , Material Particulado/análisis , Oligoelementos/análisis , Emisiones de Vehículos
10.
J Environ Manage ; 217: 815-824, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29660707

RESUMEN

Particulate matter (PM10 and PM2.5) samples were collected from six sites in urban Mangalore and the mass concentrations for PM10 and PM2.5 were measured using gravimetric technique. The measurements were found to exceed the national ambient air quality standards (NAAQS) limits, with the highest concentration of 231.5 µg/m3 for PM10 particles at Town hall and 120.3 µg/m3 for PM2.5 particles at KMC Attavar. The elemental analysis using inductively coupled plasma optical emission spectrophotometer (ICPOES) revealed twelve different elements (As, Ba, Cd, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Sr and Zn) for PM10 particles and nine different elements (Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sr and Zn) for PM2.5 particles. Similarly, ionic composition of these samples measured by ion chromatography (IC) divulged nine different ions (F-, Cl-, NO3-, PO43-, SO42-, Na+, K+, Mg2+ and Ca2+) for PM10 particles and ten different ions (F-, Cl-, NO3-, PO43-, SO42-, Na+, NH4+, K+, Mg2+ and Ca2+) for PM2.5 particles. The source apportionment study of PM10 and PM2.5 for urban Mangalore in accordance with these six sample sites using chemical mass balance model (CMBv8.2) revealed nine and twelve predominant contributors for both PM10 and PM2.5, respectively. The highest contributor of PM10 was found to be paved road dust followed by diesel and gasoline vehicle emissions. Correspondingly, PM2.5 was found to be contributed mainly from two-wheeler vehicle emissions followed by four-wheeler and heavy vehicle emissions (diesel vehicles). The current study depicts that the PM10 and PM2.5 in ambient air of Mangalore region has 70% of its contribution from vehicular emissions (both exhaust and non-exhaust).


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Emisiones de Vehículos , India , Tamaño de la Partícula , Material Particulado
11.
J Environ Sci (China) ; 65: 62-71, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29548412

RESUMEN

Compressed natural gas (CNG) is most appropriate an alternative of conventional fuel for automobiles. However, emissions of carbon-monoxide and methane from such vehicles adversely affect human health and environment. Consequently, to abate emissions from CNG vehicles, development of highly efficient and inexpensive catalysts is necessary. Thus, the present work attempts to scan the effects of precipitants (Na2CO3, KOH and urea) for nickel cobaltite (NiCo2O4) catalysts prepared by co-precipitation from nitrate solutions and calcined in a lean CO-air mixture at 400°C. The catalysts were used for oxidation of a mixture of CO and CH4 (1:1). The catalysts were characterized by X-ray diffractometer, Brunauer-Emmett-Teller surface-area, X-ray photoelectron spectroscopy; temperature programmed reduction and Scanning electron microscopy coupled with Energy-Dispersive X-Ray Spectroscopy. The Na2CO3 was adjudged as the best precipitant for production of catalyst, which completely oxidized CO-CH4 mixture at the lowest temperature (T100=350°C). Whereas, for catalyst prepared using urea, T100=362°C. On the other hand the conversion of CO-CH4 mixture over the catalyst synthesized by KOH limited to 97% even beyond 400°C. Further, the effect of higher calcination temperatures of 500 and 600°C was examined for the best catalyst. The total oxidation of the mixture was attained at higher temperatures of 375 and 410°C over catalysts calcined at 500 and 600°C respectively. Thus, the best precipitant established was Na2CO3 and the optimum calcination temperature of 400°C was found to synthesize the NiCo2O4 catalyst for the best performance in CO-CH4 oxidation.


Asunto(s)
Contaminantes Atmosféricos/análisis , Metano/análisis , Modelos Químicos , Emisiones de Vehículos/análisis , Contaminantes Atmosféricos/química , Monóxido de Carbono , Catálisis , Níquel , Óxidos de Nitrógeno/química , Oxidación-Reducción , Temperatura
12.
Rev Environ Contam Toxicol ; 240: 1-30, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-26809717

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are consistently posing high risks to human/biota in developing countries of South Asia where domestic areas are exposed to biomass burning and commercial/industrial activities. This review article summarized the available data on PAHs occurrence, distribution, potential sources and their possible risks in the key environmental matrices (i.e., Air, Soil/Sediments, Water) from South Asian Region (SAR). Available literature reviewed suggested that PAHs concentration levels were strongly influenced by the monsoonal rainfall system in the region and it has been supported by many studies that higher concentrations were measured during the winter season as compared to summer. Biomass burning (household and brick kilns activities), open burning of solid wastes and industrial and vehicular emissions were categorized as major sources of PAHs in the region. Regional comparison revealed that the contamination levels of PAHs in the water bodies and soil/sediments in SAR remained higher relatively to the reports from other regions of the world. Our findings highlight that there is still a general lack of reliable data, inventories and research studies addressing PAHs related issues in the context of environmental and human health in SAR. There is therefore a critical need to improve the current knowledge base, which should build upon the research experience from other regions which have experienced similar situations in the past. Further research into these issues in South Asia is considered vital to help inform future policies/control strategies as already successfully implemented in other countries.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos/toxicidad , Biota , Sedimentos Geológicos/análisis , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Medición de Riesgo , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis
13.
Rev Environ Contam Toxicol ; 242: 1-60, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27464847

RESUMEN

Environmental pollution has increased many folds in recent years and in some places has reached levels that are toxic to living things. Among pollutant types, toxic heavy metals and metalloids are among the chemicals that pose the highest threat to biological systems (Jjemba 2004). Unlike organic pollutants, which are biodegradable, heavy metals are not degraded into less hazardous end products (Gupta et al. 2001). Low concentrations of some heavy metals are essential for life, but some of them like Hg, As, Pb and Cd are biologically non-essential and very toxic to living organisms. Even the essential metals may become toxic if they are present at a concentration above the permissible level (Puttaiah and Kiran 2008). For example, exposure to Zn and Fe oxides produce gastric disorder and vomiting, irritation of the skin and mucous membranes. Intake of Ni, Cr, Pb, Cd and Cu causes heart problems, leukemia and cancer, while Co and Mg can cause anemia and hypertension (Drasch et al. 2006). Similarly, various studies indicated that overexposure to heavy metals in air can cause cardiovascular disorders (Miller et al. 2007; Schwartz 2001), asthma (Wiwatanadate and Liwsrisakun 2011), bronchitis/emphysema (Pope 2000), and other respiratory diseases (Dominici et al. 2006).


Asunto(s)
Contaminación Ambiental , Metales Pesados/toxicidad , Salud Pública , Humanos , Pakistán , Medición de Riesgo
14.
Am J Epidemiol ; 184(6): 450-9, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27605585

RESUMEN

While many studies have investigated the health effects associated with acute exposure to fine particulate matter (particulate matter with an aerodynamic diameter less than or equal to 2.5 µm (PM2.5)), very few have considered the risks of specific sources of PM2.5 We used city-specific source apportionment in 8 major metropolitan areas in California from 2005-2009 to examine the associations of source-specific PM2.5 exposures from vehicular emissions, biomass burning, soil, and secondary nitrate and sulfate sources with emergency department visits (EDVs) for cardiovascular and respiratory diseases, including 7 subclasses. Using a case-crossover analysis, we observed associations of vehicular emissions with all cardiovascular EDVs (excess risk = 1.6%, 95% confidence interval: 0.9, 2.4 for an interquartile-range increment of 2.8 µg/m(3)) and with several subclasses of disease. In addition, vehicular emissions, biomass burning, and soil sources were associated with all respiratory EDVs and with EDVs for asthma. The soil source, which includes resuspended road dust, generated the highest risk estimate for asthma (excess risk = 4.5%, 95% confidence interval: 1.1, 8.0). Overall, our results provide additional evidence of the public health consequences of exposure to specific sources of PM2.5 and indicate that some sources of PM2.5 may pose higher risks than the overall PM2.5 mass.


Asunto(s)
Enfermedades Cardiovasculares/epidemiología , Servicio de Urgencia en Hospital/estadística & datos numéricos , Exposición a Riesgos Ambientales/efectos adversos , Material Particulado/efectos adversos , Enfermedades Respiratorias/epidemiología , Salud Urbana/estadística & datos numéricos , Biomasa , California/epidemiología , Enfermedades Cardiovasculares/inducido químicamente , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/estadística & datos numéricos , Humanos , Nitratos/efectos adversos , Nitratos/análisis , Tamaño de la Partícula , Material Particulado/análisis , Análisis de Regresión , Enfermedades Respiratorias/inducido químicamente , Medición de Riesgo , Humo/efectos adversos , Humo/análisis , Contaminantes del Suelo/efectos adversos , Contaminantes del Suelo/análisis , Sulfatos/efectos adversos , Sulfatos/análisis , Emisiones de Vehículos/análisis
15.
J Environ Sci (China) ; 48: 179-192, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27745663

RESUMEN

Vehicular emissions in China in 2006 and 2010 were calculated at a high spatial resolution based on the data released by the National Bureau of Statistics, by taking the emission standards into consideration. China's vehicular emissions of carbon monoxide (CO), nitrogen oxides (NOx), volatile organic compounds (VOCs), ammonia (NH3), fine particulate matters (PM2.5), inhalable particulate matters (PM10), black carbon (BC), and organic carbon (OC) were 30,113.9, 4593.7, 6838.0, 20.9, 400.2, 430.5, 285.6, and 105.1Gg, respectively, in 2006 and 34,175.2, 5167.5, 7029.4, 74.0, 386.4, 417.1, 270.9, and 106.2Gg, respectively, in 2010. CO, VOCs, and NH3 emissions were mainly from motorcycles and light-duty gasoline vehicles, whereas NOX, PM2.5, PM10, and BC emissions were mainly from rural vehicles and heavy-duty diesel trucks. OC emissions were mainly from motorcycles and heavy-duty diesel trucks. Vehicles of pre-China I (vehicular emission standard of China before phase I) and China I (vehicular emission standard of China in phase I) were the primary contributors to all of the pollutant emissions except NH3, which was mainly from China III and China IV gasoline vehicles. The total emissions of all the pollutants except NH3 changed little from 2006 to 2010. This finding can be attributed to the implementation of strict emission standards and to improvements in oil quality.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Monitoreo del Ambiente , Emisiones de Vehículos/análisis , Monóxido de Carbono/análisis , China , Óxidos de Nitrógeno/análisis , Compuestos Orgánicos Volátiles/análisis
16.
J Environ Sci (China) ; 27: 290-7, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25597688

RESUMEN

The characteristic ratios of volatile organic compounds (VOCs) to i-pentane, the indicator of vehicular emissions, were employed to apportion the vehicular and non-vehicular contributions to reactive species in urban Shanghai. Two kinds of tunnel experiments, one tunnel with more than 90% light duty gasoline vehicles and the other with more than 60% light duty diesel vehicles, were carried out to study the characteristic ratios of vehicle-related emissions from December 2009 to January 2010. Based on the experiments, the characteristic ratios of C6-C8 aromatics to i-pentane of vehicular emissions were 0.53 ± 0.08 (benzene), 0.70 ± 0.12 (toluene), 0.41 ± 0.09 (m,p-xylenes), 0.16 ± 0.04 (o-xylene), 0.023 ± 0.011 (styrene), and 0.15 ± 0.02 (ethylbenzene), respectively. The source apportionment results showed that around 23.3% of C6-C8 aromatics in urban Shanghai were from vehicular emissions, which meant that the non-vehicular emissions had more importance. These findings suggested that emission control of non-vehicular sources, i.e. industrial emissions, should also receive attention in addition to the control of vehicle-related emissions in Shanghai. The chemical removal of VOCs during the transport from emissions to the receptor site had a large impact on the apportionment results. Generally, the overestimation of vehicular contributions would occur when the VOC reaction rate constant with OH radicals (kOH) was larger than that of the vehicular indicator, while for species with smaller kOH than the vehicular indicator, the vehicular contribution would be underestimated by the method of characteristic ratios.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Emisiones de Vehículos/análisis , Compuestos Orgánicos Volátiles/análisis , China , Ciudades , Gasolina/análisis
17.
Niger Med J ; 65(3): 276-291, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39022566

RESUMEN

Background: Air pollution from vehicular emission and other sources accounts for over seven million global deaths annually and contributes significantly to environmental degradation, including climate change. Vehicular emission is not prioritized for control in Nigeria, thus undermining public health and the Sustainable Development Goals 3, 11 and 13. This study aims to characterize vehicular emissions in Abuja municipality and quantify exhaust air pollutants of commonly used vehicles. Methodology: Cross-sectional exhaust emissions study of vehicles in Abuja Municipal Area Council. Information on the type and age, fuel type, purchase and use category of 543 vehicles on routine Annual Road Worthiness Test at the Computerized Test Center, Abuja. Exhaust levels of CO, CO2 HCHO and PM10 were measured using hand-held devices. IBM SPSS version 26.0.0.0 (2019) statistical software. Results: Toyota brand comprised 52.5% of the vehicles. Over 80% were older than 10 years; 85.5% preowned and 87.3% used for private purposes. PMS was the dominant fuel used (91.1%). Except PM10, older vehicles emitted higher levels of the measured pollutants than newer ones. The differences were significant for CO and HCHO. Diesel-fueled and commercial vehicles also emitted higher levels of CO, HCHO and PM10 compared to PMS-fueled and private vehicles respectively. Conclusions: Strong regulatory policies that discourage over-aged vehicles; speedy adoption of the ECOWAS guidelines on cleaner fuels and emission limits; and coordinated implementation of effective Inspection & Monitoring programme by relevant government agencies are required to safeguard public health and the environment. We also recommend the introduction of vehicles powered by alternative energy, use of bicycles, designation of one-way traffic and pedestrian zones. Key Message: Reducing the threats to the public's health from vehicular air pollution in Abuja municipality requires strong policy and coordinated monitoring programs for effective control.

18.
Sci Total Environ ; 929: 172629, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38649057

RESUMEN

In the context of the increasing global use of ethanol biofuel, this work investigates the concentrations of ethanol, methanol, and acetaldehyde, in both the gaseous phase and rainwater, across six diverse urban regions and biomes in Brazil, a country where ethanol accounts for nearly half the light-duty vehicular fuel consumption. Atmospheric ethanol median concentrations in São Paulo (SP) (12.3 ± 12.1 ppbv) and Ribeirão Preto (RP) (12.1 ± 10.9 ppbv) were remarkably close, despite the SP vehicular fleet being ∼13 times larger. Likewise, the rainwater VWM ethanol concentration in SP (4.64 ± 0.38 µmol L-1) was only 26 % higher than in RP (3.42 ± 0.13 µmol L-1). This work demonstrated the importance of evaporative emissions, together with biomass burning, as sources of the compounds studied. The importance of biogenic emissions of methanol during forest flooding was identified in campaigns in the Amazon and Atlantic forests. Marine air masses arriving at a coastal site led to the lowest concentrations of ethanol measured in this work. Besides vehicular and biomass burning emissions, secondary formation of acetaldehyde by photochemical reactions may be relevant in urban and non-urban regions. The combined deposition flux of ethanol and methanol was 6.2 kg ha-1 year-1, avoiding oxidation to the corresponding and more toxic aldehydes. Considering the species determined here, the ozone formation potential (OFP) in RP was around two-fold higher than in SP, further evidencing the importance of emissions from regional distilleries and biomass burning, in addition to vehicles. At the forest and coastal sites, the OFP was approximately 5 times lower than at the urban sites. Our work evidenced that transition from gasoline to ethanol or ethanol blends brings the associated risk of increasing the concentrations of highly toxic aldehydes and ozone, potentially impacting the atmosphere and threatening air quality and human health in urban areas.


Asunto(s)
Acetaldehído , Contaminantes Atmosféricos , Monitoreo del Ambiente , Etanol , Metanol , Lluvia , Brasil , Acetaldehído/análisis , Etanol/análisis , Metanol/análisis , Contaminantes Atmosféricos/análisis , Ciudades
19.
Environ Sci Pollut Res Int ; 31(27): 39678-39689, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38831145

RESUMEN

Carbon monoxide (CO) is a prominent air pollutant in cities, with far-reaching implications for both local air quality and global atmospheric chemistry. The long-term change in atmospheric CO levels at a specific location is influenced by a complex interplay of local emissions, atmospheric transport, and photochemical processes, making it a subject of considerable interest. This study presents an 8-year analysis (2014-2021) of in situ CO observations using a cutting-edge laser-based analyzer at an urban site in Ahmedabad, western India. The long-term observations reveal a subtle trend in CO levels, masked by contrasting year-to-year variations, particular after 2018, across distinct diurnal time windows. Mid-afternoon (12:00-16:00 h) CO levels, reflecting background and regional conditions, remained relatively stable over the study period. In contrast, evening (18:00-21:00 h) CO levels, influenced by local emissions, exhibited substantial inter-annual variability without discernible trends from 2014 to 2018. However, post-2018, evening CO levels showed a consistent decline, predating COVID-19 lockdown measures. This decline coincided with the nationwide adoption of Bharat stage IV emission standards and other measures aimed at reducing vehicular emissions. The COVID-19 lockdown in 2020 further resulted in a noteworthy 29% reduction in evening CO levels compared to the pre-lockdown (2014-2019) period, highlighting the potential for substantial CO reduction through stringent vehicular emission controls. The observed long-term changes in CO levels do not align with the decreasing emission estimated by various inventories from 2014 to 2018, suggesting a need for improved emission statistics in Indian urban regions. This study underscores the importance of ongoing continuous CO measurements in urban areas to inform policy efforts aimed at controlling atmospheric pollutants.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monóxido de Carbono , Ciudades , Monitoreo del Ambiente , Monóxido de Carbono/análisis , India , Contaminantes Atmosféricos/análisis , COVID-19 , Emisiones de Vehículos/análisis
20.
Sci Total Environ ; 900: 165838, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37506895

RESUMEN

The implementation of different stages of Bharat Stage Emission standards (BSES) in India for reducing the vehicular emissions has been in different parts of the country at various points of time. A quantitative assessment of the emission standards in mitigating vehicular emissions at different Indian states will provide an estimate of achievable emissions standards for future norms. In this regard, the present work reports an assessment of the BS standards - BS-III, BS-IV and BS-VI in reducing the exhaust emissions in each of the Indian states. The assessment is performed through the survival fraction of the vehicles registered with different norms in the two age groups 2013-2017 and 2018-2022 and the corresponding emissions of NOx, CO, VOC, PM2.5 and BC. Over the years 2013-2022, the NOx emissions are the major contributors of vehicular emissions in all the states studied. Surprisingly, the BS-IV vehicles contributed significantly to vehicular emissions in particular states when compared to the BS-III vehicles. This urged to analyse the impact of meteorological and topographical factors on the vehicular emissions. The results revealed that the vehicular emissions are largely dependent on the temperature and altitude and with an increase in temperature and at high altitudes, the CO and VOC emissions are predominant, even in regions with low vehicle population. This finding therefore indicates that the emission limits are not the same for all over the country and meteorology dependent emission limit should be included in framing the vehicle emission norms.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda