Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Development ; 146(24)2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31822478

RESUMEN

A Wnt signaling network governs early anterior-posterior (AP) specification and patterning of the deuterostome sea urchin embryo. We have previously shown that non-canonical Fzl1/2/7 signaling antagonizes the progressive posterior-to-anterior downregulation of the anterior neuroectoderm (ANE) gene regulatory network (GRN) by canonical Wnt/ß-catenin and non-canonical Wnt1/Wnt8-Fzl5/8-JNK signaling. This study focuses on the non-canonical function of the Wnt16 ligand during early AP specification and patterning. Maternally supplied wnt16 is expressed ubiquitously during cleavage and zygotic wnt16 expression is concentrated in the endoderm/mesoderm beginning at mid-blastula stage. Wnt16 antagonizes the ANE restriction mechanism and this activity depends on a functional Fzl1/2/7 receptor. Our results also show that zygotic wnt16 expression depends on both Fzl5/8 and Wnt/ß-catenin signaling. Furthermore, Wnt16 is necessary for the activation and/or maintenance of key regulatory endoderm/mesoderm genes and is essential for gastrulation. Together, our data show that Wnt16 has two functions during early AP specification and patterning: (1) an initial role activating the Fzl1/2/7 pathway that antagonizes the ANE restriction mechanism; and (2) a subsequent function in activating key endoderm GRN factors and the morphogenetic movements of gastrulation.


Asunto(s)
Tipificación del Cuerpo/genética , Morfogénesis/genética , Erizos de Mar , Proteínas Wnt/fisiología , Animales , Embrión no Mamífero , Receptores Frizzled/genética , Receptores Frizzled/fisiología , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica , Mesodermo/embriología , Mesodermo/metabolismo , Placa Neural/embriología , Placa Neural/metabolismo , Erizos de Mar/embriología , Erizos de Mar/genética , Proteínas Wnt/genética , Vía de Señalización Wnt/fisiología
2.
Climacteric ; 25(3): 257-263, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34254535

RESUMEN

BACKGROUND: The WNT signaling pathway is involved in the regulation of bone homeostasis, and the effect of WNT signaling pathway-related gene (WNT16 and LRP5) polymorphisms on osteoporosis risk among Chinese postmenopausal women is still unknown. Hence, we performed a case-control study to assess the association of WNT signaling pathway-related gene polymorphisms and osteoporosis risk. METHODS: A total of 1026 women (515 osteoporosis patients and 511 controls) of postmenopausal age who were randomly sampled from Xi'an 630 Hospital (Shaanxi Province, China) were involved in this study. Seven genetic polymorphisms in WNT16 (rs3779381, rs3801387, rs917727 and rs7776725) and LRP5 (rs2291467, rs11228240 and rs12272917) were selected and genotyped using the Agena MassARRAY iPLEX system. The association of the genetic polymorphisms and osteoporosis risk was assessed by odds ratios and 95% confidence intervals. The multifactor dimensionality reduction (MDR) method was conducted to analyze single nucleotide polymorphism (SNP)-SNP interaction. RESULTS: We found that LRP5 polymorphisms (rs2291467, rs11228240 and rs12272917) were significantly associated with a decreased risk of osteoporosis in homozygote, recessive and additive models (p < 0.05). Stratification analysis showed that LRP5 polymorphisms (rs2291467, rs11228240 and rs12272917) significantly decreased the osteoporosis risk in the subgroup of body mass index (BMI) ≤ 24 (p < 0.05) and that individuals carrying a heterozygote genotype of WNT16 polymorphisms (rs3779381, rs3801387, rs917727 and rs7776725) had a higher osteoporosis risk in the subgroup of BMI > 24 (p < 0.05). Two haplotypes (haplotype 1: rs3779381, rs3801387, rs917727 and rs7776725; haplotype 2: rs2291467 and rs11228240) were observed, yet only Trs2291467Trs11228240 and Crs2291467Crs11228240 had a strong association with a decreased risk of osteoporosis (p < 0.05). Additionally, MDR analysis revealed that LRP5 rs2291467 was the best model in single-locus MDR analysis. A seven-locus model including rs3779381-AG, rs7776725-TC, rs3801387-GA and rs917727-TC in WNT16 and rs11228240-CC, rs12272917-TC and rs2291467-CC in LRP5 was the best model in multiple-loci MDR analysis (p < 0.001). These two best models were the most significantly associated with osteoporosis risk. CONCLUSIONS: Our findings suggested that WNT16 and LRP5 genetic polymorphisms are associated with osteoporosis risk among Chinese postmenopausal women.


Asunto(s)
Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Osteoporosis Posmenopáusica , Proteínas Wnt/genética , Densidad Ósea/genética , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Haplotipos , Humanos , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Masculino , Osteoporosis Posmenopáusica/genética , Polimorfismo de Nucleótido Simple , Posmenopausia , Vía de Señalización Wnt
3.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35328707

RESUMEN

Oncostatin M (OSM), which belongs to the IL-6 family of cytokines, is the most potent and effective stimulator of osteoclast formation in this family, as assessed by different in vitro assays. Osteoclastogenesis induced by the IL-6 type of cytokines is mediated by the induction and paracrine stimulation of the osteoclastogenic cytokine receptor activator of nuclear factor κ-B ligand (RANKL), expressed on osteoblast cell membranes and targeting the receptor activator of nuclear factor κ-B (RANK) on osteoclast progenitor cells. The potent effect of OSM on osteoclastogenesis is due to an unusually robust induction of RANKL in osteoblasts through the OSM receptor (OSMR), mediated by a JAK-STAT/MAPK signaling pathway and by unique recruitment of the adapter protein Shc1 to the OSMR. Gene deletion of Osmr in mice results in decreased numbers of osteoclasts and enhanced trabecular bone caused by increased trabecular thickness, indicating that OSM may play a role in physiological regulation of bone remodeling. However, increased amounts of OSM, either through administration of recombinant protein or of adenoviral vectors expressing Osm, results in enhanced bone mass due to increased bone formation without any clear sign of increased osteoclast numbers, a finding which can be reconciled by cell culture experiments demonstrating that OSM can induce osteoblast differentiation and stimulate mineralization of bone nodules in such cultures. Thus, in vitro studies and gene deletion experiments show that OSM is a stimulator of osteoclast formation, whereas administration of OSM to mice shows that OSM is not a strong stimulator of osteoclastogenesis in vivo when administered to adult animals. These observations could be explained by our recent finding showing that OSM is a potent stimulator of the osteoclastogenesis inhibitor WNT16, acting in a negative feedback loop to reduce OSM-induced osteoclast formation.


Asunto(s)
Oncostatina M/metabolismo , Osteoclastos , Ligando RANK , Animales , Diferenciación Celular , Retroalimentación , Interleucina-6/metabolismo , Ratones , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Ligando RANK/metabolismo , Proteínas Wnt/metabolismo
4.
Hum Mutat ; 42(1): 37-49, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33058301

RESUMEN

Osteoporotic fractures cause major morbidity and mortality in the aging population. Genome-wide association studies (GWAS) have identified USF3 as the novel susceptibility gene of osteoporosis. However, the functional role in bone metabolism and the target gene of the basic helix-loop-helix transcription factor USF3 are unclear. Here, we show that USF3 enhances osteoblast differentiation and suppresses osteoclastogenesis in cultured human osteoblast-like U-2OS cells. Mechanistic studies revealed that transcription factor USF3 antagonistically interacts with anti-osteogenic TWIST1/TCF12 heterodimer in the WNT16 and RUNX2 promoter, and counteracts CREB1 and JUN/FOS in the RANKL promoter. Importantly, the osteoporosis GWAS variant g.1744A>G (rs2908007A>G) located in the WNT16 promoter confers G-allele-specific transcriptional modulation by USF3, TWIST1/TCF12 and TBX5/TBX15, and USF3 transactivates the osteoclastogenesis suppressor WNT16 promoter activity and antagonizes the repression of WNT16 by TWIST1 and TCF12. The risk G allele of osteoporosis GWAS variant g.3260A>G (rs4531631A>G) in the RANKL promoter facilitates the binding of CREB1 and JUN/FOS and enhances transactivation of the osteoclastogenesis contributor RANKL that is inhibited by USF3. Our findings uncovered the functional mechanisms of osteoporosis novel GWAS-associated gene USF3 and lead single nucleotide polymorphisms rs2908007 and rs4531631 in the regulation of bone formation and resorption.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Estudio de Asociación del Genoma Completo , Osteoporosis , Anciano , Diferenciación Celular/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Humanos , Osteoblastos , Osteoporosis/genética , Polimorfismo de Nucleótido Simple , Ligando RANK/genética , Proteínas de Dominio T Box/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
5.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206401

RESUMEN

Wingless-type MMTV integration site family, member 16 (wnt16), is a wnt ligand that participates in the regulation of vertebrate skeletal development. Studies have shown that wnt16 can regulate bone metabolism, but its molecular mechanism remains largely undefined. We obtained the wnt16-/- zebrafish model using the CRISPR-Cas9-mediated gene knockout screen with 11 bp deletion in wnt16, which led to the premature termination of amino acid translation and significantly reduced wnt16 expression, thus obtaining the wnt16-/- zebrafish model. The expression of wnt16 in bone-related parts was detected via in situ hybridization. The head, spine, and tail exhibited significant deformities, and the bone mineral density and trabecular bone decreased in wnt16-/- using light microscopy and micro-CT analysis. RNA sequencing was performed to explore the differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the down-regulated DEGs are mainly concentrated in mTOR, FoxO, and VEGF pathways. Protein-protein interaction (PPI) network analysis was performed with the detected DEGs. Eight down-regulated DEGs including akt1, bnip4, ptena, vegfaa, twsg1b, prkab1a, prkab1b, and pla2g4f.2 were validated by qRT-PCR and the results were consistent with the RNA-seq data. Overall, our work provides key insights into the influence of wnt16 gene on skeletal development.


Asunto(s)
Huesos/anomalías , Anomalías Musculoesqueléticas/genética , Anomalías Musculoesqueléticas/metabolismo , Osteogénesis/genética , Proteínas Wnt/deficiencia , Proteínas de Pez Cebra/deficiencia , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Biología Computacional/métodos , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Ontología de Genes , Anotación de Secuencia Molecular , Anomalías Musculoesqueléticas/diagnóstico , Fenotipo , Transcriptoma , Proteínas Wnt/química , Proteínas Wnt/metabolismo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
6.
Calcif Tissue Int ; 107(1): 31-40, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32140758

RESUMEN

Epidemiological studies have shown that high bone mineral density (BMD) is associated with an increased risk of osteoarthritis (OA), but the causality of this relationship remains unclear. Both bone mass and OA have been associated with the WNT signaling pathway in genetic studies, there is thus an interest in studying molecular partners of the WNT signaling pathway and OA. Female mice overexpressing WNT16 in osteoblasts (Obl-Wnt16 mice) have an increased bone mass. We aimed to evaluate if the high bone mass in Obl-Wnt16 mice leads to a more severe experimental OA development than in WT control mice. We induced experimental OA in female Obl-Wnt16 and WT control mice by destabilizing the medial meniscus (DMM). The Obl-Wnt16 mice displayed thicker medial and lateral subchondral bone plates as well as increased subchondral trabecular bone volume/tissue volume (BV/TV) but un-altered thickness of articular cartilage compared to WT mice. After DMM surgery, there was no difference in OA severity in the articular cartilage in the knee joint between the Obl-Wnt16 and WT mice. Both the Obl-Wnt16 and WT mice developed osteophytes in the DMM-operated tibia to a similar extent. We conclude that although the Obl-Wnt16 female mice have a high subchondral bone mass due to increased WNT signaling, they do not exhibit a more severe OA phenotype than their WT controls. This demonstrates that high bone mass does not result in an increased risk of OA per se.


Asunto(s)
Densidad Ósea , Osteoartritis/metabolismo , Osteoblastos/metabolismo , Proteínas Wnt/metabolismo , Animales , Cartílago Articular , Femenino , Ratones , Tibia
7.
Calcif Tissue Int ; 106(3): 294-302, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31760436

RESUMEN

In the past years, WNT16 became an interesting target in the field of skeletal research, as it was identified as an essential regulator of the cortical bone compartment, with the ability to increase both cortical and trabecular bone mass and strength in vivo. Even though there are indications that these advantageous effects are coming from canonical and non-canonical WNT-signalling activity, a clear model of WNT signalling by WNT16 is not yet depicted. We, therefore, investigated the modulation of canonical (WNT/ß-catenin) and non-canonical [WNT/calcium, WNT/planar cell polarity (PCP)] signalling in human embryonic kidney (HEK) 293 T and SaOS2 cells. Here, we demonstrated that WNT16 activates all WNT-signalling pathways in osteoblasts, whereas only WNT/calcium signalling was activated in HEK293T cells. In osteoblasts, we therefore, additionally investigated the role of Gα subunits as intracellular partners in WNT16's mechanism of action by performing knockdown of Gα12, Gα13 and Gαq. These studies point out that the above-mentioned Gα subunits might be involved in the WNT/ß-catenin and WNT/calcium-signalling activity by WNT16 in osteoblasts, and for Gα12 in its WNT/PCP-signalling activity, illustrating a novel possible mechanism of interplay between the different WNT-signalling pathways in osteoblasts. Additional studies are needed to demonstrate whether this mechanism is specific for WNT16 signalling or relevant for all other WNT ligands as well. Altogether, we further defined WNT16's mechanism of action in osteoblasts that might underlie the well-known beneficial effects of WNT16 on skeletal homeostasis. These findings on WNT16 and the activity of specific Gα subunits in osteoblasts could definitely contribute to the development of novel therapeutic approaches for fragility fractures in the future.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP G12-G13/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/fisiología , Osteoblastos/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Animales , Línea Celular Tumoral , Subunidades alfa de la Proteína de Unión al GTP G12-G13/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratones
8.
FASEB J ; 33(10): 11163-11179, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31307226

RESUMEN

Osteoporosis is a common skeletal disease, affecting millions of individuals worldwide. Currently used osteoporosis treatments substantially reduce vertebral fracture risk, whereas nonvertebral fracture risk, mainly caused by reduced cortical bone mass, has only moderately been improved by the osteoporosis drugs used, defining an unmet medical need. Because several wingless-type MMTV integration site family members (WNTs) and modulators of WNT activity are major regulators of bone mass, we hypothesized that NOTUM, a secreted WNT lipase, might modulate bone mass via an inhibition of WNT activity. To characterize the possible role of endogenous NOTUM as a physiologic modulator of bone mass, we developed global, cell-specific, and inducible Notum-inactivated mouse models. Notum expression was high in the cortical bone in mice, and conditional Notum inactivation revealed that osteoblast lineage cells are the principal source of NOTUM in the cortical bone. Osteoblast lineage-specific Notum inactivation increased cortical bone thickness via an increased periosteal circumference. Inducible Notum inactivation in adult mice increased cortical bone thickness as a result of increased periosteal bone formation, and silencing of Notum expression in cultured osteoblasts enhanced osteoblast differentiation. Large-scale human genetic analyses identified genetic variants mapping to the NOTUM locus that are strongly associated with bone mineral density (BMD) as estimated with quantitative ultrasound in the heel. Thus, osteoblast-derived NOTUM is an essential local physiologic regulator of cortical bone mass via effects on periosteal bone formation in adult mice, and genetic variants in the NOTUM locus are associated with BMD variation in adult humans. Therapies targeting osteoblast-derived NOTUM may prevent nonvertebral fractures.-Movérare-Skrtic, S., Nilsson, K. H., Henning, P., Funck-Brentano, T., Nethander, M., Rivadeneira, F., Coletto Nunes, G., Koskela, A., Tuukkanen, J., Tuckermann, J., Perret, C., Souza, P. P. C., Lerner, U. H., Ohlsson, C. Osteoblast-derived NOTUM reduces cortical bone mass in mice and the NOTUM locus is associated with bone mineral density in humans.


Asunto(s)
Densidad Ósea/genética , Hueso Cortical/metabolismo , Hueso Cortical/fisiología , Esterasas/metabolismo , Osteoblastos/metabolismo , Animales , Densidad Ósea/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Esterasas/genética , Femenino , Fracturas Óseas/metabolismo , Fracturas Óseas/fisiopatología , Variación Genética/genética , Humanos , Masculino , Ratones , Osteogénesis/genética , Osteogénesis/fisiología , Osteoporosis/metabolismo , Osteoporosis/fisiopatología , Proteínas Wnt/metabolismo
9.
Int J Mol Sci ; 21(12)2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32560314

RESUMEN

Psoriatic arthritis (PsA) is a destructive joint disease mediated by osteoclasts. MicroRNAs (miRNAs) regulate several important pathways in osteoclastogenesis. We profiled the expression of miRNAs in CD14+ monocytes from PsA patients and investigated how candidate microRNAs regulate the pathophysiology in osteoclastogenesis. The RNA from circulatory CD14+ monocytes was isolated from PsA patients, psoriasis patients without arthritis (PsO), and healthy controls (HCs). The miRNAs were initially profiled by next-generation sequencing (NGS). The candidate miRNAs revealed by NGS were validated by PCR in 40 PsA patients, 40 PsO patients, and 40 HCs. The osteoclast differentiation and its functional resorption activity were measured with or without RNA interference against the candidate miRNA. The microRNA-941 was selectively upregulated in CD14+ monocytes from PsA patients. Osteoclast development and resorption ability were increased in CD14+ monocytes from PsA patients. Inhibition of miR-941 abrogated the osteoclast development and function while increased the expression of WNT16. After successful treatment, the increased miR-941 expression in CD14+ monocytes from PsA patients was revoked. The expression of miR-941 in CD14+ monocytes is associated with PsA disease activity. MiR-941 enhances osteoclastogenesis in PsA via WNT16 repression. The miR-941 could be a potential biomarker and treatment target for PsA.


Asunto(s)
Artritis Psoriásica/etiología , Artritis Psoriásica/metabolismo , Regulación de la Expresión Génica , MicroARNs/genética , Monocitos/metabolismo , Osteoclastos/metabolismo , Proteínas Wnt/metabolismo , Adulto , Anciano , Artritis Psoriásica/diagnóstico , Resorción Ósea/genética , Susceptibilidad a Enfermedades , Femenino , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Receptores de Lipopolisacáridos/metabolismo , Masculino , Persona de Mediana Edad , Curva ROC , Máquina de Vectores de Soporte
10.
Ann Rheum Dis ; 78(4): 551-561, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30745310

RESUMEN

OBJECTIVES: Wnt16 is implicated in bone fracture and bone mass accrual both in animals and humans. However, its functional roles and molecular mechanism in chondrocyte differentiation and osteoarthritis (OA) pathophysiology remain largely undefined. In this study, we analysed its mechanistic association and functional relationship in OA progression in chondrocyte lineage. METHODS: The role of Wnt16 during skeletal development was examined by Col2a1-Wnt16 transgenic mice and Wnt16fl/fl;Col2a1-Cre (Wnt16-cKO) mice. OA progression was assessed by micro-CT analysis and Osteoarthritis Research Society International score after anterior cruciate ligament transection (ACLT) surgery with Wnt16 manipulation by adenovirus intra-articular injection. The molecular mechanism was investigated in vitro using 3D chondrocyte pellet culture and biochemical analyses. Histological analysis was performed in mouse joints and human cartilage specimens. RESULTS: Wnt16 overexpression in chondrocytes in mice significantly inhibited chondrocyte hypertrophy during skeletal development. Wnt16 deficiency exaggerated OA progression, whereas intra-articular injection of Ad-Wnt16 markedly attenuated ACLT-induced OA. Cellular and molecular analyses showed that, instead of ß-catenin and calcium pathways, Wnt16 activated the planar cell polarity (PCP) and JNK pathway by interacting mainly with AP2b1, and to a lesser extend Ror2 and CD146, and subsequently induced PTHrP expression through phosphor-Raptor mTORC1 pathway. CONCLUSIONS: Our findings indicate that Wnt16 activates PCP/JNK and crosstalks with mTORC1-PTHrP pathway to inhibit chondrocyte hypertrophy. Our preclinical study suggests that Wnt16 may be a potential therapeutic target for OA treatment.


Asunto(s)
Artritis Experimental/patología , Osteoartritis/patología , Proteínas Wnt/fisiología , Animales , Artritis Experimental/metabolismo , Artritis Experimental/fisiopatología , Cartílago Articular/metabolismo , Cartílago Articular/patología , Diferenciación Celular/fisiología , Polaridad Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Condrocitos/patología , Condrocitos/fisiología , Progresión de la Enfermedad , Humanos , Hipertrofia/prevención & control , Sistema de Señalización de MAP Quinasas/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , Ratones Transgénicos , Osteoartritis/metabolismo , Osteoartritis/fisiopatología , Proteína Relacionada con la Hormona Paratiroidea/fisiología , Proteínas Wnt/deficiencia , Proteínas Wnt/metabolismo
11.
Adv Exp Med Biol ; 1211: 17-24, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31309515

RESUMEN

Osteoporosis is a disease with complex etiology where the genetic factors may account for as much as 50-85% of the risk of its development in postmenopausal women. The polymorphism of estrogen receptor genes (ESR1, ESR2) seems essential among the genetic factors. The goal of this study was to analyze polymorphisms of selected genes in a population of postmenopausal women treated for osteoporosis and to evaluate the influence of genetic and nongenetic factors on the estimated 10-year risk of fracture. The study group consisted of 214 women hospitalized for treatment of postmenopausal osteoporosis. We investigated the presence of ESR1, ESR2, LRP5, and WNT16 genetic polymorphisms and the risk of fracture in each woman. The main finding was that of significant differences in the polymorphisms of the WNT16 rs2908004 genetic variant, notably, the less frequent presence of TC allele in women with a greater risk of osteoporotic fractures. We conclude that the polymorphism of the WNT16 gene seems highly relevant in the pathogenesis of osteoporosis, which makes it a promising object for further research on the genetic background of fracture risk.


Asunto(s)
Fracturas Óseas/genética , Predisposición Genética a la Enfermedad , Osteoporosis/genética , Proteínas Wnt/genética , Densidad Ósea , Femenino , Genotipo , Humanos , Posmenopausia
12.
Proc Natl Acad Sci U S A ; 112(48): 14972-7, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26627248

RESUMEN

Wingless-type MMTV integration site family (WNT)16 is a key regulator of bone mass with high expression in cortical bone, and Wnt16(-/-) mice have reduced cortical bone mass. As Wnt16 expression is enhanced by estradiol treatment, we hypothesized that the bone-sparing effect of estrogen in females is WNT16-dependent. This hypothesis was tested in mechanistic studies using two genetically modified mouse models with either constantly high osteoblastic Wnt16 expression or no Wnt16 expression. We developed a mouse model with osteoblast-specific Wnt16 overexpression (Obl-Wnt16). These mice had several-fold elevated Wnt16 expression in both trabecular and cortical bone compared with wild type (WT) mice. Obl-Wnt16 mice displayed increased total body bone mineral density (BMD), surprisingly caused mainly by a substantial increase in trabecular bone mass, resulting in improved bone strength of vertebrae L3. Ovariectomy (ovx) reduced the total body BMD and the trabecular bone mass to the same degree in Obl-Wnt16 mice and WT mice, suggesting that the bone-sparing effect of estrogen is WNT16-independent. However, these bone parameters were similar in ovx Obl-Wnt16 mice and sham operated WT mice. The role of WNT16 for the bone-sparing effect of estrogen was also evaluated in Wnt16(-/-) mice. Treatment with estradiol increased the trabecular and cortical bone mass to a similar extent in both Wnt16(-/-) and WT mice. In conclusion, the bone-sparing effects of estrogen and WNT16 are independent of each other. Furthermore, loss of endogenous WNT16 results specifically in cortical bone loss, whereas overexpression of WNT16 surprisingly increases mainly trabecular bone mass. WNT16-targeted therapies might be useful for treatment of postmenopausal trabecular bone loss.


Asunto(s)
Densidad Ósea/fisiología , Osteoblastos/metabolismo , Columna Vertebral/metabolismo , Proteínas Wnt/biosíntesis , Animales , Estrógenos , Femenino , Ratones , Ratones Noqueados , Osteoblastos/citología , Proteínas Wnt/genética
13.
Calcif Tissue Int ; 100(4): 361-373, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28013361

RESUMEN

Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice overexpressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole-body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions.


Asunto(s)
Densidad Ósea/fisiología , Osteocitos/metabolismo , Proteínas Wnt/metabolismo , Animales , Densidad Ósea/genética , Huesos/metabolismo , Femenino , Fémur/metabolismo , Fémur/patología , Humanos , Masculino , Ratones , Ratones Transgénicos , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteoporosis/genética , Osteoporosis/metabolismo , Proteínas Wnt/genética
14.
Exp Cell Res ; 347(1): 24-41, 2016 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-27397580

RESUMEN

We established a differentiation method for homogeneous α7 integrin-positive human skeletal muscle stem cell (α7(+)hSMSC)-derived osteoblast-like cells with bone morphogenetic protein (BMP)-2. To explore the early signaling cascade for osteoblastic differentiation, we examined the upregulation of autophagy-related gene (Atg) and wingless/int1 (Wnt) signaling during BMP-2-mediated human osteoblastic differentiation. In a screening experiment, BMP-2 increased the mRNA and protein levels of Atg7, Wnt16, and Lrp5/Fzd2 (a Wnt receptor), but not microtubule-associated protein 1 light chain (LC3; a mammalian homolog of yeast Atg8), TFE3, Beclin1, Atg5, Atg12, Wnt3a, or Wnt5, together with the amounts of autophagosomes and autophagy fluxes. Treatment with siRNAs against Atg7 and Wnt16 individually suppressed the BMP-2-induced increase in osteoblastic differentiation. The osteoblastic phenotype, involving osteocalcin (BGLAP), osteopontin (SPP1), and osterix (SP7) expression, decreased when autophagy was inhibited by chloroquine (an autophagy inhibitor), but increased after treatment with rapamycin (an autophagy enhancer). Taken together with our previous findings, we have revealed a unique sequential cascade of BMP-2→Atg7→Wnt16→Lrp5/Fzd2→matrix metalloproteinase-13→osteoblastic differentiation. This cascade results in a potent increase in osteoblastic cell differentiation, indicating the unique involvement of Atg7, autophagy, and Wnt16 signaling in BMP-2-induced differentiation of α7(+)hSMSCs into osteoblast-like cells at a relatively early stage.


Asunto(s)
Proteína 7 Relacionada con la Autofagia/metabolismo , Proteína Morfogenética Ósea 2/farmacología , Proteína Morfogenética Ósea 4/farmacología , Diferenciación Celular/efectos de los fármacos , Osteoblastos/metabolismo , Células Madre/citología , Proteínas Wnt/metabolismo , Antígenos CD/metabolismo , Autofagia/efectos de los fármacos , Proteína 7 Relacionada con la Autofagia/genética , Biomarcadores/metabolismo , Cloroquina/farmacología , Silenciador del Gen/efectos de los fármacos , Humanos , Cadenas alfa de Integrinas/metabolismo , Modelos Biológicos , Músculo Esquelético/citología , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Sirolimus/farmacología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Tretinoina/farmacología
15.
Osteoporos Int ; 27(3): 1057-1061, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26510844

RESUMEN

SUMMARY: Bone mineral content is influenced by genetic factors. We investigated the role of WNT16 in bone properties determined using quantitative ultrasound (QUS) on young adults. Three WNT16 genetic markers (rs2908007, rs2908004, and rs2707466) were found to have a significant association with the broadband ultrasound attenuation (BUA) measurement, suggesting that WNT16 influences bone mass in young adults. INTRODUCTION: The aim of this study was to investigate whether genetic markers on the WNT16 gene are associated with bone mass, as assessed using QUS in a population of healthy young Spanish adults. METHODS: A cross-sectional study was conducted on 575 individuals (mean age 20.41 ± 2.69). Bone quality was assessed using BUA measurements (dB/MHz) on the right calcaneus. Six single nucleotide polymorphisms (SNPs) (rs2908007, rs2908004, rs3801387, rs3801385, rs2707466, and rs2536184) covering the WNT16 gene were selected as genetic markers and genotyped to test their association with BUA variations. RESULTS: The rs2908007, rs2908004, and rs2707466 SNPs were found to have a significant association with BUA (p = 0.004, p = 0.001, and p = 0.004, respectively). CONCLUSION: We demonstrate for the first time that WNT16 genetic polymorphisms influence QUS traits in a population of young adults. This finding suggests that WNT16 might be an important genetic factor in determining peak bone mass acquisition.


Asunto(s)
Calcáneo/diagnóstico por imagen , Polimorfismo de Nucleótido Simple , Proteínas Wnt/genética , Adolescente , Densidad Ósea/genética , Calcáneo/fisiología , Estudios Transversales , Femenino , Frecuencia de los Genes , Marcadores Genéticos/genética , Genotipo , Técnicas de Genotipaje/métodos , Humanos , Masculino , Ultrasonografía/métodos , Adulto Joven
16.
Arterioscler Thromb Vasc Biol ; 35(3): 573-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25614285

RESUMEN

OBJECTIVE: Phenotypic plasticity of vascular smooth muscle cells (VSMCs) contributes to cardiovascular disease. Chondrocyte-like transformation of VSMCs associates with vascular calcification and underlies the formation of aortic cartilaginous metaplasia induced in mice by genetic loss of matrix Gla protein (MGP). Previous microarray analysis identified a dramatic downregulation of Wnt16 in calcified MGP-null aortae, suggesting an antagonistic role for Wnt16 in the chondrogenic transformation of VSMCs. APPROACH AND RESULTS: Wnt16 is significantly downregulated in MGP-null aortae, before the histological appearance of cartilaginous metaplasia, and in primary MGP-null VSMCs. In contrast, intrinsic TGFß is activated in MGP-null VSMCs and is necessary for spontaneous chondrogenesis of these cells in high-density micromass cultures. TGFß3-induced chondrogenic transformation in wild-type VSMCs associates with Smad2/3-dependent Wnt16 downregulation, but Wnt16 does not suppress TGFß3-induced Smad activation. In addition, TGFß3 inhibits Notch signaling in wild-type VSMCs, and this pathway is downregulated in MGP-null aortae. Exogenous Wnt16 stimulates Notch activity and attenuates TGFß3-induced downregulation of Notch in wild-type VSMCs, prevents chondrogenesis in MGP-null and TGFß3-treated wild-type VSMCs, and stabilizes expression of contractile markers of differentiated VSMCs. CONCLUSIONS: We describe a novel TGFß-Wnt16-Notch signaling conduit in the chondrocyte-like transformation of VSMCs and identify endogenous TGFß activity in MGP-null VSMCs as a critical mediator of chondrogenesis. Our proposed model suggests that the activated TGFß pathway inhibits expression of Wnt16, which is a positive regulator of Notch signaling and a stabilizer of VSMC phenotype. These data advance the comprehensive mechanistic understanding of VSMC transformation and may identify a novel potential therapeutic target in vascular calcification.


Asunto(s)
Transdiferenciación Celular , Condrocitos/metabolismo , Condrogénesis , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Calcificación Vascular/metabolismo , Proteínas Wnt/metabolismo , Animales , Aorta/metabolismo , Células COS , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Chlorocebus aethiops , Condrocitos/patología , Proteínas de la Matriz Extracelular/deficiencia , Proteínas de la Matriz Extracelular/genética , Metaplasia , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Fenotipo , Interferencia de ARN , Ratas , Receptores Notch/metabolismo , Transducción de Señal , Transfección , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta3/metabolismo , Calcificación Vascular/genética , Calcificación Vascular/patología , Proteínas Wnt/genética , Proteína Gla de la Matriz
17.
Int J Mol Sci ; 17(2): 221, 2016 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-26861315

RESUMEN

We established a differentiation method for homogeneous α7 integrin-positive human skeletal muscle stem cell (α7⁺hSMSC)-derived osteoblast-like (α7⁺hSMSC-OB) cells, and found that interleukin (IL)-1ß induces matrix metalloproteinase (MMP)-13-regulated proliferation of these cells. These data suggest that MMP-13 plays a potentially unique physiological role in the regeneration of osteoblast-like cells. Here, we examined whether up-regulation of MMP-13 activity by IL-1ß was mediated by Wingless/int1 (Wnt) signaling and increased the proliferation of osteoblast-like cells. IL-1ß increased the mRNA and protein levels of Wnt16 and the Wnt receptor Lrp5/Fzd2. Exogenous Wnt16 was found to increase MMP-13 mRNA, protein and activity, and interestingly, the proliferation rate of these cells. Treatment with small interfering RNAs against Wnt16 and Lrp5 suppressed the IL-1ß-induced increase in cell proliferation. We revealed that a unique signaling cascade IL-1ß→Wnt16→Lrp5→MMP-13, was intimately involved in the proliferation of osteoblast-like cells, and suggest that IL-1ß-induced MMP-13 expression and changes in cell proliferation are regulated by Wnt16.


Asunto(s)
Interleucina-1beta/metabolismo , Metaloproteinasa 13 de la Matriz/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Diferenciación Celular/genética , Proliferación Celular/efectos de los fármacos , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Humanos , Cadenas alfa de Integrinas/genética , Cadenas alfa de Integrinas/metabolismo , Interleucina-1beta/efectos de los fármacos , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Metaloproteinasa 13 de la Matriz/genética , Osteoblastos/citología , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , Células Madre/citología , Proteínas Wnt/genética
18.
Biochem Biophys Res Commun ; 463(4): 1278-83, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26093292

RESUMEN

The canonical Wnt/ß-catenin signaling pathway in osteoblast-lineage cells inhibits osteoclastogenesis through the expression of osteoprotegerin (Opg), a decoy receptor of receptor activator of Nf-κb (Rank) ligands. Wnt5a, a typical non-canonical Wnt ligand, enhances the expression of Rank in osteoclast precursors, which, in turn, promotes the Rank ligand (Rankl)-induced formation of osteoclasts. In contrast, Wnt16 and Wnt4 have been shown to inhibit the Rankl-induced formation of osteoclasts through non-canonical Wnt signals. However, the relationships among these Wnt ligands in osteoclastogenesis remained to be elucidated. We herein showed that Wnt16, but not Wnt4, inhibited the Rankl-induced osteoclastogenesis in bone marrow-derived macrophage (BMM) cultures. Wnt3a and Wnt4 inhibited the 1α,25-dihydroxy vitamin D3 (1,25D3)-induced osteoclastogenesis in co-cultures prepared from wild-type mice, but not in those from Opg(-/-) nice. Wnt16 inhibited the 1,25D3-induced formation of osteoclasts in both wild-type and Opg(-/-) co-cultures. Wnt16, Wnt4, and Wnt3a failed to inhibit the pit-forming activity of osteoclasts. Wnt16 failed to inhibit the Wnt5a-induced expression of Rank in osteoclast precursors. In contrast, Wnt5a abrogated the inhibitory effects of Wnt16 on Rankl-induced osteoclastogenesis. These results suggested that Wnt16 inhibited osteoclastogenesis, but not the function of osteoclasts and that Wnt16, an inhibitory Wnt ligand for osteoclastogenesis, regulates bone resorption in conjunction with Wnt5a.


Asunto(s)
Diferenciación Celular/fisiología , Osteoclastos/citología , Proteínas Wnt/fisiología , Animales , Calcitriol/farmacología , Técnicas de Cocultivo , Ratones , Ratones Noqueados , Osteoclastos/efectos de los fármacos , Osteoprotegerina/genética , Proteína Wnt-5a
19.
Biomedicines ; 12(1)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38275421

RESUMEN

Adolescent idiopathic scoliosis (AIS) is a three-dimensional spinal deformity that is associated with low bone mineral density (BMD). Vitamin D (Vit-D) supplementation has been suggested to improve BMD in AIS, and its outcomes may be related to genetic factors. The present study aimed to (a) investigate the synergistic effect between a low BMD-related gene (wingless-related integration site 16, WNT16) and two important Vit-D pathway genes (Vit-D receptor, VDR, and Vit-D binding protein, VDBP) on serum Vit-D and bone qualities in Chinese AIS patients and healthy adolescents, and (b) to further investigate the effect of ablating Wnt16 on the cortical bone quality and whether diets with different dosages of Vit-D would further influence bone quality during the rapid growth phase in mice in the absence of Wnt16. A total of 519 girls (318 AIS vs. 201 controls) were recruited, and three selected single-nucleotide polymorphisms (SNPs) (WNT16 rs3801387, VDBP rs2282679, and VDR rs2228570) were genotyped. The serum 25(OH)Vit-D level was significantly associated with VDBP rs2282679 alleles (OR = -4.844; 95% CI, -7.521 to -2.167, p < 0.001). Significant multi-locus models were identified by generalized multifactor dimensionality reduction (GMDR) analyses on the serum 25(OH)Vit-D level (p = 0.006) and trabecular area (p = 0.044). In the gene-edited animal study, Wnt16 global knockout (KO) and wildtype (WT) male mice were provided with different Vit-D diets (control chow (1000 IU/Kg) vs. Vit-D-deficient chow (Nil in Vit-D) vs. high-dose Vit-D chow (20,000 IU/Kg)) from 4 weeks to 10 weeks old. Wnt16 global KO mice had significantly lower serum 25(OH)Vit-D levels and higher liver Vdbp mRNA expression levels than WT mice. In addition, Wnt16 global KO mice showed a decrease in bone density, cortical thickness and cortical area compared with WT mice. Interestingly, high-dose Vit-D chow led to lower bone density, cortical thickness, and cortical area in WT mice, which were less obvious in Wnt16 global KO mice. In conclusion, WNT16 may regulate the serum 25(OH)Vit-D level and bone qualities, which might be associated with VDBP expression. Further investigations with a larger sample size and wider spectrum of scoliosis severity are required to validate our findings regarding the interaction between WNT16 and Vit-D status in patients with AIS.

20.
Adv Sci (Weinh) ; 11(41): e2404396, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39248388

RESUMEN

Temporomandibular joint osteoarthritis (TMJOA) is a commonly encountered degenerative joint disease in oral and maxillofacial surgery. Recent studies have shown that the excessive unbalanced activation of Wnt/ß-catenin signaling is connected with the pathogenesis of TMJOA and due to the inability to inhibit the over-activated Wnt pathway, while Wnt16-deficient mice has a more severe Knee OA. However, the efficacy of direct intra-TMJ injection of Wnt16 for the relief of TMJOA is still not directly confirmed. Moreover, small-molecule drugs such as Wnt16 usually exhibit short-lived efficacy and poor treatment adherence. Therefore, in order to obtain a stable release of Wnt16 both in the short and long term, this study fabricates a double-layer slow-release Wnt16 carrier based on mesoporous silica nanospheres (MSNs) encased within hyaluronic acid (HA) hydrogels. The biofunctional hydrogel HA/Wnt16@MSN is analyzed both in vitro and in vivo to evaluate the treatment of TMJOA. As a result, it shows superior pro-cartilage matrix restoration and inhibition of osteoclastogenesis ability, and effectively inhibits the over-activation of the Wnt/ß-catenin pathway. Taken together, biofunctional hydrogel HA/Wnt16@MSN is a promising candidate for the treatment of TMJOA.


Asunto(s)
Modelos Animales de Enfermedad , Nanopartículas , Osteoartritis , Dióxido de Silicio , Proteínas Wnt , Animales , Ratones , Dióxido de Silicio/química , Osteoartritis/tratamiento farmacológico , Nanopartículas/química , Proteínas Wnt/metabolismo , Articulación Temporomandibular/efectos de los fármacos , Hidrogeles/química , Ácido Hialurónico/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda