Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Molecules ; 29(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338353

RESUMEN

The interaction of fullerenes and their derivatives with environmental molecules such as oxygen or water was crucial for the rational design of low-dimensional materials and devices. In this paper, the near-edge X-ray absorption fine structure (NEXAFS), X-ray emission spectroscopy (XES) and X-ray photoelectron spectroscopy (XPS) shake-up satellites were employed to distinguish the oxides and hydrates of the fullerene C60 and azafullerene C59N families. The study includes various isomers, such as the open [5,6] and closed [6,6] isomers of C60O, C60H(OH), C60-O-C60, C60H-O-C60H, C59N(OH) and C59N-O-C59N, based on density functional theory. These soft X-ray spectra offered comprehensive insights into the molecular orbitals of these azafullerene molecular groups. The oxygen K-edge NEXAFS, carbon and oxygen K-edge XPS shake-up satellite spectra provided valuable tools for distinguishing oxides or hydrates of fullerene C60 and azafullerene C59N. Our findings could significantly benefit the development of fullerene functional molecular materials and expand the application scope of soft X-ray spectroscopy as a molecular fingerprinting tool for the fullerene family.

2.
Chimia (Aarau) ; 78(5): 304-312, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38822773

RESUMEN

Understanding structure-performance relationships are essential for the rational design of new functional materials or in the further optimization of (catalytic) processes. Due to the high penetration depth of the radiation used, synchrotron-based hard X-ray techniques (with energy > 4.5 keV) allow the study of materials under realistic conditions (in situ and operando) and thus play an important role in uncovering structure-performance relationships. X-ray absorption and emission spectroscopies (XAS and XES) give insight into the electronic structure (oxidation state, spin state) and local geometric structure (type and number of nearest neighbor atoms, bond distances, disorder) up to ~5 Å around the element of interest. In this mini review, we will give an overview of the in situ and operando capabilities of the SuperXAS beamline, a facility for hard X-ray spectroscopy, through recent examples from studies of heterogeneous catalysts, electrochemical systems, and photoinduced processes. The possibilities for time-resolved experiments in the time range from ns to seconds and longer are illustrated. The extension of X-ray spectroscopy at the new Debye beamline combined with operando X-ray scattering and diffraction and further developments of time-resolved XES at SuperXAS will open new possibilities after the Swiss Light Source upgrade mid 2025.

3.
J Synchrotron Radiat ; 30(Pt 5): 923-933, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37526993

RESUMEN

The processing and analysis of synchrotron data can be a complex task, requiring specialized expertise and knowledge. Our previous work addressed the challenge of X-ray emission spectrum (XES) data processing by developing a standalone application using unsupervised machine learning. However, the task of analyzing the processed spectra remains another challenge. Although the non-resonant Kß XES of 3d transition metals are known to provide electronic structure information such as oxidation and spin state, finding appropriate parameters to match experimental data is a time-consuming and labor-intensive process. Here, a new XES data analysis method based on the genetic algorithm is demonstrated, applying it to Mn, Co and Ni oxides. This approach is also implemented as a standalone application, Argonne X-ray Emission Analysis 2 (AXEAP2), which finds a set of parameters that result in a high-quality fit of the experimental spectrum with minimal intervention. AXEAP2 is able to find a set of parameters that reproduce the experimental spectrum, and provide insights into the 3d electron spin state, 3d-3p electron exchange force and Kß emission core-hole lifetime.

4.
J Synchrotron Radiat ; 30(Pt 6): 1168-1182, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37860937

RESUMEN

The Femtosecond X-ray Experiments (FXE) instrument at the European X-ray Free-Electron Laser (EuXFEL) provides an optimized platform for investigations of ultrafast physical, chemical and biological processes. It operates in the energy range 4.7-20 keV accommodating flexible and versatile environments for a wide range of samples using diverse ultrafast X-ray spectroscopic, scattering and diffraction techniques. FXE is particularly suitable for experiments taking advantage of the sub-MHz repetition rates provided by the EuXFEL. In this paper a dedicated setup for studies on ultrafast biological and chemical dynamics in solution phase at sub-MHz rates at FXE is presented. Particular emphasis on the different liquid jet sample delivery options and their performance is given. Our portfolio of high-speed jets compatible with sub-MHz experiments includes cylindrical jets, gas dynamic virtual nozzles and flat jets. The capability to perform multi-color X-ray emission spectroscopy (XES) experiments is illustrated by a set of measurements using the dispersive X-ray spectrometer in von Hamos geometry. Static XES data collected using a multi-crystal scanning Johann-type spectrometer are also presented. A few examples of experimental results on ultrafast time-resolved X-ray emission spectroscopy and wide-angle X-ray scattering at sub-MHz pulse repetition rates are given.

5.
J Synchrotron Radiat ; 29(Pt 5): 1309-1317, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36073891

RESUMEN

The Argonne X-ray Emission Analysis Package (AXEAP) has been developed to calibrate and process X-ray emission spectroscopy (XES) data collected with a two-dimensional (2D) position-sensitive detector. AXEAP is designed to convert a 2D XES image into an XES spectrum in real time using both calculations and unsupervised machine learning. AXEAP is capable of making this transformation at a rate similar to data collection, allowing real-time comparisons during data collection, reducing the amount of data stored from gigabyte-sized image files to kilobyte-sized text files. With a user-friendly interface, AXEAP includes data processing for non-resonant and resonant XES images from multiple edges and elements. AXEAP is written in MATLAB and can run on common operating systems, including Linux, Windows, and MacOS.


Asunto(s)
Análisis de Datos , Aprendizaje Automático no Supervisado , Radiografía , Programas Informáticos , Rayos X
6.
J Synchrotron Radiat ; 28(Pt 1): 333-349, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33399586

RESUMEN

ROBL-II provides four different experimental stations to investigate actinide and other alpha- and beta-emitting radionuclides at the new EBS storage ring of ESRF within an energy range of 3 to 35 keV. The XAFS station consists of a highly automatized, high sample throughput installation in a glovebox, to measure EXAFS and conventional XANES of samples routinely at temperatures down to 10 K, and with a detection limit in the sub-p.p.m. range. The XES station with its five bent-crystal analyzer, Johann-type setup with Rowland circles of 1.0 and 0.5 m radii provides high-energy resolution fluorescence detection (HERFD) for XANES, XES, and RIXS measurements, covering both actinide L and M edges together with other elements accessible in the 3 to 20 keV energy range. The six-circle heavy duty goniometer of XRD-1 is equipped for both high-resolution powder diffraction as well as surface-sensitive CTR and RAXR techniques. Single crystal diffraction, powder diffraction with high temporal resolution, as well as X-ray tomography experiments can be performed at a Pilatus 2M detector stage (XRD-2). Elaborate radioprotection features enable a safe and easy exchange of samples between the four different stations to allow the combination of several methods for an unprecedented level of information on radioactive samples for both fundamental and applied actinide and environmental research.

7.
J Synchrotron Radiat ; 28(Pt 2): 609-617, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33650573

RESUMEN

X-SPEC is a high-flux spectroscopy beamline at the KIT (Karlsruhe Institute of Technology) Synchrotron for electron and X-ray spectroscopy featuring a wide photon energy range. The beamline is equipped with a permanent magnet undulator with two magnetic structures of different period lengths, a focusing variable-line-space plane-grating monochromator, a double-crystal monochromator and three Kirkpatrick-Baez mirror pairs. By selectively moving these elements in or out of the beam, X-SPEC is capable of covering an energy range from 70 eV up to 15 keV. The flux of the beamline is maximized by optimizing the magnetic design of the undulator, minimizing the number of optical elements and optimizing their parameters. The beam can be focused into two experimental stations while maintaining the same spot position throughout the entire energy range. The first experimental station is optimized for measuring solid samples under ultra-high-vacuum conditions, while the second experimental station allows in situ and operando studies under ambient conditions. Measurement techniques include X-ray absorption spectroscopy (XAS), extended X-ray absorption fine structure (EXAFS), photoelectron spectroscopy (PES) and hard X-ray PES (HAXPES), as well as X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS).

8.
J Comput Chem ; 41(11): 1081-1090, 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31965597

RESUMEN

The simulation of X-ray emission spectra of organic molecules using time-dependent density functional theory (TDDFT) is explored. TDDFT calculations using standard hybrid exchange-correlation functionals in conjunction with large basis sets can predict accurate X-ray emission spectra provided an energy shift is applied to align the spectra with experiment. The relaxation of the orbitals in the intermediate state is an important factor, and neglect of this relaxation leads to considerably poorer predicted spectra. A short-range corrected functional is found to give emission energies that required a relatively small energy shift to align with experiment. However, increasing the amount of Hartree-Fock exchange in this functional to remove the need for any energy shift led to a deterioration in the quality of the calculated spectral profile. To predict accurate spectra without reference to experimental measurements, we use the CAM-B3LYP functional with the energy scale determined with reference to a Δself-consistent field calculation for the highest energy emission transition.

9.
J Synchrotron Radiat ; 27(Pt 2): 446-454, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32153283

RESUMEN

X-ray absorption spectroscopy (XAS) beamlines worldwide are steadily increasing their emphasis on full photon-in/photon-out spectroscopies, such as resonant inelastic X-ray scattering (RIXS), resonant X-ray emission spectroscopy (RXES) and high energy resolution fluorescence detection XAS (HERFD-XAS). In such cases, each beamline must match the choice of emission spectrometer to the scientific mission of its users. Previous work has recently reported a miniature tender X-ray spectrometer using a dispersive Rowland refocusing (DRR) geometry that functions with high energy resolution even with a large X-ray spot size on the sample [Holden et al. (2017). Rev. Sci. Instrum. 88, 073904]. This instrument has been used in the laboratory in multiple studies of non-resonant X-ray emission spectroscopy using a conventional X-ray tube, though only for preliminary measurements at a low-intensity microfocus synchrotron beamline. This paper reports an extensive study of the performance of a miniature DRR spectrometer at an unfocused wiggler beamline, where the incident monochromatic flux allows for resonant studies which are impossible in the laboratory. The results support the broader use of the present design and also suggest that the DRR method with an unfocused beam could have important applications for materials with low radiation damage thresholds and that would not survive analysis on focused beamlines.

10.
Chemphyschem ; 20(10): 1261-1271, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30737862

RESUMEN

In this article, the capabilities of soft and hard X-ray techniques, including X-ray absorption (XAS), soft X-ray emission spectroscopy (XES), resonant inelastic soft X-ray scattering (RIXS), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), and their application to solid-state hydrogen storage materials are presented. These characterization tools are indispensable for interrogating hydrogen storage materials at the relevant length scales of fundamental interest, which range from the micron scale to nanometer dimensions. Since nanostructuring is now well established as an avenue to improve the thermodynamics and kinetics of hydrogen release and uptake, due to properties such as reduced mean free paths of transport and increased surface-to-volume ratio, it becomes of critical importance to explicitly identify structure-property relationships on the nanometer scale. X-ray diffraction and spectroscopy are effective tools for probing size-, shape-, and structure-dependent material properties at the nanoscale. This article also discusses the recent development of in-situ soft X-ray spectroscopy cells, which enable investigation of critical solid/liquid or solid/gas interfaces under more practical conditions. These unique tools are providing a window into the thermodynamics and kinetics of hydrogenation and dehydrogenation reactions and informing a quantitative understanding of the fundamental energetics of hydrogen storage processes at the microscopic level. In particular, in-situ soft X-ray spectroscopies can be utilized to probe the formation of intermediate species, byproducts, as well as the changes in morphology and effect of additives, which all can greatly affect the hydrogen storage capacity, kinetics, thermodynamics, and reversibility. A few examples using soft X-ray spectroscopies to study these materials are discussed to demonstrate how these powerful characterization tools could be helpful to further understand the hydrogen storage systems.

11.
Proc Natl Acad Sci U S A ; 112(52): 15803-8, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26668362

RESUMEN

The lanthanum-based materials, due to their layered structure and f-electron configuration, are relevant for electrochemical application. Particularly, La2O2CO3 shows a prominent chemoresistive response to CO2. However, surprisingly less is known about its atomic and electronic structure and electrochemically significant sites and therefore, its structure-functions relationships have yet to be established. Here we determine the position of the different constituents within the unit cell of monoclinic La2O2CO3 and use this information to interpret in situ high-energy resolution fluorescence-detected (HERFD) X-ray absorption near-edge structure (XANES) and valence-to-core X-ray emission spectroscopy (vtc XES). Compared with La(OH)3 or previously known hexagonal La2O2CO3 structures, La in the monoclinic unit cell has a much lower number of neighboring oxygen atoms, which is manifested in the whiteline broadening in XANES spectra. Such a superior sensitivity to subtle changes is given by HERFD method, which is essential for in situ studying of the interaction with CO2. Here, we study La2O2CO3-based sensors in real operando conditions at 250 °C in the presence of oxygen and water vapors. We identify that the distribution of unoccupied La d-states and occupied O p- and La d-states changes during CO2 chemoresistive sensing of La2O2CO3. The correlation between these spectroscopic findings with electrical resistance measurements leads to a more comprehensive understanding of the selective adsorption at La site and may enable the design of new materials for CO2 electrochemical applications.

12.
J Synchrotron Radiat ; 24(Pt 1): 302-306, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28009571

RESUMEN

A novel experimental setup is presented for resonant inelastic X-ray scattering investigations of solid and liquid samples in the soft X-ray region for studying the complex electronic configuration of (bio)chemical systems. The uniqueness of the apparatus is its high flexibility combined with optimal energy resolution and energy range ratio. The apparatus enables investigation of chemical analyses, which reflects the chemical imprints. The endstation is composed of a main sample chamber, a sample holder for either solid or liquid jet delivery system, and a soft X-ray grating spectrometer for 210-1250 eV with a resolving power of ∼1000. It combines for the first time liquid jet technology with a soft X-ray spectrometer based on the variable line spacing principle. This setup was commissioned at the soft X-ray beamline P04 at PETRA III of the Deutsches Elektronen-Synchrotron in Hamburg which is currently the most brilliant storage-ring-based X-ray radiation source in the world. The first results of liquid and solid samples show that this setup allows the detection of photons across an energy range of ∼300 eV. This covers simultaneously the emission lines of life-important elements like carbon, nitrogen and oxygen in a shot-based procedure.

13.
Biochim Biophys Acta ; 1853(6): 1406-15, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25486459

RESUMEN

X-ray absorption (XAS) and X-ray emission spectroscopy (XES) provide element specific probes of the geometric and electronic structures of metalloprotein active sites. As such, these methods have played an integral role in nitrogenase research beginning with the first EXAFS studies on nitrogenase in the late 1970s. Herein, we briefly explain the information that can be extracted from XAS and XES. We then highlight the recent applications of these methods in nitrogenase research. The influence of X-ray spectroscopy on our current understanding of the atomic structure and electronic structure of iron molybdenum cofactor (FeMoco) is emphasized. Contributions of X-ray spectroscopy to understanding substrate interactions and cluster biosynthesis are also discussed. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.


Asunto(s)
Nitrogenasa/química , Conformación Proteica , Espectrometría por Rayos X/métodos , Espectroscopía de Absorción de Rayos X/métodos , Coenzimas/química , Coenzimas/metabolismo , Hierro/química , Hierro/metabolismo , Metaloproteínas/química , Metaloproteínas/metabolismo , Modelos Moleculares , Estructura Molecular , Cofactores de Molibdeno , Nitrogenasa/metabolismo , Pteridinas/química , Pteridinas/metabolismo
14.
J Synchrotron Radiat ; 23(Pt 3): 836-41, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27140166

RESUMEN

This paper gives a detailed description, including equations, of the Johann-type X-ray emission spectrometer which has been recently installed and tested at the Rossendorf beamline (ROBL) of the European Synchrotron Radiation Facility. The spectrometer consists of a single spherically bent crystal analyzer and an avalanche photodiode detector positioned on the vertical Rowland cycle of 1 m diameter. The hard X-ray emission spectrometer (∼3.5-25 keV) operates at atmospheric pressure and covers the Bragg angles of 65°-89°. The instrument has been tested at high and intermediate incident energies, i.e. at the Zr K-edge and at the Au L3-edge, in the second experimental hutch of ROBL. The spectrometer is dedicated for studying actinides in materials and environmental samples by high-energy-resolution X-ray absorption and X-ray emission spectroscopies.

15.
J Biol Inorg Chem ; 21(5-6): 793-805, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27251139

RESUMEN

A series of vanadium compounds was studied by K-edge X-ray absorption (XAS) and K[Formula: see text] X-ray emission spectroscopies (XES). Qualitative trends within the datasets, as well as comparisons between the XAS and XES data, illustrate the information content of both methods. The complementary nature of the chemical insight highlights the success of this dual-technique approach in characterizing both the structural and electronic properties of vanadium sites. In particular, and in contrast to XAS or extended X-ray absorption fine structure (EXAFS), we demonstrate that valence-to-core XES is capable of differentiating between ligating atoms with the same identity but different bonding character. Finally, density functional theory (DFT) and time-dependent DFT calculations enable a more detailed, quantitative interpretation of the data. We also establish correction factors for the computational protocols through calibration to experiment. These hard X-ray methods can probe vanadium ions in any oxidation or spin state, and can readily be applied to sample environments ranging from solid-phase catalysts to biological samples in frozen solution. Thus, the combined XAS and XES approach, coupled with DFT calculations, provides a robust tool for the study of vanadium atoms in bioinorganic chemistry.


Asunto(s)
Compuestos de Vanadio/química , Teoría Cuántica , Espectrometría por Rayos X , Espectroscopía de Absorción de Rayos X
16.
J Synchrotron Radiat ; 22(3): 612-20, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25931076

RESUMEN

X-ray free-electron lasers (FELs) have opened unprecedented possibilities to study the structure and dynamics of matter at an atomic level and ultra-fast timescale. Many of the techniques routinely used at storage ring facilities are being adapted for experiments conducted at FELs. In order to take full advantage of these new sources several challenges have to be overcome. They are related to the very different source characteristics and its resulting impact on sample delivery, X-ray optics, X-ray detection and data acquisition. Here it is described how photon-in photon-out hard X-ray spectroscopy techniques can be applied to study the electronic structure and its dynamics of transition metal systems with ultra-bright and ultra-short FEL X-ray pulses. In particular, some of the experimental details that are different compared with synchrotron-based setups are discussed and illustrated by recent measurements performed at the Linac Coherent Light Source.

17.
J Synchrotron Radiat ; 22(3): 766-75, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25931095

RESUMEN

X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low efficiency of wavelength-dispersive X-ray spectrometer technology has limited the use of XES, especially in combination with weaker laboratory X-ray sources. More efficient energy-dispersive detectors have either insufficient energy resolution because of the statistical limits described by Fano or too low counting rates to be of practical use. This paper updates an approach to high-resolution X-ray emission spectroscopy that uses a microcalorimeter detector array of superconducting transition-edge sensors (TESs). TES arrays are discussed and compared with conventional methods, and shown under which circumstances they are superior. It is also shown that a TES array can be integrated into a table-top time-resolved X-ray source and a soft X-ray synchrotron beamline to perform emission spectroscopy with good chemical sensitivity over a very wide range of energies.

18.
Nanomaterials (Basel) ; 12(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35808090

RESUMEN

Traceable characterization methods allow for the accurate correlation of the functionality or toxicity of nanomaterials with their underlaying chemical, structural or physical material properties. These correlations are required for the directed development of nanomaterials to reach target functionalities such as conversion efficiencies or selective sensitivities. The reliable characterization of nanomaterials requires techniques that often need to be adapted to the nano-scaled dimensions of the samples with respect to both the spatial dimensions of the probe and the instrumental or experimental discrimination capability. The traceability of analytical methods revealing information on chemical material properties relies on reference materials or qualified calibration samples, the spatial elemental distributions of which must be very similar to the nanomaterial of interest. At the nanoscale, however, only few well-known reference materials exist. An alternate route to establish the required traceability lays in the physical calibration of the analytical instrument's response behavior and efficiency in conjunction with a good knowledge of the various interaction probabilities. For the elemental analysis, speciation, and coordination of nanomaterials, such a physical traceability can be achieved with X-ray spectrometry. This requires the radiometric calibration of energy- and wavelength-dispersive X-ray spectrometers, as well as the reliable determination of atomic X-ray fundamental parameters using such instrumentation. In different operational configurations, the information depths, discrimination capability, and sensitivity of X-ray spectrometry can be considerably modified while preserving its traceability, allowing for the characterization of surface contamination as well as interfacial thin layer and nanoparticle chemical compositions. Furthermore, time-resolved and hybrid approaches provide access to analytical information under operando conditions or reveal dimensional information, such as elemental or species depth profiles of nanomaterials. The aim of this review is to demonstrate the absolute quantification capabilities of SI-traceable X-ray spectrometry based upon calibrated instrumentation and knowledge about X-ray interaction probabilities.

19.
J Inorg Biochem ; 230: 111768, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35202981

RESUMEN

Methyl-Coenzyme M Reductase (MCR) catalyzes the biosynthesis of methane in methanogenic archaea, using a catalytic Ni-centered Cofactor F430 in its active site. It also catalyzes the reverse reaction, that is, the anaerobic activation and oxidation, including the cleavage of the CH bond in methane. Because methanogenesis is the major source of methane on earth, understanding the reaction mechanism of this enzyme can have massive implications in global energy balances. While recent publications have proposed a radical-based catalytic mechanism as well as novel sulfonate-based binding modes of MCR for its native substrates, the structure of the active state of MCR, as well as a complete characterization of the reaction, remain elusive. Previous attempts to structurally characterize the active MCR-Ni(I) state have been unsuccessful due to oxidation of the redox- sensitive catalytic Ni center. Further, while many cryo structures of the inactive Ni(II)-enzyme in various substrates-bound forms have been published, no room temperature structures have been reported, and the structure and mechanism of MCR under physiologically relevant conditions is not known. In this study, we report the first room temperature structure of the MCRred1-silent Ni(II) form using an X-ray Free-Electron Laser (XFEL), with simultaneous X-ray Emission Spectroscopy (XES) and X-ray Diffraction (XRD) data collection. In celebration of the seminal contributions of inorganic chemist Dick Holm to our understanding of nickel-based catalysis, we are honored to announce our findings in this special issue dedicated to this remarkable pioneer of bioinorganic chemistry.


Asunto(s)
Rayos Láser , Metano , Cristalografía por Rayos X , Metano/química , Oxidación-Reducción , Oxidorreductasas , Temperatura
20.
Adv Mater ; 33(35): e2101259, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34292627

RESUMEN

Black phosphorus (BP) is a promising anode material in lithium-ion batteries (LIBs) owing to its high electrical conductivity and capacity. However, the huge volume change of BP during cycling induces rapid capacity fading. In addition, the unclear electrochemical mechanism of BP hinders the development of rational designs and preparation of high-performance BP-based anodes. Here, a high-performance nanostructured BP-graphite-carbon nanotubes composite (BP/G/CNTs) synthesized using ball-milling method is reported. The BP/G/CNTs anode delivers a high initial capacity of 1375 mA h g-1 at 0.15 A g-1 and maintains 1031.7 mA h g-1 after 450 cycles. Excellent high-rate performance is demonstrated with a capacity of 508.1 mA h g-1 after 3000 cycles at 2 A g-1 . Moreover, for the first time, direct evidence is provided experimentally to present the electrochemical mechanism of BP anodes with three-step lithiation and delithiation using ex situ X-ray diffraction (XRD), ex situ X-ray absorption spectroscopy (XAS), ex situ X-ray emission spectroscopy, operando XRD, and operando XAS, which reveal the formation of Li3 P7 , LiP, and Li3 P. Furthermore, the study indicates an open-circuit relaxation effect of the electrode with ex situ and operando XAS analyses.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda