Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 8.117
Filtrar
Más filtros

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(1): e2305890120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38147554

RESUMEN

Slow multiphase flow in porous media is intriguing because its underlying dynamics is almost deterministic, yet depends on a hierarchy of spatiotemporal processes. There has been great progress in the experimental study of such multiphase flows, but three-dimensional (3D) microscopy methods probing the pore-scale fluid dynamics with millisecond resolution have been lacking. Yet, it is precisely at these length and time scales that the crucial pore-filling events known as Haines jumps take place. Here, we report four-dimensional (4D) (3D + time) observations of multiphase flow in a consolidated porous medium as captured in situ by stroboscopic X-ray micro-tomography. With a total duration of 6.5 s and 2 kHz frame rate, our experiments provide unprecedented access to the multiscale liquid dynamics. Our tomography strategy relies on the fact that Haines jumps, although irregularly spaced in time, are almost deterministic, and therefore repeatable during imbibition-drainage cycling. We studied the time-dependent flow pattern in a porous medium consisting of sintered glass shards. Exploiting the repeatability, we could combine the radiographic projections recorded under different angles during successive cycles into a 3D movie, allowing us to reconstruct pore-scale events, such as Haines jumps, with a spatiotemporal resolution that is two orders of magnitude higher than was hitherto possible. This high resolution allows us to explore the detailed interfacial dynamics during drainage, including fluid-front displacements and velocities. Our experimental approach opens the way to the study of fast, yet deterministic mesoscopic processes also other than flow in porous media.

2.
Proc Natl Acad Sci U S A ; 120(26): e2219999120, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339218

RESUMEN

This research focuses on performing ultrasound propagation measurements and micro-X-ray computed tomography (µXRCT) imaging on prestressed granular packings prepared with biphasic mixtures of monodisperse glass and rubber particles at different compositions/fractions. Ultrasound experiments employing piezoelectric transducers, mounted in an oedometric cell (complementing earlier triaxial cell experiments), are used to excite and detect longitudinal ultrasound waves through randomly prepared mixtures of monodisperse stiff/soft particles. While the fraction of the soft particles is increasing linearly from zero, the effective macroscopic stiffness of the granular packings transits nonlinearly and nonmonotonically toward the soft limit, remarkably via an interesting stiffer regime for small rubber fractions between 0.1 ≲ ν ≲ 0.2. The contact network of dense packings, as accessed from µXRCT, plays a key role in understanding this phenomenon, considering the structure of the network, the chain length, the grain contacts, and the particle coordination. While the maximum stiffness is due to surprisingly shortened chains, the sudden drop in elastic stiffness of the mixture packings, at ν ≈ 0.4, is associated with chains of particles that include both glass and rubber particles (soft chains); for ν ≲ 0.3, the dominant chains include only glass particles (hard chains). At the drop, ν ≈ 0.4, the coordination number of glass and rubber networks is approximately four and three, respectively, i.e., neither of the networks are jammed, and the chains need to include particles from another species to propagate information.

3.
J Synchrotron Radiat ; 31(Pt 4): 867-876, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38771779

RESUMEN

X-ray ptychography and ptychographic computed tomography have seen a rapid rise since the advent of fourth-generation synchrotrons with a high degree of coherent radiation. In addition to quantitative multiscale structural analysis, ptychography with spectral capabilities has been developed, allowing for spatial-localized multiscale structural and spectral information of samples. The SWING beamline of Synchrotron SOLEIL has recently developed a nanoprobe setup where the endstation's first spectral and resonant ptychographic measurements have been successfully conducted. A metallic nickel wire sample was measured using 2D spectral ptychography in XANES mode and resonant ptychographic tomography. From the 2D spectral ptychography measurements, the spectra of the components of the sample's complex-valued refractive index, δ and ß, were extracted, integrated along the sample thickness. By performing resonance ptychographic tomography at two photon energies, 3D maps of the refractive index decrement, δ, were obtained at the Ni K-edge energy and another energy above the edge. These maps allowed the detection of impurities in the Ni wire. The significance of accounting for the atomic scattering factor is demonstrated in the calculation of electron density near a resonance through the use of the δ values. These results indicate that at the SWING beamline it is possible to conduct state-of-the-art spectral and resonant ptychography experiments using the nanoprobe setup.

4.
J Anat ; 244(1): 159-169, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37602519

RESUMEN

The symmetry of the right and left bronchi, proposed in a previous comparative anatomical study as the basic model of the mammalian bronchial tree, was examined to determine if it applied to the embryonic human bronchial tree. Imaging data of 41 human embryo specimens at Carnegie stages (CS) 16-23 (equivalent to 6-8 weeks after fertilization) belonging to the Kyoto collection were obtained using phase-contrast X-ray computed tomography. Three-dimensional bronchial trees were then reconstructed from these images. Bronchi branching from both main bronchi were labeled as dorsal, ventral, medial, or lateral systems based on the branching position with numbering starting cranially. The length from the tracheal bifurcation to the branching point of the labeled bronchus was measured, and the right-to-left ratio of the same labeled bronchus in both lungs was calculated. In both lungs, the human embryonic bronchial tree showed symmetry with an alternating pattern of dorsal and lateral systems up to segmental bronchus B9 as the basic shape, with a more peripheral variation. This pattern is similar to that described in adult human lungs. Bronchial length increased with the CS in all labeled bronchi, whereas the right-to-left ratio was constant at approximately 1.0. The data demonstrated that the prototype of the human adult bronchial branching structure is formed and maintained in the embryonic stage. The morphology and branching position of all lobar bronchi and B6, B8, B9, and the subsegmental bronchus of B10 may be genetically determined. On the other hand, no common structures between individual embryos were found in the peripheral branches after the subsegmental bronchus of B10, suggesting that branch formation in this region is influenced more by environmental factors than by genetic factors.


Asunto(s)
Bronquios , Pulmón , Adulto , Animales , Humanos , Bronquios/anatomía & histología , Bronquios/diagnóstico por imagen , Bronquios/embriología , Pulmón/anatomía & histología , Pulmón/diagnóstico por imagen , Pulmón/embriología , Tomografía Computarizada por Rayos X/métodos , Tráquea/anatomía & histología , Tráquea/diagnóstico por imagen , Tráquea/embriología
5.
J Anat ; 244(1): 142-158, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37559438

RESUMEN

The left atrium wall has several origins, including the body, appendage, septum, atrial-ventricular canal, posterior wall, and venous component. Here, we describe the morphogenesis of left atrium based on high-resolution imaging (phase-contrast X-ray computed tomography and magnetic resonance imaging). Twenty-three human embryos and 19 fetuses were selected for this study. Three-dimensional cardiac images were reconstructed, and the pulmonary veins and left atrium, including the left atrial appendage, were evaluated morphologically and quantitatively. The positions of the pericardial reflections were used as landmarks for the border of the pericardial cavity. The common pulmonary vein was observed in three specimens at Carnegie stages 17-18. The pericardium was detected at the four pulmonary veins (left superior, left inferior, right superior, and right inferior pulmonary veins) at one specimen at Carnegie stage 18 and all larger specimens, except the four samples. Our results suggest that the position of the pericardial reflections was determined at two pulmonary veins (right and left pulmonary vein) and four pulmonary veins almost simultaneously when the dorsal mesocardial connection between the embryo and heart regressed. The magnetic resonance images and reconstructed heart cavity images confirmed that the left atrium folds were present at the junction between the body and venous component. Three-dimensional reconstruction showed that the four pulmonary veins entered the dorsal left atrium tangentially from the lateral to the medial direction. More specifically, the right pulmonary veins entered at a greater angle than the left pulmonary veins. The distance between the superior and inferior pulmonary veins was shorter than that between the left and right pulmonary veins. Three-dimensional reconstruction showed that the venous component increased proportionally with growth. No noticeable differences in discrimination between the right and left parts of the venous component emerged, while the junction between the venous component and body gradually became inconspicuous but was still recognizable by the end of the observed early fetal period. The left superior pulmonary vein had the smallest cross-sectional area and most flattened shape, whereas the other three were similar in area and shape. The left atrial appendage had a large volume in the center and extended to the periphery as a lobe-like structure. The left atrial appendage orifice increased in the area and tended to become flatter with growth. The whole left atrium volume^(1/3) increased almost proportionally with growth, parallel to the whole heart volume. This study provided a three-dimensional and quantitative description of the developmental process of the left atrium, comprising the venous component and left atrial appendage formation, from the late embryonic to the early fetal stages.


Asunto(s)
Apéndice Atrial , Venas Pulmonares , Humanos , Venas Pulmonares/diagnóstico por imagen , Venas Pulmonares/anatomía & histología , Apéndice Atrial/diagnóstico por imagen , Atrios Cardíacos/diagnóstico por imagen , Feto , Morfogénesis
6.
Osteoporos Int ; 35(1): 143-152, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37674097

RESUMEN

The Convolutional Neural Network algorithm achieved a sensitivity of 94% and specificity of 93% in identifying scans with vertebral fractures (VFs). The external validation results suggest that the algorithm provides an opportunity to aid radiologists with the early identification of VFs in routine CT scans of abdomen and chest. PURPOSE: To evaluate the performance of a previously trained Convolutional Neural Network (CNN) model to automatically detect vertebral fractures (VFs) in CT scans in an external validation cohort. METHODS: Two Chinese studies and clinical data were used to retrospectively select CT scans of the chest, abdomen and thoracolumbar spine in men and women aged ≥50 years. The CT scans were assessed using the semiquantitative (SQ) Genant classification for prevalent VFs in a process blinded to clinical information. The performance of the CNN model was evaluated against reference standard readings by the area under the receiver operating characteristics curve (AUROC), accuracy, Cohen's kappa, sensitivity, and specificity. RESULTS: A total of 4,810 subjects were included, with a median age of 62 years (IQR 56-67), of which 2,654 (55.2%) were females. The scans were acquired between January 2013 and January 2019 on 16 different CT scanners from three different manufacturers. 2,773 (57.7%) were abdominal CTs. A total of 628 scans (13.1%) had ≥1 VF (grade 2-3), representing 899 fractured vertebrae out of a total of 48,584 (1.9%) visualized vertebral bodies. The CNN's performance in identifying scans with ≥1 moderate or severe fractures achieved an AUROC of 0.94 (95% CI: 0.93-0.95), accuracy of 93% (95% CI: 93%-94%), kappa of 0.75 (95% CI: 0.72-0.77), a sensitivity of 94% (95% CI: 92-96%) and a specificity of 93% (95% CI: 93-94%). CONCLUSION: The algorithm demonstrated excellent performance in the identification of vertebral fractures in a cohort of chest and abdominal CT scans of Chinese patients ≥50 years.


Asunto(s)
Fracturas de la Columna Vertebral , Masculino , Humanos , Femenino , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Fracturas de la Columna Vertebral/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Redes Neurales de la Computación
7.
Respir Res ; 25(1): 135, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509592

RESUMEN

INTRODUCTION: Computed tomography (CT) is routinely employed on the evaluation of dyspnea, yet limited data exist on its assessment of diaphragmatic muscle. This study aimed to determine the capability of CT in identifying structural changes in the diaphragm among patients with ultrasound-confirmed diaphragmatic dysfunction. METHODS: Diaphragmatic ultrasounds conducted between 2018 and 2021 at our center in Marseille, France, were retrospectively collected. Diaphragmatic pillars were measured on CT scans at the L1 level and the celiac artery. Additionally, the difference in height between the two diaphragmatic domes in both diaphragmatic dysfunction cases and controls was measured and compared. RESULTS: A total of 65 patients were included, comprising 24 with diaphragmatic paralysis, 13 with diaphragmatic weakness, and 28 controls. In the case group (paralysis and weakness) with left dysfunctions (n = 24), the CT thickness of the pillars at the level of L1 and the celiac artery was significantly thinner compared with controls (2.0 mm vs. 7.4 mm and 1.8 mm vs. 3.1 mm, p < 0.001 respectively). Significantly different values were observed for paralysis (but not weakness) in the right dysfunction subgroup (n = 15) (2.6 mm vs. 7.4 mm and 2.2 mm vs. 3.8 mm, p < 0.001 respectively, for paralysis vs. controls). Regardless of the side of dysfunction, a significant difference in diaphragmatic height was observed between cases and controls (7.70 cm vs. 1.16 cm and 5.51 cm vs. 1.16 cm, p < 0.001 for right and left dysfunctions, respectively). Threshold values determined through ROC curve analyses for height differences between the two diaphragmatic domes, indicative of paralysis or weakness in the right dysfunctions, were 4.44 cm and 3.51 cm, respectively. Similarly for left dysfunctions, the thresholds were 2.70 cm and 2.48 cm, respectively, demonstrating good performance (aera under the curve of 1.00, 1.00, 0.98, and 0.79, respectively). CONCLUSION: In cases of left diaphragmatic dysfunction, as well as in paralysis associated with right diaphragmatic dysfunction, CT revealed thinner pillars. Additionally, a notable increase in the difference in diaphragmatic height demonstrated a strong potential to identify diaphragmatic dysfunction, with specific threshold values.


Asunto(s)
Diafragma , Debilidad Muscular , Humanos , Diafragma/diagnóstico por imagen , Estudios Retrospectivos , Ultrasonografía/métodos , Parálisis , Tomografía Computarizada por Rayos X , Tomografía
8.
Eur Radiol ; 34(2): 790-796, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37178198

RESUMEN

OBJECTIVE: Body composition assessment derived from cross-sectional imaging has shown promising results as a prognostic biomarker in several tumor entities. Our aim was to analyze the role of low skeletal muscle mass (LSMM) and fat areas for prognosis of dose-limiting toxicity (DLT) and treatment response in patients with primary central nervous system lymphoma (PCNSL). METHODS: Overall, 61 patients (29 female patients, 47.5%) with a mean age of 63.8 ± 12.2 years, range 23-81 years, were identified in the data base between 2012 and 2020 with sufficient clinical and imaging data. Body composition assessment, comprising LSMM and visceral and subcutaneous fat areas, was performed on one axial slice on L3-height derived from staging computed tomography (CT) images. DLT was assessed during chemotherapy in clinical routine. Objective response rate (ORR) was measured on following magnetic resonance images of the head accordingly to the Cheson criteria. RESULTS: Twenty-eight patients had DLT (45.9%). Regression analysis revealed that LSMM was associated with objective response, OR = 5.19 (95% CI 1.35-19.94, p = 0.02) (univariable regression), and OR = 4.23 (95% CI 1.03- 17.38, p = 0.046) (multivariable regression). None of the body composition parameters could predict DLT. Patients with normal visceral to subcutaneous ratio (VSR) could be treated with more chemotherapy cycles compared to patients with high VSR (mean, 4.25 vs 2.94, p = 0.03). Patients with ORR had higher muscle density values compared to patients with stable and/or progressive disease (34.46 ± vs 28.18 ± HU, p = 0.02). CONCLUSIONS: LSMM is strongly associated with objective response in patients with PCNSL. Body composition parameters cannot predict DLT. CLINICAL RELEVANCE STATEMENT: Low skeletal muscle mass on computed tomography (CT) is an independent prognostic factor of poor treatment response in central nervous system lymphoma. Analysis of the skeletal musculature on staging CT should be implemented into the clinical routine in this tumor entity. KEY POINTS: • Low skeletal muscle mass is strongly associated with the objective response rate. • No body composition parameters could predict dose-limiting toxicity.


Asunto(s)
Linfoma , Neoplasias , Sarcopenia , Humanos , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Sarcopenia/patología , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Pronóstico , Composición Corporal , Tomografía Computarizada por Rayos X , Neoplasias/patología , Sistema Nervioso Central/patología , Linfoma/diagnóstico por imagen , Linfoma/tratamiento farmacológico , Estudios Retrospectivos
9.
Eur Radiol ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985185

RESUMEN

OBJECTIVES: The accurate detection and precise segmentation of lung nodules on computed tomography are key prerequisites for early diagnosis and appropriate treatment of lung cancer. This study was designed to compare detection and segmentation methods for pulmonary nodules using deep-learning techniques to fill methodological gaps and biases in the existing literature. METHODS: This study utilized a systematic review with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, searching PubMed, Embase, Web of Science Core Collection, and the Cochrane Library databases up to May 10, 2023. The Quality Assessment of Diagnostic Accuracy Studies 2 criteria was used to assess the risk of bias and was adjusted with the Checklist for Artificial Intelligence in Medical Imaging. The study analyzed and extracted model performance, data sources, and task-focus information. RESULTS: After screening, we included nine studies meeting our inclusion criteria. These studies were published between 2019 and 2023 and predominantly used public datasets, with the Lung Image Database Consortium Image Collection and Image Database Resource Initiative and Lung Nodule Analysis 2016 being the most common. The studies focused on detection, segmentation, and other tasks, primarily utilizing Convolutional Neural Networks for model development. Performance evaluation covered multiple metrics, including sensitivity and the Dice coefficient. CONCLUSIONS: This study highlights the potential power of deep learning in lung nodule detection and segmentation. It underscores the importance of standardized data processing, code and data sharing, the value of external test datasets, and the need to balance model complexity and efficiency in future research. CLINICAL RELEVANCE STATEMENT: Deep learning demonstrates significant promise in autonomously detecting and segmenting pulmonary nodules. Future research should address methodological shortcomings and variability to enhance its clinical utility. KEY POINTS: Deep learning shows potential in the detection and segmentation of pulmonary nodules. There are methodological gaps and biases present in the existing literature. Factors such as external validation and transparency affect the clinical application.

10.
Eur Radiol ; 34(1): 355-366, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37528301

RESUMEN

OBJECTIVES: To determine whether the texture feature analysis of multi-phase abdominal CT can provide a robust prediction of benign and malignant, histological subtype, pathological stage, nephrectomy risk, pathological grade, and Ki67 index in renal tumor. METHODS: A total of 1051 participants with renal tumor were split into the internal cohort (850 patients from four different hospitals) and the external testing cohort (201 patients from another local hospital). The proposed framework comprised a 3D-kidney and tumor segmentation model by 3D-UNet, a feature extractor for the regions of interest based on radiomics and image dimension reduction, and the six classifiers by XGBoost. A quantitative model interpretation method called SHAP was used to explore the contribution of each feature. RESULTS: The proposed multi-phase abdominal CT model provides robust prediction for benign and malignant, histological subtype, pathological stage, nephrectomy risk, pathological grade, and Ki67 index in the internal validation set, with the AUROC values of 0.88 ± 0.1, 0.90 ± 0.1, 0.91 ± 0.1, 0.89 ± 0.1, 0.84 ± 0.1, and 0.88 ± 0.1, respectively. The external testing set also showed impressive results, with AUROC values of 0.83 ± 0.1, 0.83 ± 0.1, 0.85 ± 0.1, 0.81 ± 0.1, 0.79 ± 0.1, and 0.81 ± 0.1, respectively. The radiomics feature including the first-order statistics, the tumor size-related morphology, and the shape-related tumor features contributed most to the model predictions. CONCLUSIONS: Automatic texture feature analysis of abdominal multi-phase CT provides reliable predictions for multi-tasks, suggesting the potential usage of clinical application. CLINICAL RELEVANCE STATEMENT: The automatic texture feature analysis framework, based on multi-phase abdominal CT, provides robust and reliable predictions for multi-tasks. These valuable insights can serve as a guiding tool for clinical diagnosis and treatment, making medical imaging an essential component in the process. KEY POINTS: • The automatic texture feature analysis framework based on multi-phase abdominal CT can provide more accurate prediction of benign and malignant, histological subtype, pathological stage, nephrectomy risk, pathological grade, and Ki67 index in renal tumor. • The quantitative decomposition of the prediction model was conducted to explore the contribution of the extracted feature. • The study involving 1051 patients from 5 medical centers, along with a heterogeneous external data testing strategy, can be seamlessly transferred to various tasks involving new datasets.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Antígeno Ki-67 , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/cirugía , Neoplasias Renales/patología
11.
Eur Radiol ; 34(2): 1302-1313, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37594526

RESUMEN

OBJECTIVES: To develop a contrast-enhanced CT (CECT) radiomics-based model to identify locoregionally advanced nasopharyngeal carcinoma (LA-NPC) patients who would benefit from deintensified chemoradiotherapy. METHODS: LA-NPC patients who received low-dose concurrent cisplatin therapy (cumulative: 150 mg/m2), were randomly divided into training and validation groups. 107 radiomics features based on the primary nasopharyngeal tumor were extracted from each pre-treatment CECT scan. Through Cox regression analysis, a radiomics model and patients' corresponding radiomics scores were created with predictive independent radiomics features. T stage (T) and radiomics score (R) were compared as predictive factors. Combining the N stage (N), a clinical model (T + N), and a substitution model (R + N) were constructed. RESULTS: Training and validation groups consisted of 66 and 33 patients, respectively. Three significant independent radiomics features (flatness, mean, and gray level non-uniformity in gray level dependence matrix (GLDM-GLN)) were found. The radiomics score showed better predictive ability than the T stage (concordance index (C-index): 0.67 vs. 0.61, AUC: 0.75 vs. 0.60). The R + N model had better predictive performance and more effective risk stratification than the T + N model (C-index: 0.77 vs. 0.68, AUC: 0.80 vs. 0.70). The R + N model identified a low-risk group as deintensified chemoradiotherapy candidates in which no patient developed progression within 3 years, with 5-year progression-free survival (PFS) and overall survival (OS) both 90.7% (hazard ratio (HR) = 4.132, p = 0.018). CONCLUSION: Our radiomics-based model combining radiomics score and N stage can identify specific LA-NPC candidates for whom de-escalation therapy can be performed without compromising therapeutic efficacy. CLINICAL RELEVANCE STATEMENT: Our study shows that the radiomics-based model (R + N) can accurately stratify patients into different risk groups, with satisfactory prognosis in the low-risk group when treated with low-dose concurrent chemotherapy, providing new options for individualized de-escalation strategies. KEY POINTS: • A radiomics score, consisting of 3 predictive radiomics features (flatness, mean, and GLDM-GLN) integrated with the N stage, can identify specific LA-NPC populations for deintensified treatment. • In the selection of LA-NPC candidates for de-intensified treatment, radiomics score extracted from primary nasopharyngeal tumors based on CECT can be superior to traditional T stage classification as a predictor.


Asunto(s)
Neoplasias Nasofaríngeas , Humanos , Quimioradioterapia , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/tratamiento farmacológico , Radiómica , Tomografía Computarizada por Rayos X
12.
Eur Radiol ; 34(4): 2394-2404, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37735276

RESUMEN

OBJECTIVE: To characterize the use and impact of radiation dose reduction techniques in actual practice for routine abdomen CT. METHODS: We retrospectively analyzed consecutive routine abdomen CT scans in adults from a large dose registry, contributed by 95 hospitals and imaging facilities. Grouping exams into deciles by, first, patient size, and second, size-adjusted dose length product (DLP), we summarized dose and technical parameters and estimated which parameters contributed most to between-protocols dose variation. Lastly, we modeled the total population dose if all protocols with mean size-adjusted DLP above 433 or 645 mGy-cm were reduced to these thresholds. RESULTS: A total of 748,846 CTs were performed using 1033 unique protocols. When sorted by patient size, patients with larger abdominal diameters had increased dose and effective mAs (milliampere seconds), even after adjusting for patient size. When sorted by size-adjusted dose, patients in the highest versus the lowest decile in size-adjusted DLP received 6.4 times the average dose (1680 vs 265 mGy-cm) even though diameter was no different (312 vs 309 mm). Effective mAs was 2.1-fold higher, unadjusted CTDIvol 2.9-fold, and phase 2.5-fold for patients in the highest versus lowest size-adjusted DLP decile. There was virtually no change in kV (kilovolt). Automatic exposure control was widely used to modulate mAs, whereas kV modulation was rare. Phase was the strongest driver of between-protocols variation. Broad adoption of optimized protocols could result in total population dose reductions of 18.6-40%. CONCLUSION: There are large variations in radiation doses for routine abdomen CT unrelated to patient size. Modification of kV and single-phase scanning could result in substantial dose reduction. CLINICAL RELEVANCE: Radiation dose-optimization techniques for routine abdomen CT are routinely under-utilized leading to higher doses than needed. Greater modification of technical parameters and number of phases could result in substantial reduction in radiation exposure to patients. KEY POINTS: • Based on an analysis of 748,846 routine abdomen CT scans in adults, radiation doses varied tremendously across patients of the same size and optimization techniques were routinely under-utilized. • The difference in observed dose was due to variation in technical parameters and phase count. Automatic exposure control was commonly used to modify effective mAs, whereas kV was rarely adjusted for patient size. Routine abdomen CT should be performed using a single phase, yet multi-phase was common. • kV modulation by patient size and restriction to a single phase for routine abdomen indications could result in substantial reduction in radiation doses using well-established dose optimization approaches.


Asunto(s)
Exposición a la Radiación , Tomografía Computarizada por Rayos X , Adulto , Humanos , Dosis de Radiación , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Abdomen
13.
Eur Radiol ; 34(4): 2727-2737, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37775589

RESUMEN

OBJECTIVES: There is a need for CT pulmonary angiography (CTPA) lung segmentation models. Clinical translation requires radiological evaluation of model outputs, understanding of limitations, and identification of failure points. This multicentre study aims to develop an accurate CTPA lung segmentation model, with evaluation of outputs in two diverse patient cohorts with pulmonary hypertension (PH) and interstitial lung disease (ILD). METHODS: This retrospective study develops an nnU-Net-based segmentation model using data from two specialist centres (UK and USA). Model was trained (n = 37), tested (n = 12), and clinically evaluated (n = 176) on a diverse 'real-world' cohort of 225 PH patients with volumetric CTPAs. Dice score coefficient (DSC) and normalised surface distance (NSD) were used for testing. Clinical evaluation of outputs was performed by two radiologists who assessed clinical significance of errors. External validation was performed on heterogenous contrast and non-contrast scans from 28 ILD patients. RESULTS: A total of 225 PH and 28 ILD patients with diverse demographic and clinical characteristics were evaluated. Mean accuracy, DSC, and NSD scores were 0.998 (95% CI 0.9976, 0.9989), 0.990 (0.9840, 0.9962), and 0.983 (0.9686, 0.9972) respectively. There were no segmentation failures. On radiological review, 82% and 71% of internal and external cases respectively had no errors. Eighteen percent and 25% respectively had clinically insignificant errors. Peripheral atelectasis and consolidation were common causes for suboptimal segmentation. One external case (0.5%) with patulous oesophagus had a clinically significant error. CONCLUSION: State-of-the-art CTPA lung segmentation model provides accurate outputs with minimal clinical errors on evaluation across two diverse cohorts with PH and ILD. CLINICAL RELEVANCE: Clinical translation of artificial intelligence models requires radiological review and understanding of model limitations. This study develops an externally validated state-of-the-art model with robust radiological review. Intended clinical use is in techniques such as lung volume or parenchymal disease quantification. KEY POINTS: • Accurate, externally validated CT pulmonary angiography (CTPA) lung segmentation model tested in two large heterogeneous clinical cohorts (pulmonary hypertension and interstitial lung disease). • No segmentation failures and robust review of model outputs by radiologists found 1 (0.5%) clinically significant segmentation error. • Intended clinical use of this model is a necessary step in techniques such as lung volume, parenchymal disease quantification, or pulmonary vessel analysis.


Asunto(s)
Aprendizaje Profundo , Hipertensión Pulmonar , Enfermedades Pulmonares Intersticiales , Humanos , Hipertensión Pulmonar/diagnóstico por imagen , Inteligencia Artificial , Estudios Retrospectivos , Tomografía Computarizada por Rayos X , Enfermedades Pulmonares Intersticiales/diagnóstico por imagen , Pulmón
14.
Eur Radiol ; 34(1): 50-59, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37566275

RESUMEN

OBJECTIVE: To assess the feasibility of spectral CT-derived extracellular volume (ECV) for differentiating aldosterone-producing nodules (APN) from nonfunctioning adrenal nodules (NFN). METHODS: Sixty-nine patients with biochemically and histologically confirmed unilateral APN (34) and NFN (35) as well as 23 patients with bilateral APN (19) and NFN (27) confirmed biochemically and by adrenal vein sampling (AVS) were enrolled in this retrospective study from October 2020 to April 2022. All patients underwent contrast-enhanced spectral CT of the adrenal glands with a 10-min delayed phase. The haematocrit level was measured within 2 days of CT. An iodine density map was derived from the delayed CT. The ECV fractions of the APN and NFN were calculated and compared in the test cohort of 69 patients with unilateral adrenal nodules. The optimal cut-off value was determined to evaluate the diagnostic efficacy of the ECV fraction for differentiating APN from NFN in the validation cohort of 23 patients with bilateral adrenal nodules. RESULTS: The ECV fractions of the APN (11.17 ± 4.57%) were significantly lower (p < 0.001) than that of the NFN (24.79 ± 6.01%) in the test cohort. At cut-off ECV value of 17.16%, the optimal area under the receiver operating characteristic curve was 0.974 (95% confidence interval: 0.942-1) with 91.4% sensitivity, 93.9% specificity, and 92.8% accuracy in the test cohort and 89.5% sensitivity, 96.3% specificity, and 93.5% accuracy in the validation cohort for differentiating APN from NFN. CONCLUSION: The spectral CT-derived ECV fraction can differentiate APN from NFN with high diagnostic performance. CLINICAL RELEVANCE STATEMENT: Spectral CT-derived extracellular volume fraction could accurately differentiate between adrenal aldosterone-producing nodules and nonfunctioning nodules. It might serve as a noninvasive alternative to adrenal vein sampling in primary aldosteronism patients with bilateral adrenal nodules. KEY POINTS: • Conventional CT cannot differentiate aldosterone-producing adrenal nodules from nonfunctioning nodules. • Extracellular volume of adrenal aldosterone-producing nodules was significantly lower than that of nonfunctioning nodules and normal adrenal glands. It can accurately differentiate between aldosterone-producing and nonfunctioning adrenal nodules. • Extracellular volume may be a novel, noninvasive biomarker alternative to adrenal vein sampling for determining the functional status of bilateral adrenal nodules in patients with primary aldosteronism.


Asunto(s)
Aldosterona , Hiperaldosteronismo , Humanos , Hiperaldosteronismo/diagnóstico , Estudios Retrospectivos , Estudios de Factibilidad , Tomografía Computarizada por Rayos X , Glándulas Suprarrenales/diagnóstico por imagen , Glándulas Suprarrenales/irrigación sanguínea
15.
Eur Radiol ; 34(1): 279-286, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37572195

RESUMEN

OBJECTIVES: To evaluate the prognostic value of CT-based markers of sarcopenia and myosteatosis in comparison to the Eastern Cooperative Oncology Group (ECOG) score for survival of patients with advanced pancreatic cancer treated with high-intensity focused ultrasound (HIFU). MATERIALS AND METHODS: For 142 retrospective patients, the skeletal muscle index (SMI), skeletal muscle radiodensity (SMRD), fatty muscle fraction (FMF), and intermuscular fat fraction (IMFF) were determined on superior mesenteric artery level in pre-interventional CT. Each marker was tested for associations with sex, age, body mass index (BMI), and ECOG. The prognostic value of the markers was examined in Kaplan-Meier analyses with the log-rank test and in uni- and multivariable Cox proportional hazards (CPH) models. RESULTS: The following significant associations were observed: Male patients had higher BMI and SMI. Patients with lower ECOG had lower BMI and SMI. Patients with BMI lower than 21.8 kg/m2 (median) also showed lower SMI and IMFF. Patients younger than 63.3 years (median) were found to have higher SMRD, lower FMF, and lower IMFF. In the Kaplan-Meier analysis, significantly lower survival times were observed in patients with higher ECOG or lower SMI. Increased patient risk was observed for higher ECOG, lower BMI, and lower SMI in univariable CPH analyses for 1-, 2-, and 3-year survival. Multivariable CPH analysis for 1-year survival revealed increased patient risk for higher ECOG, lower SMI, lower IMFF, and higher FMF. In multivariable analysis for 2- and 3-year survival, only ECOG and FMF remained significant. CONCLUSION: CT-based markers of sarcopenia and myosteatosis show a prognostic value for assessment of survival in advanced pancreatic cancer patients undergoing HIFU therapy. CLINICAL RELEVANCE STATEMENT: The results indicate a greater role of myosteatosis for additional risk assessment beyond clinical scores, as only FMF was associated with long-term survival in multivariable CPH analyses along ECOG and also showed independence to ECOG in group analysis. KEY POINTS: • This study investigates the prognostic value of CT-based markers of sarcopenia and myosteatosis for patients with pancreatic cancer treated with high-intensity focused ultrasound. • Markers for sarcopenia and myosteatosis showed a prognostic value besides clinical assessment of the physical status by the Eastern Cooperative Oncology Group score. In contrast to muscle size measurements, the myosteatosis marker fatty muscle fraction demonstrated independence to the clinical score. • The results indicate that myosteatosis might play a greater role for additional patient risk assessments beyond clinical assessments of physical status.


Asunto(s)
Aprendizaje Profundo , Neoplasias Pancreáticas , Sarcopenia , Humanos , Masculino , Sarcopenia/complicaciones , Sarcopenia/diagnóstico por imagen , Estudios Retrospectivos , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Neoplasias Pancreáticas/complicaciones , Neoplasias Pancreáticas/patología , Pronóstico , Tomografía Computarizada por Rayos X/métodos , Evaluación de Resultado en la Atención de Salud
16.
Eur Radiol ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789792

RESUMEN

BACKGROUND: The aim of our current systematic dynamic phantom study was first, to optimize reconstruction parameters of coronary CTA (CCTA) acquired on photon counting CT (PCCT) for coronary artery calcium (CAC) scoring, and second, to assess the feasibility of calculating CAC scores from CCTA, in comparison to reference calcium scoring CT (CSCT) scans. METHODS: In this phantom study, an artificial coronary artery was translated at velocities corresponding to 0, < 60, and 60-75 beats per minute (bpm) within an anthropomorphic phantom. The density of calcifications was 100 (very low), 200 (low), 400 (medium), and 800 (high) mgHA/cm3, respectively. CCTA was reconstructed with the following parameters: virtual non-iodine (VNI), with and without iterative reconstruction (QIR level 2, QIR off, respectively); kernels Qr36 and Qr44f; slice thickness/increment 3.0/1.5 mm and 0.4/0.2 mm. The agreement in risk group classification between CACCCTA and CACCSCT scoring was measured using Cohen weighted linear κ with 95% CI. RESULTS: For CCTA reconstructed with 0.4 mm slice thickness, calcium detectability was perfect (100%). At < 60 bpm, CACCCTA of low, and medium density calcification was underestimated by 53%, and 15%, respectively. However, CACCCTA was not significantly different from CACCSCT of very low, and high-density calcifications. The best risk agreement was achieved when CCTA was reconstructed with QIR off, Qr44f, and 0.4 mm slice thickness (κ = 0.762, 95% CI 0.671-0.853). CONCLUSION: In this dynamic phantom study, the detection of calcifications with different densities was excellent with CCTA on PCCT using thin-slice VNI reconstruction. Agatston scores were underestimated compared to CSCT but agreement in risk classification was substantial. CLINICAL RELEVANCE STATEMENT: Photon counting CT may enable the implementation of coronary artery calcium scoring from coronary CTA in daily clinical practice. KEY POINTS: Photon-counting CTA allows for excellent detectability of low-density calcifications at all heart rates. Coronary artery calcium scoring from coronary CTA acquired on photon counting CT is feasible, although improvement is needed. Adoption of the standard acquisition and reconstruction protocol for calcium scoring is needed for improved quantification of coronary artery calcium to fully employ the potential of photon counting CT.

17.
Eur Radiol ; 34(4): 2534-2545, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37837538

RESUMEN

OBJECTIVES: Accurate computed tomography (CT) identification of appendicoliths in adults with acute appendicitis is crucial as it may preclude nonoperative management due to high risk of failure and complications. This investigation aimed to identify the significance of appendicoliths in acute appendicitis and to evaluate the performance of portovenous-phase (PVP) CT and the consequences of overlooked appendicoliths. METHODS: CT examinations of 324 consecutive patients (mean age 51.9 years, 112 men) with pathologically confirmed acute appendicitis were retrospectively included. Two radiologists independently reviewed the images, and disagreement was resolved by a consensus. RESULTS: Appendicoliths were identified in 134/324 patients, of which 75 had complicated appendicitis. Among 190 patients without appendicoliths, 52 had complicated appendicitis. An appendicolith was independently associated with complicated appendicitis (adjusted odds ratio 2.289; 95% CI: 1.343-3.902; p = 0.002). The larger minimum diameter was significantly associated with complication. The 4.5-/6.0-mm cutoffs for minimum and maximum diameters of appendicoliths demonstrated 82.7%/85.3% sensitivity and 35.6%/33.9% specificity in predicting complications. The PVP alone had 82.1-88.1% sensitivity, respectively per patient and per appendicolith, and a 100% specificity in the detection of appendicoliths, as compared with combined noncontrast and PVP. PVP overlooked 28/237 appendicoliths (11.8%) corresponding to 24/134 patients (17.9%). Of the 24 patients with overlooked appendicoliths, 16 had complicated appendicitis but 14 were correctly categorized by findings other than appendicoliths. In total, 2/127 patients (1.6%) with complicated appendicitis were misdiagnosed as having uncomplicated appendicitis. CONCLUSIONS: Appendicoliths in acute appendicitis were strongly associated with complications. While PVP overlooked some appendicoliths, only 1.6% of complicated appendicitis were misclassified when considering other CT findings. CLINICAL RELEVANCE STATEMENT: This study found a strong association between appendicoliths and complications. Its presence may preclude conservative management. Although portovenous-phase CT overlooked some appendicoliths, the combination with other CT findings allowed correct classification in a vast majority of cases. KEY POINTS: • Accurate identification of appendicoliths is crucial for nonoperative management decisions in adult acute appendicitis. • Appendicoliths are strongly associated with complications in adult acute appendicitis. • Portovenous-phase CT overlooked some appendicoliths, but only a small percentage of patients with complicated appendicitis were misclassified when considering other CT findings.


Asunto(s)
Apendicitis , Masculino , Adulto , Humanos , Persona de Mediana Edad , Apendicitis/complicaciones , Apendicitis/diagnóstico por imagen , Relevancia Clínica , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Enfermedad Aguda
18.
Eur Radiol ; 34(7): 4417-4426, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38127074

RESUMEN

OBJECTIVES: To predict the functional outcome of patients with intracerebral hemorrhage (ICH) using deep learning models based on computed tomography (CT) images. METHODS: A retrospective, bi-center study of ICH patients was conducted. Firstly, a custom 3D convolutional model was built for predicting the functional outcome of ICH patients based on CT scans from randomly selected ICH patients in H training dataset collected from H hospital. Secondly, clinical data and radiological features were collected at admission and the Extreme Gradient Boosting (XGBoost) algorithm was used to establish a second model, named the XGBoost model. Finally, the Convolution model and XGBoost model were fused to build the third "Fusion model." Favorable outcome was defined as modified Rankin Scale score of 0-3 at discharge. The prognostic predictive accuracy of the three models was evaluated using an H test dataset and an external Y dataset, and compared with the performance of ICH score and ICH grading scale (ICH-GS). RESULTS: A total of 604 patients with ICH were included in this study, of which 450 patients were in the H training dataset, 50 patients in the H test dataset, and 104 patients in the Y dataset. In the Y dataset, the areas under the curve (AUCs) of the Convolution model, XGBoost model, and Fusion model were 0.829, 0.871, and 0.905, respectively. The Fusion model prognostic performance exceeded that of ICH score and ICH-GS (p = 0.043 and p = 0.045, respectively). CONCLUSIONS: Deep learning models have good accuracy for predicting functional outcome of patients with spontaneous intracerebral hemorrhage. CLINICAL RELEVANCE STATEMENT: The proposed deep learning Fusion model may assist clinicians in predicting functional outcome and developing treatment strategies, thereby improving the survival and quality of life of patients with spontaneous intracerebral hemorrhage. KEY POINTS: • Integrating clinical presentations, CT images, and radiological features to establish deep learning model for functional outcome prediction of patients with intracerebral hemorrhage. • Deep learning applied to CT images provides great help in prognosing functional outcome of intracerebral hemorrhage patients. • The developed deep learning model performs better than clinical prognostic scores in predicting functional outcome of patients with intracerebral hemorrhage.


Asunto(s)
Hemorragia Cerebral , Aprendizaje Profundo , Alta del Paciente , Tomografía Computarizada por Rayos X , Humanos , Hemorragia Cerebral/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Anciano , Pronóstico , Valor Predictivo de las Pruebas
19.
Eur Radiol ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38189979

RESUMEN

OBJECTIVES: To investigate intra-patient variability of iodine concentration (IC) between three different dual-energy CT (DECT) platforms and to test different normalization approaches. METHODS: Forty-four patients who underwent portal venous phase abdominal DECT on a dual-source (dsDECT), a rapid kVp switching (rsDECT), and a dual-layer detector platform (dlDECT) during cancer follow-up were retrospectively included. IC in the liver, pancreas, and kidneys and different normalized ICs (NICPV:portal vein; NICAA:abdominal aorta; NICALL:overall iodine load) were compared between the three DECT scanners for each patient. A longitudinal mixed effects analysis was conducted to elucidate the effect of the scanner type, scan order, inter-scan time, and contrast media amount on normalized iodine concentration. RESULTS: Variability of IC was highest in the liver (dsDECT vs. dlDECT 28.96 (14.28-46.87) %, dsDECT vs. rsDECT 29.08 (16.59-62.55) %, rsDECT vs. dlDECT 22.85 (7.52-33.49) %), and lowest in the kidneys (dsDECT vs. dlDECT 15.76 (7.03-26.1) %, dsDECT vs. rsDECT 15.67 (8.86-25.56) %, rsDECT vs. dlDECT 10.92 (4.92-22.79) %). NICALL yielded the best reduction of IC variability throughout all tissues and inter-scanner comparisons, yet did not reduce the variability between dsDECT vs. dlDECT and rsDECT, respectively, in the liver. The scanner type remained a significant determinant for NICALL in the pancreas and the liver (F-values, 12.26 and 23.78; both, p < 0.0001). CONCLUSIONS: We found tissue-specific intra-patient variability of IC across different DECT scanner types. Normalization mitigated variability by reducing physiological fluctuations in iodine distribution. After normalization, the scanner type still had a significant effect on iodine variability in the pancreas and liver. CLINICAL RELEVANCE STATEMENT: Differences in iodine quantification between dual-energy CT scanners can partly be mitigated by normalization, yet remain relevant for specific tissues and inter-scanner comparisons, which should be taken into account at clinical routine imaging. KEY POINTS: • Iodine concentration showed the least variability between scanner types in the kidneys (range 10.92-15.76%) and highest variability in the liver (range 22.85-29.08%). • Normalizing tissue-specific iodine concentrations against the overall iodine load yielded the greatest reduction of variability between scanner types for 2/3 inter-scanner comparisons in the liver and for all (3/3) inter-scanner comparisons in the kidneys and pancreas, respectively. • However, even after normalization, the dual-energy CT scanner type was found to be the factor significantly influencing variability of iodine concentration in the liver and pancreas.

20.
Eur Radiol ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38276981

RESUMEN

OBJECTIVE: To assess the role of net water uptake (NWU) in predicting outcomes in acute ischemic stroke (AIS) patients. METHODS: A systematic review and meta-analysis were performed, adhering to established guidelines. The search covered PubMed, Scopus, Web of Science, and Embase databases until July 1, 2023. Eligible studies reporting quantitative ischemic lesion NWU in admission CT scans of AIS patients, stratified based on outcomes, were included. Data analysis was performed using R software version 4.2.1. RESULTS: Incorporating 17 original studies with 2217 AIS patients, NWU was significantly higher in patients with poor outcomes compared to those with good outcomes (difference of medians: 5.06, 95% CI: 3.00-7.13, p < 0.001). Despite excluding one outlier study, considerable heterogeneity persisted among the included studies (I2 = 90.8%). The meta-regression and subgroup meta-analyses demonstrated significantly higher NWU in patients with poor functional outcome, as assessed by modified Rankin Scale (difference of medians: 3.83, 95% CI: 1.98-5.68, p < 0.001, I2 = 72.9%), malignant edema/infarct (difference of medians: 8.30, 95% CI: 4.01-12.58, p < 0.001, I2 = 95.6%), and intracranial hemorrhage (difference of medians: 5.43, 95% CI: 0.44-10.43, p = 0.03, I2 = 91.1%). CONCLUSION: NWU on admission CT scans shows promise as a predictive marker for outcomes in AIS patients. Prospective, multicenter trials with standardized, automated NWU measurement are crucial for robustly predicting diverse clinical outcomes. CLINICAL RELEVANCE STATEMENT: The potential of net water uptake as a biomarker for predicting outcomes in acute ischemic stroke patients holds significant promise. Further validation through additional research could lead to its integration into clinical practice, potentially improving the accuracy of clinical decision-making and allowing for the development of more precise patient care strategies. KEY POINTS: • Net water uptake, a CT-based biomarker, quantifies early brain edema after acute ischemic stroke. • Net water uptake is significantly higher in poor outcome acute ischemic stroke patients. • Net water uptake on CT scans holds promise in predicting diverse acute ischemic stroke outcomes.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda