Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Regul Toxicol Pharmacol ; 93: 71-83, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29080850

RESUMEN

In vitro studies have been widely used to support the toxicological evaluation of chemicals and complex mixtures including cigarette smoke. In this study, the total particulate matter and whole aerosol from a Kentucky reference 3R4F cigarette and two commercially available tobacco heating products (THPs) were assessed using in vitro mutagenicity, cytotoxicity and tumour-promoting activity assays. The Ames assay assessed mutagenicity using Salmonella typhimurium tester strains TA98, TA100, TA1535, TA1537 and TA102 ± metabolic activation (S9). The mouse lymphoma assay was used with short 3 h and longer 24 h exposures. The Bhas 42 cell transformation assay was incorporated as an in vitro alternative for detecting tumour promoters, and the neutral red uptake cell viability assay provided an acute measure of cytotoxicity. To complement the approach, the Ames assay was also employed with S. typhimurium tester strains TA98, TA100, TA1535, TA97 and TA102 using a scaled down methodology for the assessment of aerosols. All the in vitro techniques employed produced a clear positive response with cigarette smoke and in contrast, a negative response to THPs at doses equivalent to or higher than a cigarette smoke test matrix. The data show little difference between the THPs assessed suggesting parity between products.


Asunto(s)
Aerosoles/toxicidad , Sistemas Electrónicos de Liberación de Nicotina/métodos , Calefacción/métodos , Mutágenos/toxicidad , Aerosoles/análisis , Animales , Células 3T3 BALB , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Ratones , Ratones Endogámicos BALB C , Pruebas de Mutagenicidad/métodos , Mutágenos/análisis , Ratas , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , Pruebas de Toxicidad/métodos
2.
Toxicology ; 504: 153801, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614204

RESUMEN

Heated tobacco products (HTPs) are non-combustible, inhaled tobacco products that generate an aerosol with fewer and lower levels of toxicants, with a potential to reduce risk relative to cigarette smoking. Here, we assessed in vitro toxicological effects of three menthol (glo neo neoCLICK, neo Smooth Menthol and Fresh Menthol) and one non-menthol (neo Smooth Tobacco) variants of glo HTP, along with market comparators for cigarettes and HTPs. Limited chemical characterization of the study products revealed significantly lower levels of acetaldehyde, acrolein, crotanaldehyde and formaldehyde in test samples from HTPs than those from cigarettes. The glo HTPs were non-mutagenic in the bacterial reverse mutagenesis assay. Although, the whole aerosol exposures of glo HTPs were classified as genotoxic in the in vitro micronucleus assay, and cytotoxic in the NRU (monolayer) and MTT (3 dimensional EpiAirway™ tissues) assays, the cigarette comparators were the most toxic study products in each of these assessments. Further, glo HTPs elicited oxidative stress responses only at the highest dose tested, whereas the cigarette comparators were potent inducers of oxidative stress at substantially lower doses in the EpiAirway tissues. The comparator (non-glo) HTP results were similar to the glo HTPs in these assays. Thus, the glo HTPs exhibit substantially lower toxicity compared to cigarettes.


Asunto(s)
Mentol , Productos de Tabaco , Mentol/toxicidad , Productos de Tabaco/toxicidad , Humanos , Calor , Estrés Oxidativo/efectos de los fármacos , Nicotiana/toxicidad , Nicotiana/química , Aerosoles , Supervivencia Celular/efectos de los fármacos , Pruebas de Micronúcleos , Animales
3.
Toxics ; 12(2)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38393224

RESUMEN

Assessment of in vitro cytotoxicity is an important component of tobacco product toxicological evaluations. However, current methods of regulatory testing involve exposing monolayer cell cultures to various preparations of aerosols from cigarettes or other emerging products such as electronic nicotine delivery systems (ENDS), which are not representative of human exposure. In the present study, a whole aerosol (WA) system was used to expose lung epithelial cultures (2D and 3D) to determine the potential of six Vuse Alto ENDS products that varied in nicotine content (1.8%, 2.4%, and 5%) and flavors (Golden Tobacco, Rich Tobacco, Menthol, and Mixed Berry), along with a marketed ENDS and a marked cigarette comparator to induce cytotoxicity and oxidative stress. The WA from the Vuse Alto ENDS products was not cytotoxic in the NRU and MTT assays, nor did it activate the Nrf2 reporter gene, a marker of oxidative stress. In summary, Vuse Alto ENDS products did not induce cytotoxic or oxidative stress responses in the in vitro models. The WA exposures used in the 3D in vitro models described herein may be better suited than 2D models for the determination of cytotoxicity and other in vitro functional endpoints and represent alternative models for regulatory evaluation of tobacco products.

4.
Drug Test Anal ; 15(10): 1133-1144, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36945752

RESUMEN

Electronic-cigarette regulation and risk assessment is a prominent and developing field, as the popularity and prevalence of this product category increases. Over the last 10 years since their emergence, there have been many advances and adaptations to current in vitro testing techniques to better assess and predict absolute consumer risk. However, there are still requirements to create a cross-field harmonised approach to appropriate exposure and experimental design. With many assessments still being carried out using methods developed and optimised for cigarette smoke, there must first be an acknowledgement regarding the differences between cigarette smoke and tobacco-free e-cigarette aerosols before we can accurately assess these distinct products. Here, we discuss five published studies from within our own research to demonstrate how in vitro testing techniques have evolved to improve determination of risk by considering appropriate dosimetry and exposure for both e-cigarette and cigarette aerosols and how we can contextualise the data through human consumption and dose extrapolation, ultimately giving more relevance to in vitro data. Furthermore, we have demonstrated the evolution of techniques, which has allowed us to bridge between platforms, simplify exposure set-up, experimental design and demonstrate technology evolution within our products, thus fulfilling a responsible duty of care to consumers via an appropriate and robust in vitro product assessment.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Humanos , Aerosoles , Técnicas In Vitro
5.
Toxicol Rep ; 9: 1985-1992, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518380

RESUMEN

The rapid development associated with Next Generation Tobacco Products (NGTP) has necessitated the development of high throughput methodologies to test their genotoxic potential in vitro when compared to conventional cigarette smoke (CS). An assessment of two Vitrocell® Mammalian 6/48 exposure modules in three independent experiments was made by comparing results from multiple dosimetric techniques applied to aerosol generated from 3R4F Kentucky Reference cigarettes, commercially available electronically heated tobacco product (eHTP) and Electronic Nicotine Delivery System (ENDS) using the Vitrocell® VC10®. Real-time aerosol particle concentration was assessed by means of light scattering photometers and expressed as area under the curve (∑AUC). Nicotine concentrations were determined analytically by LC/MS. Humectant amount and distribution was assessed for eHTP and ENDS by the quantification of free glycerol in a phosphate buffered saline (PBS) trap, whereas total particulate matter (TPM) was assessed in the 3R4F cigarettes by the fluorescence of the particulate at 485 nm in anhydrous dimethyl sulfoxide (DMSO) trap within the exposure. Dose was adjusted by means of the addition of ambient air to dilute the whole smoke/aerosol in L/min and sampled into the system at a rate of 5 mL/min. Dilution of CS ranged from 8.0 to 0.5 L/min and for the eHTP and ENDS ranged from 4 to 0 L/min (undiluted). Dosimetric analysis of the system showed good concordance within replicates (p-values ranged from p = 0.3762 to p = 0.8926) and showed that the Vitrocell® Mammalian 6/48 is a viable means for genotoxic assessment of aerosol generated from both conventional cigarettes and NGTP. Results demonstrate the need to tailor dosimetry approaches to different aerosols due to variations in the physio-chemical composition, with a multi-dosimetry approach recommended.

6.
Artículo en Inglés | MEDLINE | ID: mdl-35914858

RESUMEN

No cigarette smoke test matrix is without limitation, due to the complexity of the starting aerosol and phase to phase dynamics. It is impossible to capture all chemicals at the same level of efficiency, therefore, any test matrix will inadvertently or by design fractionate the test aerosol. This case study examines how four different test matrices derived from cigarette smoke can be directly compared. The test matrices assessed were as follows, total particulate matter (TPM), gas vapour phase (GVP), a combination of TPM + GVP and whole aerosol (WA). Here we use an example assay, the mouse lymphoma assay (MLA) to demonstrate that data generated across four cigarette smoke test matrices can be compared. The results show that all test matrices were able to induce positive mutational events, but with clear differences in the biological activity (both potency and toxicity) between them. TPM was deemed the most potent test article and by extension, the particulate phase is interpreted as the main driver of genotoxic induced responses in the MLA. However, the results highlight that the vapour phase is also active. MLA appeared responsive to WA, with potentially lower potency, compared to TPM approaches. However, this observation is caveated in that the WA approaches used for comparison were made on a newly developed experimental method using dose calculations. The TPM + GVP matrix had comparable activity to TPM alone, but interestingly induced a greater number of mutational events at comparable relative total growth (RTG) and TPM-equivalent doses when compared to other test matrices. In conclusion, this case study highlights the importance of understanding test matrices in response to the biological assay being assessed and we note that not all test matrices are equal.


Asunto(s)
Linfoma , Productos de Tabaco , Aerosoles , Animales , Bioensayo , Linfoma/inducido químicamente , Ratones , Material Particulado/toxicidad , Nicotiana/toxicidad , Productos de Tabaco/toxicidad
7.
Toxicol Rep ; 7: 1145-1156, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983902

RESUMEN

We have developed a novel vaping product (NVP) IS1.0(TT), which utilises a stainless-steel mesh to transfer and vaporise the e-liquid, mitigating some of the potential sources of toxicants that can be generated using the more traditional 'wick and coil' approach. The emissions from IS1.0(TT) have previously been found to have lower levels of toxicants overall when directly compared with a commercial wick and coil e-cig. This current study assessed the toxicological responses to aerosols from this NVP. Responses induced by IS1.0(TT)were compared to those from a 3R4F reference cigarette, using in vitro test methods which included regulatory genetic toxicological assays as well as some more contemporary screening approaches. The experimental conditions were designed to facilitate the testing of aerosol from this vaping product at doses that in most cases greatly exceeded those of the 3R4F comparator showed little to no toxicological responses and demonstrated significantly reduced effects in these in vitro assays when compared to 3R4F. Furthermore, the extreme doses tested in the present study indicate that the toxicant profile of this NVP translates to lower biological activity in vitro, and suggests that the absolute risk hazard level associated with electronic cigarettes can be reduced through continuous improvement as the technology evolves.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda