Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
J Bacteriol ; 206(5): e0003524, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38695522

RESUMEN

Vibrio (Aliivibrio) fischeri's initial rise to fame derived from its alluring production of blue-green light. Subsequent studies to probe the mechanisms underlying this bioluminescence helped the field discover the phenomenon now known as quorum sensing. Orthologs of quorum-sensing regulators (i.e., LuxR and LuxI) originally identified in V. fischeri were subsequently uncovered in a plethora of bacterial species, and analogous pathways were found in yet others. Over the past three decades, the study of this microbe has greatly expanded to probe the unique role of V. fischeri as the exclusive symbiont of the light organ of the Hawaiian bobtail squid, Euprymna scolopes. Buoyed by this optically amenable host and by persistent and insightful researchers who have applied novel and cross-disciplinary approaches, V. fischeri has developed into a robust model for microbe-host associations. It has contributed to our understanding of how bacteria experience and respond to specific, often fluxing environmental conditions and the mechanisms by which bacteria impact the development of their host. It has also deepened our understanding of numerous microbial processes such as motility and chemotaxis, biofilm formation and dispersal, and bacterial competition, and of the relevance of specific bacterial genes in the context of colonizing an animal host. Parallels in these processes between this symbiont and bacteria studied as pathogens are readily apparent, demonstrating functional conservation across diverse associations and permitting a reinterpretation of "pathogenesis." Collectively, these advances built a foundation for microbiome studies and have positioned V. fischeri to continue to expand the frontiers of our understanding of the microbial world inside animals.


Asunto(s)
Aliivibrio fischeri , Decapodiformes , Percepción de Quorum , Aliivibrio fischeri/genética , Aliivibrio fischeri/fisiología , Animales , Decapodiformes/microbiología , Simbiosis , Regulación Bacteriana de la Expresión Génica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Interacciones Microbiota-Huesped
2.
J Bacteriol ; 206(2): e0037023, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38270381

RESUMEN

Multicellular communities of adherent bacteria known as biofilms are often detrimental in the context of a human host, making it important to study their formation and dispersal, especially in animal models. One such model is the symbiosis between the squid Euprymna scolopes and the bacterium Vibrio fischeri. Juvenile squid hatch aposymbiotically and selectively acquire their symbiont from natural seawater containing diverse environmental microbes. Successful pairing is facilitated by ciliary movements that direct bacteria to quiet zones on the surface of the squid's symbiotic light organ where V. fischeri forms a small aggregate or biofilm. Subsequently, the bacteria disperse from that aggregate to enter the organ, ultimately reaching and colonizing deep crypt spaces. Although transient, aggregate formation is critical for optimal colonization and is tightly controlled. In vitro studies have identified a variety of polysaccharides and proteins that comprise the extracellular matrix. Some of the most well-characterized matrix factors include the symbiosis polysaccharide (SYP), cellulose polysaccharide, and LapV adhesin. In this review, we discuss these components, their regulation, and other less understood V. fischeri biofilm contributors. We also highlight what is currently known about dispersal from these aggregates and host cues that may promote it. Finally, we briefly describe discoveries gleaned from the study of other V. fischeri isolates. By unraveling the complexities involved in V. fischeri's control over matrix components, we may begin to understand how the host environment triggers transient biofilm formation and dispersal to promote this unique symbiotic relationship.


Asunto(s)
Aliivibrio fischeri , Biopelículas , Animales , Humanos , Aliivibrio fischeri/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Adhesinas Bacterianas , Decapodiformes/microbiología , Simbiosis , Polisacáridos
3.
Appl Environ Microbiol ; 90(6): e0006524, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38775491

RESUMEN

CRISPRi (Clustered Regularly Interspaced Palindromic Repeats interference) is a gene knockdown method that uses a deactivated Cas9 protein (dCas9) that binds a specific gene target locus dictated by an encoded guide RNA (sgRNA) to block transcription. Mobile-CRISPRi is a suite of modular vectors that enable CRISPRi knockdowns in diverse bacteria by integrating IPTG-inducible dcas9 and sgRNA genes into the genome using Tn7 transposition. Here, we show that the Mobile-CRISPRi system functions robustly and specifically in multiple Vibrio species: Vibrio cholerae, Vibrio fischeri, Vibrio vulnificus, Vibrio parahaemolyticus, and Vibrio campbellii. We demonstrate efficacy by targeting both essential and non-essential genes that function to produce defined, measurable phenotypes: bioluminescence, quorum sensing, cell division, and growth arrest. We anticipate that Mobile-CRISPRi will be used in Vibrio species to systematically probe gene function and essentiality in various behaviors and native environments.IMPORTANCEThe genetic manipulation of bacterial genomes is an invaluable tool in experimental microbiology. The development of CRISPRi (Clustered Regularly Interspaced Palindromic Repeats interference) tools has revolutionized genetics in many organisms, including bacteria. Here, we optimized the use of Mobile-CRISPRi in five Vibrio species, each of which has significant impacts on marine environments and organisms that include squid, shrimp, shellfish, finfish, corals, and multiple of which pose direct threats to human health. The Mobile-CRISPRi technology is easily adaptable, moveable from strain to strain, and enables researchers to selectively turn off gene expression. Our experiments demonstrate Mobile-CRISPRi is effective and robust at repressing gene expression of both essential and non-essential genes in Vibrio species.


Asunto(s)
Vibrio vulnificus , Vibrio , Vibrio/genética , Vibrio vulnificus/genética , Vibrio parahaemolyticus/genética , Regulación Bacteriana de la Expresión Génica , Sistemas CRISPR-Cas , Vibrio cholerae/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnicas de Silenciamiento del Gen , Aliivibrio fischeri/genética
4.
Ecotoxicol Environ Saf ; 274: 116185, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38489906

RESUMEN

This study explores the environmental effects of five common veterinary antibiotics widely detected in the environment, (chlortetracycline,CTC; oxytetracycline,OTC; florfenicol,FF; neomycin, NMC; and sulfadiazine, SDZ) on four bioindicators: Daphnia magna, Vibrio fischeri, Eisenia fetida, and Allium cepa, representing aquatic and soil environments. Additionally, microbial communities characterized through 16 S rRNA gene sequencing from a river and natural soil were exposed to the antibiotics to assess changes in population growth and metabolic profiles using Biolog EcoPlates™. Tetracyclines are harmful to Vibrio fisheri (LC50 ranges of 15-25 µg/mL), and the other three antibiotics seem to only affect D. magna, especially, SDZ. None of the antibiotics produced mortality in E. fetida at concentrations below 1000 mg/kg. NMC and CTC had the highest phytotoxicities in A. cepa (LC50 = 97-174 µg/mL, respectively). Antibiotics significantly reduced bacterial metabolism at 0.1-10 µg/mL. From the highest to the lowest toxicity on aquatic communities: OTC > FF > SDZ ≈ CTC > NMC and on edaphic communities: CTC ≈ OTC > FF > SDZ > NMC. In river communities, OTC and FF caused substantial decreases in bacterial metabolism at low concentrations (0.1 µg/mL), impacting carbohydrates, amino acids (OTC), and polymers (FF). At 10 µg/mL and above, OTC, CTC, and FF significantly decreased metabolizing all tested metabolites. In soil communities, a more pronounced decrease in metabolizing ability, detectable at 0.1 µg/mL, particularly affected amines/amides and carboxylic and ketonic acids (p < 0.05). These new ecotoxicity findings underscore that the concentrations of these antibiotics in the environment can significantly impact both aquatic and terrestrial ecosystems.


Asunto(s)
Antibacterianos , Oxitetraciclina , Antibacterianos/toxicidad , Suelo , Ecosistema , Agua , Oxitetraciclina/toxicidad
5.
J Bacteriol ; 205(7): e0007523, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37306594

RESUMEN

The marine bacterium Vibrio fischeri initiates symbiotic colonization of its squid host, Euprymna scolopes, by forming and dispersing from a biofilm dependent on the symbiosis polysaccharide locus (syp). Historically, genetic manipulation of V. fischeri was needed to visualize syp-dependent biofilm formation in vitro, but recently, we discovered that the combination of two small molecules, para-aminobenzoic acid (pABA) and calcium, was sufficient to induce wild-type strain ES114 to form biofilms. Here, we determined that these syp-dependent biofilms were reliant on the positive syp regulator RscS, since the loss of this sensor kinase abrogated biofilm formation and syp transcription. These results were of particular note because loss of RscS, a key colonization factor, exerts little to no effect on biofilm formation under other genetic and medium conditions. The biofilm defect could be complemented by wild-type RscS and by an RscS chimera that contains the N-terminal domains of RscS fused to the C-terminal HPT domain of SypF, the downstream sensor kinase. It could not be complemented by derivatives that lacked the periplasmic sensory domain or contained a mutation in the conserved site of phosphorylation, H412, suggesting that these cues promote signaling through RscS. Lastly, pABA and/or calcium was able to induce biofilm formation when rscS was introduced into a heterologous system. Taken together, these data suggest that RscS is responsible for recognizing pABA and calcium, or downstream consequences of those cues, to induce biofilm formation. This study thus provides insight into signals and regulators that promote biofilm formation by V. fischeri. IMPORTANCE Bacterial biofilms are common in a variety of environments. Infectious biofilms formed in the human body are notoriously hard to treat due to a biofilm's intrinsic resistance to antibiotics. Bacteria must integrate signals from the environment to build and sustain a biofilm and often use sensor kinases that sense an external signal, which triggers a signaling cascade to elicit a response. However, identifying the signals that kinases sense remains a challenging area of investigation. Here, we determine that a hybrid sensor kinase, RscS, is crucial for Vibrio fischeri to recognize para-aminobenzoic acid and calcium as cues to induce biofilm formation. This study thus advances our understanding of the signal transduction pathways leading to biofilm formation.


Asunto(s)
Ácido 4-Aminobenzoico , Calcio , Humanos , Ácido 4-Aminobenzoico/metabolismo , Calcio/metabolismo , Aliivibrio fischeri/genética , Proteínas Bacterianas/genética , Biopelículas , Fosfotransferasas/metabolismo
6.
Microbiology (Reading) ; 169(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36809081

RESUMEN

The mutualistic symbiosis between the Hawaiian bobtail squid Euprymna scolopes and the marine bacterium Vibrio fischeri is a powerful experimental system for determining how intercellular interactions impact animal-bacterial associations. In nature, this symbiosis features multiple strains of V. fischeri within each adult animal, which indicates that different strains initially colonize each squid. Various studies have demonstrated that certain strains of V. fischeri possess a type-VI secretion system (T6SS), which can inhibit other strains from establishing symbiosis within the same host habitat. The T6SS is a bacterial melee weapon that enables a cell to kill adjacent cells by translocating toxic effectors via a lancet-like apparatus. This review describes the progress that has been made in understanding the factors that govern the structure and expression of the T6SS in V. fischeri and its effect on the symbiosis.


Asunto(s)
Sistemas de Secreción Tipo VI , Vibrio , Animales , Aliivibrio fischeri , Sistemas de Secreción Tipo VI/metabolismo , Simbiosis , Decapodiformes/microbiología , Ecosistema
7.
J Toxicol Environ Health A ; 86(19): 707-719, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37598363

RESUMEN

The aim of this study was to examine the water quality of the Extrema River spring in a Brazilian Cerrado area. Three collection sites (P1 - P3) were sampled in the dry and rainy seasons, which are close to industries from different sectors. In the physicochemical analysis, a decrease in dissolved oxygen levels (<5 mg/L) and pH (< 6) at P3 was detected. An increase in heterotrophic bacteria count was recorded at all sites (> 500 colonies/ml). In ecotoxicological analyses, P2 and P3 exhibited toxicity using Vibrio fischeri (> 20%). In evaluating toxicity, the reduction in seed germination was significant utilizing Lactuca sativa at all locations and with Allium cepa only at P2; rootlet length was decreased at P3 on L. sativa and at all sites with A. cepa. In contrast, loss of membrane integrity and mitochondrial function of meristems was adversely affected at all locations using both L. sativa and A. cepa assays. Principal components analysis (PCA) approach indicated that seasonality apparently did not markedly interfere with the obtained data, but it is important to include more collection locations to be evaluated with multiple bioindicators in the spring region. Our data indicate the urgent need for more rigorous programs to monitor the discharge of effluents into water springs.


Asunto(s)
Biomarcadores Ambientales , Calidad del Agua , Aliivibrio fischeri , Bioensayo , Brasil
8.
Isr J Chem ; 63(5-6)2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38524670

RESUMEN

Quorum sensing is an intercellular signaling mechanism that enables bacterial cells to coordinate population-level behaviors. How quorum sensing functions in natural habitats remains poorly understood. Vibrio fischeri is a bacterial symbiont of the Hawaiian bobtail squid Euprymna scolopes and depends on LuxI/LuxR quorum sensing to produce the symbiotic trait of bioluminescence. A previous study demonstrated that animals emit light when co-colonized by a Δlux mutant, which lacks several genes within the lux operon that are necessary for bioluminescence production, and a LuxI- mutant, which cannot synthesize the quorum signaling molecule N-3-oxohexanoyl-homoserine lactone. Here, we build upon that observation and show that populations of LuxI- feature elevated promoter activity for the lux operon. We find that population structures comprising of Δlux and LuxI- are attenuated within the squid, but a wild-type strain enables the LuxI- strain type to be maintained in vivo. These experimental results support a model of interpopulation signaling, which provides basic insight into how quorum sensing functions within the natural habitats found within a host.

9.
Proc Natl Acad Sci U S A ; 117(44): 27578-27586, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33067391

RESUMEN

The recent recognition that many symbioses exhibit daily rhythms has encouraged research into the partner dialogue that drives these biological oscillations. Here we characterized the pivotal role of the versatile cytokine macrophage migration inhibitory factor (MIF) in regulating a metabolic rhythm in the model light-organ symbiosis between Euprymna scolopes and Vibrio fischeri As the juvenile host matures, it develops complex daily rhythms characterized by profound changes in the association, from gene expression to behavior. One such rhythm is a diurnal shift in symbiont metabolism triggered by the periodic provision of a specific nutrient by the mature host: each night the symbionts catabolize chitin released from hemocytes (phagocytic immune cells) that traffic into the light-organ crypts, where the population of V. fischeri cells resides. Nocturnal migration of these macrophage-like cells, together with identification of an E. scolopes MIF (EsMIF) in the light-organ transcriptome, led us to ask whether EsMIF might be the gatekeeper controlling the periodic movement of the hemocytes. Western blots, ELISAs, and confocal immunocytochemistry showed EsMIF was at highest abundance in the light organ. Its concentration there was lowest at night, when hemocytes entered the crypts. EsMIF inhibited migration of isolated hemocytes, whereas exported bacterial products, including peptidoglycan derivatives and secreted chitin catabolites, induced migration. These results provide evidence that the nocturnal decrease in EsMIF concentration permits the hemocytes to be drawn into the crypts, delivering chitin. This nutritional function for a cytokine offers the basis for the diurnal rhythms underlying a dynamic symbiotic conversation.


Asunto(s)
Aliivibrio fischeri/metabolismo , Ritmo Circadiano/fisiología , Decapodiformes/fisiología , Interacciones Microbiota-Huesped/fisiología , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Animales , Movimiento Celular , Quitina/metabolismo , Decapodiformes/microbiología , Femenino , Hemocitos/metabolismo , Nutrientes/metabolismo , Peptidoglicano/metabolismo , Simbiosis/fisiología
10.
Molecules ; 28(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36985675

RESUMEN

Vibrio fischeri is widely used as the model species in toxicity and risk assessment. For the first time, a global classification model was proposed in this paper for a two-class problem (Class - 1 with log1/IBC50 ≤ 4.2 and Class + 1 with log1/IBC50 > 4.2, the unit of IBC50: mol/L) by utilizing a large data set of 601 toxicity log1/IBC50 of organic compounds to Vibrio fischeri. Dragon software was used to calculate 4885 molecular descriptors for each compound. Stepwise multiple linear regression (MLR) analysis was used to select the descriptor subset for the models. The ten molecular descriptors used in the classification model reflect the structural information on the Michael-type addition of nucleophiles, molecular branching, molecular size, polarizability, hydrophobic, and so on. Furthermore, these descriptors were interpreted from the point of view of toxicity mechanisms. The optimal support vector machine (SVM) model (C = 253.8 and γ = 0.009) was obtained with the genetic algorithm. The SVM classification model produced a prediction accuracy of 89.1% for the training set (451 log1/IBC50), of 80.0% for the test set (150 log1/IBC50), and of 86.9% for the total data set (601 log1/IBC50), which are higher than that (80.5%, 76%, and 79.4%, respectively) from the binary logistic regression (BLR) model. The global SVM classification model is successful, although it deals with a large data set in relation to the toxicity of organics to Vibrio fischeri.


Asunto(s)
Aliivibrio fischeri , Máquina de Vectores de Soporte , Relación Estructura-Actividad Cuantitativa , Modelos Lineales , Programas Informáticos , Compuestos Orgánicos/toxicidad
11.
J Bacteriol ; 204(7): e0010922, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35758751

RESUMEN

The symbiont Vibrio fischeri uses motility to colonize its host. In numerous bacterial species, motility is negatively controlled by cyclic-di-GMP (c-di-GMP), which is produced by diguanylate cyclases (DGCs) with GGDEF domains and degraded by phosphodiesterases with either EAL or HD-GYP domains. To begin to decode the functions of the 50 Vibrio fischeri genes with GGDEF, EAL, and/or HD-GYP domains, we deleted each gene and assessed each mutant's migration through tryptone broth salt (TBS) soft agar medium containing or lacking magnesium (Mg) and calcium (Ca), which are known to influence V. fischeri motility. We identified 6, 13, and 16 mutants with altered migration in TBS-Mg, TBS, and TBS-Ca soft agar, respectively, a result that underscores the importance of medium conditions in assessing gene function. A biosensor-based assay revealed that Mg and Ca affected c-di-GMP levels negatively and positively, respectively; the severe decrease in c-di-GMP caused by Mg addition correlates with its strong positive impact on bacterial migration. A mutant defective for VF_0494, a homolog of V. cholerae rocS, exhibited a severe defect in migration across all conditions. Motility of a VF_1603 VF_2480 double mutant was also severely defective and could be restored by expression of "c-di-GMP-blind" alleles of master flagellar regulator flrA. Together, this work sheds light on the genes and conditions that influence c-di-GMP-mediated control over motility in V. fischeri and provides a foundation for (i) assessing roles of putative c-di-GMP-binding proteins, (ii) evaluating other c-di-GMP-dependent phenotypes in V. fischeri, (iii) uncovering potential redundancy, and (iv) deciphering signal transduction mechanisms. IMPORTANCE Critical bacterial processes, including motility, are influenced by c-di-GMP, which is controlled by environment-responsive synthetic and degradative enzymes. Because bacteria such as Vibrio fischeri use motility to colonize their hosts, understanding the roles of c-di-GMP-modulating enzymes in controlling motility has the potential to inform on microbe-host interactions. We leveraged recent advances in genetic manipulation to generate 50 mutants defective for putative c-di-GMP synthetic and degradative enzymes. We then assessed the consequences on motility, manipulating levels of magnesium and calcium, which inversely influenced motility and levels of c-di-GMP. Distinct subsets of the 50 genes were required under the different conditions. Our data thus provide needed insight into the functions of these enzymes and environmental factors that influence them.


Asunto(s)
Proteínas de Escherichia coli , Vibrio cholerae , Agar , Aliivibrio fischeri/genética , Aliivibrio fischeri/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Calcio/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Magnesio/metabolismo , Vibrio cholerae/metabolismo
12.
Appl Environ Microbiol ; 88(22): e0163522, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36342139

RESUMEN

Cells of Vibrio fischeri colonize the light organ of Euprymna scolopes, providing the squid bioluminescence in exchange for nutrients and protection. The bacteria encounter DNA-rich mucus throughout their transition to a symbiotic lifestyle, leading us to hypothesize a role for nuclease activity in the colonization process. In support of this, we detected abundant extracellular nuclease activity in growing cells of V. fischeri. To discover the gene(s) responsible for this activity, we screened a V. fischeri transposon mutant library for nuclease-deficient strains. Interestingly, only one strain, whose transposon insertion mapped to nuclease gene VF_1451, showed complete loss of nuclease activity in our screens. A database search revealed that VF_1451 is homologous to the nuclease-encoding gene xds in Vibrio cholerae. However, V. fischeri strains lacking xds eventually revealed slight nuclease activity on plates after 72 h. This led us to hypothesize that a second secreted nuclease, identified through a database search as VF_0437, a homolog of V. cholerae dns, might be responsible for the residual nuclease activity. Here, we show that Xds and/or Dns are involved in essential aspects of V. fischeri biology, including natural transformation, aggregation, and phosphate scavenging. Furthermore, strains lacking either nuclease were outcompeted by the wild type for squid colonization. Understanding the specific role of nuclease activity in the squid colonization process represents an intriguing area of future research. IMPORTANCE From soil and water to host-associated secretions such as mucus, environments that bacteria inhabit are awash in DNA. Extracellular DNA (eDNA) is a nutritious resource that microbes dedicate significant energy to exploit. Calcium binds eDNA to promote cell-cell aggregation and horizontal gene transfer. eDNA hydrolysis impacts construction of and dispersal from biofilms. Strategies in which pathogens use nucleases to avoid phagocytosis or disseminate by degrading host secretions are well documented; significantly less is known about nucleases in mutualistic associations. This study describes the role of nucleases in the mutualism between V. fischeri and its squid host, Euprymna scolopes. We find that nuclease activity is an important determinant of colonization in V. fischeri, broadening our understanding of how microbes establish and maintain beneficial associations.


Asunto(s)
Aliivibrio fischeri , Decapodiformes , Animales , Aliivibrio fischeri/genética , Decapodiformes/microbiología , Simbiosis , Fosfatos , Biopelículas
13.
Symbiosis ; 87(1): 31-43, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-36177150

RESUMEN

In symbioses established through horizontal transmission, evolution has selected for mechanisms that promote the recruitment of symbionts from the environment. Using the binary association between the Hawaiian bobtail squid, Euprymna scolopes, and its symbiont, Vibrio fischeri, we explored the first step of symbiont enrichment around sites where V. fischeri cells will enter host tissues. Earlier studies of the system had shown that, within minutes of hatching in natural seawater, ciliated epithelia of the nascent symbiotic tissue secrete a layer of mucus in response to exposure to the cell-wall biomolecule peptidoglycan (PGN) from non-specific bacterioplankton. We hypothesized that a peptidoglycan recognition protein, EsPGRP4, is the receptor that mediates host mucus secretion by sensing the environmental PGN; earlier studies of this protein family had shown that this is the only member predicted to behave as a membrane receptor. Immunocytochemistry localized EsPGRP4 to the superficial ciliated fields of the juvenile organ. We found that production of EsPGRP4 increased over the first 48 h after hatching if the light organ remained uncolonized. When colonized by V. fischeri, the levels of the protein in light-organ tissue remained similar to that of hatchling organs. Pharmacologically curing the initially colonized light organ with antibiotics resulted in return of EsPGRP4 production to levels similar to light organs that had remained uncolonized since hatching. Furthermore, we found that preincubation of the tissues with an EsPGRP4 antibody decreased light organ mucus production and colonization. These findings provide evidence of an innate mechanism that underlies a crucial first step in the horizontal recruitment of bacterial symbionts.

14.
J Bacteriol ; 203(15): e0015521, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34031036

RESUMEN

The symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and its exclusive light organ symbiont, Vibrio fischeri, provides a natural system in which to study host-microbe specificity and gene regulation during the establishment of a mutually beneficial symbiosis. Colonization of the host relies on bacterial biofilm-like aggregation in the squid mucus field. Symbiotic biofilm formation is controlled by a two-component signaling (TCS) system consisting of regulators RscS-SypF-SypG, which together direct transcription of the symbiosis polysaccharide Syp. TCS systems are broadly important for bacteria to sense environmental cues and then direct changes in behavior. Previously, we identified the hybrid histidine kinase BinK as a strong negative regulator of V. fischeri biofilm regulation, and here we further explore the function of BinK. To inhibit biofilm formation, BinK requires the predicted phosphorylation sites in both the histidine kinase (H362) and receiver (D794) domains. Furthermore, we show that RscS is not essential for host colonization when binK is deleted from strain ES114, and imaging of aggregate size revealed no benefit to the presence of RscS in a background lacking BinK. Strains lacking RscS still suffered in competition. Finally, we show that BinK functions to inhibit biofilm gene expression in the light organ crypts, providing evidence for biofilm gene regulation at later stages of host colonization. Overall, this study provides direct evidence for opposing activities of RscS and BinK and yields novel insights into biofilm regulation during the maturation of a beneficial symbiosis. IMPORTANCE Bacteria are often in a biofilm state, and transitions between planktonic and biofilm lifestyles are important for pathogenic, beneficial, and environmental microbes. The critical nature of biofilm formation during Vibrio fischeri colonization of the Hawaiian bobtail squid light organ provides an opportunity to study development of this process in vivo using a combination of genetic and imaging approaches. The current work refines the signaling circuitry of the biofilm pathway in V. fischeri, provides evidence that biofilm regulatory changes occur in the host, and identifies BinK as one of the regulators of that process. This study provides information about how bacteria regulate biofilm gene expression in an intact animal host.


Asunto(s)
Aliivibrio fischeri/enzimología , Aliivibrio fischeri/crecimiento & desarrollo , Proteínas Bacterianas/metabolismo , Biopelículas , Histidina Quinasa/metabolismo , Aliivibrio fischeri/genética , Aliivibrio fischeri/fisiología , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Decapodiformes/microbiología , Decapodiformes/fisiología , Histidina Quinasa/química , Histidina Quinasa/genética , Dominios Proteicos , Simbiosis
15.
J Bacteriol ; 203(3)2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33199286

RESUMEN

Vibrio fischeri is a cosmopolitan marine bacterium that oftentimes displays different colony morphologies, switching from a smooth to a wrinkly phenotype in order to adapt to changes in the environment. This wrinkly phenotype has also been associated with increased biofilm formation, an essential characteristic for V. fischeri to adhere to substrates, to suspended debris, and within the light organs of sepiolid squids. Elevated levels of biofilm formation are correlated with increased microbial survival of exposure to environmental stressors and the ability to expand niche breadth. Since V. fischeri has a biphasic life history strategy between its free-living and symbiotic states, we were interested in whether the wrinkly morphotype demonstrated differences in its expression profile in comparison to the naturally occurring and more common smooth variant. We show that genes involved in major biochemical cascades, including those involved in protein sorting, oxidative stress, and membrane transport, play a role in the wrinkly phenotype. Interestingly, only a few unique genes are specifically involved in macromolecule biosynthesis in the wrinkly phenotype, which underlies the importance of other pathways utilized for adaptation under the conditions in which Vibrio bacteria are producing this change in phenotype. These results provide the first comprehensive analysis of the complex form of genetic activation that underlies the diversity in morphologies of V. fischeri when switching between two different colony morphotypes, each representing a unique biofilm ecotype.IMPORTANCE The wrinkly bacterial colony phenotype has been associated with increased squid host colonization in V. fischeri The significance of our research is in identifying the genetic mechanisms that are responsible for heightened biofilm formation in V. fischeri This report also advances our understanding of gene regulation in V. fischeri and brings to the forefront a number of previously overlooked genetic networks. Several loci that were identified in this study were not previously known to be associated with biofilm formation in V. fischeri.


Asunto(s)
Aliivibrio fischeri/genética , Aliivibrio fischeri/metabolismo , Fenotipo , Transcriptoma , Animales , Antioxidantes , Biopelículas/crecimiento & desarrollo , Decapodiformes/microbiología , Regulación Bacteriana de la Expresión Génica , Redes y Vías Metabólicas , Estrés Oxidativo , Simbiosis
16.
Mol Microbiol ; 114(2): 244-261, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32259318

RESUMEN

When two or more bacterial species inhabit a shared niche, often, they must compete for limited nutrients. Iron is an essential nutrient that is especially scarce in the marine environment. Bacteria can use the production, release, and re-uptake of siderophores, small molecule iron chelators, to scavenge iron. Siderophores provide fitness advantages to species that employ them by enhancing iron acquisition, and moreover, by denying iron to competitors incapable of using the siderophore-iron complex. Here, we show that cell-free culture fluids from the marine bacterium Vibrio fischeri ES114 prevent the growth of other vibrio species. Mutagenesis reveals the aerobactin siderophore as the inhibitor. Our analysis reveals a gene, that we name aerE, encodes the aerobactin exporter, and LuxT is a transcriptional activator of aerobactin production. In co-culture, under iron-limiting conditions, aerobactin production allows V. fischeri ES114 to competitively exclude Vibrio harveyi, which does not possess aerobactin production and uptake genes. In contrast, V. fischeri ES114 mutants incapable of aerobactin production lose in competition with V. harveyi. Introduction of iutA, encoding the aerobactin receptor, together with fhuCDB, encoding the aerobactin importer are sufficient to convert V. harveyi into an "aerobactin cheater."


Asunto(s)
Aliivibrio fischeri/metabolismo , Sideróforos/genética , Sideróforos/metabolismo , Proteínas de la Membrana Bacteriana Externa , Proteínas Bacterianas/metabolismo , Transporte Biológico , Ácidos Hidroxámicos , Hierro/metabolismo , Sideróforos/fisiología
17.
Mol Microbiol ; 114(5): 742-761, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32654271

RESUMEN

Efficient symbiotic colonization of the squid Euprymna scolopes by the bacterium Vibrio fischeri depends on bacterial biofilm formation on the surface of the squid's light organ. Subsequently, the bacteria disperse from the biofilm via an unknown mechanism and enter through pores to reach the interior colonization sites. Here, we identify a homolog of Pseudomonas fluorescens LapG as a dispersal factor that promotes cleavage of a biofilm-promoting adhesin, LapV. Overproduction of LapG inhibited biofilm formation and, unlike the wild-type parent, a ΔlapG mutant formed biofilms in vitro. Although V. fischeri encodes two putative large adhesins, LapI (near lapG on chromosome II) and LapV (on chromosome I), only the latter contributed to biofilm formation. Consistent with the Pseudomonas Lap system model, our data support a role for the predicted c-di-GMP-binding protein LapD in inhibiting LapG-dependent dispersal. Furthermore, we identified a phosphodiesterase, PdeV, whose loss promotes biofilm formation similar to that of the ΔlapG mutant and dependent on both LapD and LapV. Finally, we found a minor defect for a ΔlapD mutant in initiating squid colonization, indicating a role for the Lap system in a relevant environmental niche. Together, these data reveal new factors and provide important insights into biofilm dispersal by V. fischeri.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Aliivibrio fischeri/metabolismo , Biopelículas/crecimiento & desarrollo , Aliivibrio fischeri/genética , Animales , Proteínas Bacterianas/metabolismo , Decapodiformes/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Transducción de Señal , Simbiosis
18.
Appl Environ Microbiol ; 87(3)2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33187995

RESUMEN

N-Acetylmuramoyl-l-alanine amidases are periplasmic hydrolases that cleave the amide bond between N-acetylmuramic acid and alanine in peptidoglycan (PG). Unlike many Gram-negative bacteria that encode redundant periplasmic amidases, Vibrio fischeri appears to encode a single protein that is homologous to AmiB of Vibrio cholerae We screened a V. fischeri transposon mutant library for strains altered in biofilm production and discovered a biofilm-overproducing strain with an insertion in amiB (VF_2326). Further characterization of biofilm enhancement suggested that this phenotype was due to the overproduction of cellulose, and it was dependent on the bcsA cellulose synthase. Additionally, the amiB mutant was nonmotile, perhaps due to defects in its ability to septate during division. The amidase mutant was unable to compete with the wild type for the colonization of V. fischeri's symbiotic host, the squid Euprymna scolopes In single-strain inoculations, host squid inoculated with the mutant eventually became colonized but with a much lower efficiency than in squid inoculated with the wild type. This observation was consistent with the pleiotropic effects of the amiB mutation and led us to speculate that motile suppressors of the amiB mutant were responsible for the partially restored colonization. In culture, motile suppressor mutants carried point mutations in a single gene (VF_1477), resulting in a partial restoration of wild-type motility. In addition, these point mutations reversed the effect of the amiB mutation on cellulosic biofilm production. These data are consistent with V. fischeri AmiB possessing amidase activity; they also suggest that AmiB suppresses cellulosic biofilm formation but promotes successful host colonization.IMPORTANCE Peptidoglycan (PG) is a critical microbe-associated molecular pattern (MAMP) that is sloughed by cells of V. fischeri during symbiotic colonization of squid. Specifically, this process induces significant remodeling of a specialized symbiotic light organ within the squid mantle cavity. This phenomenon is reminiscent of the loss of ciliated epithelium in patients with whooping cough due to the production of PG monomers by Bordetella pertussis Furthermore, PG processing machinery can influence susceptibility to antimicrobials. In this study, we report roles for the V. fischeri PG amidase AmiB, including the beneficial colonization of squid, underscoring the urgency to more deeply understand PG processing machinery and the downstream consequences of their activities.


Asunto(s)
Aliivibrio fischeri/enzimología , Amidohidrolasas/fisiología , Proteínas Bacterianas/fisiología , Aliivibrio fischeri/citología , Aliivibrio fischeri/genética , Aliivibrio fischeri/fisiología , Amidohidrolasas/genética , Proteínas Bacterianas/genética , Biopelículas , División Celular , Mutación , Simbiosis
19.
Appl Environ Microbiol ; 87(6)2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33397700

RESUMEN

Vibrio species, including the squid symbiont Vibrio fischeri, become competent to take up DNA under specific conditions. For example, V. fischeri becomes competent when grown in the presence of chitin oligosaccharides or upon overproduction of the competence regulatory factor TfoX. While little is known about the regulatory pathway(s) that controls V. fischeri competence, this microbe encodes homologs of factors that control competence in the well-studied V. cholerae To further develop V. fischeri as a genetically tractable organism, we evaluated the roles of some of these competence homologs. Using TfoX-overproducing cells, we found that competence depends upon LitR, the homolog of V. cholerae master quorum-sensing and competence regulator HapR, and upon homologs of putative pilus genes that in V. cholerae facilitate DNA uptake. Disruption of genes for negative regulators upstream of LitR, namely, the LuxO protein and the small RNA (sRNA) Qrr1, resulted in increased transformation frequencies. Unlike LitR-controlled light production, however, competence did not vary with cell density under tfoX overexpression conditions. Analogous to the case with V. cholerae, the requirement for LitR could be suppressed by loss of the Dns nuclease. We also found a role for the putative competence regulator CytR. Finally, we determined that transformation frequencies varied depending on the TfoX-encoding plasmid, and we developed a new dual tfoX and litR overexpression construct that substantially increased the transformation frequency of a less genetically tractable strain. By advancing the ease of genetic manipulation of V. fischeri, these findings will facilitate the rapid discovery of genes involved in physiologically relevant processes, such as biofilm formation and host colonization.IMPORTANCE The ability of bacteria to take up DNA (competence) and incorporate foreign DNA into their genomes (transformation) permits them to rapidly evolve and gain new traits and/or acquire antibiotic resistances. It also facilitates laboratory-based investigations into mechanisms of specific phenotypes, such as those involved in host colonization. Vibrio fischeri has long been a model for symbiotic bacterium-host interactions as well as for other aspects of its physiology, such as bioluminescence and biofilm formation. Competence of V. fischeri can be readily induced upon overexpression of the competence factor TfoX. Relatively little is known about the V. fischeri competence pathway, although homologs of factors known to be important in V. cholerae competence exist. By probing the importance of putative competence factors that control transformation of V. fischeri, this work deepens our understanding of the competence process and advances our ability to genetically manipulate this important model organism.


Asunto(s)
Aliivibrio fischeri/genética , Aliivibrio fischeri/metabolismo , Proteínas Bacterianas/genética , ADN/metabolismo , Transactivadores/genética , Transformación Bacteriana
20.
J Toxicol Environ Health A ; 84(22): 901-913, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34259612

RESUMEN

The water produced (PW) by the petroleum industry is a potential contaminant to aquatic biota, due to its complex mixture that may contain polycyclic aromatic hydrocarbons (PAHs), organic chemical compounds, including benzene, toluene, ethylbenzene and xylene (BTEX), metals and other components that are known to be toxic. The aim of this investigation was to examine the acute toxicity produced by a PW sample in aquatic organisms Vibrio fischeri and Daphnia similis prior to and after 4 treatments using advanced oxidative processes such as photocatalysis, photoelectrocatalysis, ozonation and photoelectrocatalytic ozonation. Data demonstrated that exposure to PW was toxic to both organisms, as evidenced by reduced luminescence in bacterium Vibrio fischeri and induced immobility in Daphnia similis. After treatment of PW with 4 different techniques, the PW remained toxic for both tested organisms. However, photoelectrocatalysis was more efficient in decreasing toxicity attributed to PW sample. Therefore, data demonstrate the importance of treating PW for later disposal in the environment in order to mitigate ecotoxicological impacts. Further photoelectrocatalysis appeared to be a promising tool for treating PW samples prior to disposal and exposure of aquatic ecosystems.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Industria del Petróleo y Gas , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Aliivibrio fischeri/efectos de los fármacos , Animales , Daphnia/efectos de los fármacos , Oxígeno/química , Petróleo/toxicidad , Pruebas de Toxicidad Aguda
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda