Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Methods ; 224: 47-53, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387709

RESUMEN

Nucleotide excision repair (NER) promotes genomic integrity by removing bulky DNA adducts introduced by external factors such as ultraviolet light. Defects in NER enzymes are associated with pathological conditions such as Xeroderma Pigmentosum, trichothiodystrophy, and Cockayne syndrome. A critical step in NER is the binding of the Xeroderma Pigmentosum group A protein (XPA) to the ss/ds DNA junction. To better capture the dynamics of XPA interactions with DNA during NER we have utilized the fluorescence enhancement through non-canonical amino acids (FEncAA) approach. 4-azido-L-phenylalanine (4AZP or pAzF) was incorporated at Arg-158 in human XPA and conjugated to Cy3 using strain-promoted azide-alkyne cycloaddition. The resulting fluorescent XPA protein (XPACy3) shows no loss in DNA binding activity and generates a robust change in fluorescence upon binding to DNA. Here we describe methods to generate XPACy3 and detail in vitro experimental conditions required to stably maintain the protein during biochemical and biophysical studies.


Asunto(s)
Daño del ADN , Reparación del ADN , Humanos , Reparación del ADN/genética , Daño del ADN/genética , Reparación por Escisión , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/química , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , ADN/química , Rayos Ultravioleta , Nucleótidos , Unión Proteica
2.
Mol Cell ; 68(4): 797-807.e7, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29149600

RESUMEN

DNA lesions caused by UV damage are thought to be repaired solely by the nucleotide excision repair (NER) pathway in human cells. Patients carrying mutations within genes functioning in this pathway display a range of pathologies, including an increased susceptibility to cancer, premature aging, and neurological defects. There are currently no curative therapies available. Here we performed a high-throughput chemical screen for agents that could alleviate the cellular sensitivity of NER-deficient cells to UV-induced DNA damage. This led to the identification of the clinically approved anti-diabetic drug acetohexamide, which promoted clearance of UV-induced DNA damage without the accumulation of chromosomal aberrations, hence promoting cellular survival. Acetohexamide exerted this protective function by antagonizing expression of the DNA glycosylase, MUTYH. Together, our data reveal the existence of an NER-independent mechanism to remove UV-induced DNA damage and prevent cell death.


Asunto(s)
Daño del ADN , ADN Glicosilasas/metabolismo , Reparación del ADN/efectos de la radiación , Rayos Ultravioleta , Acetohexamida/farmacología , Línea Celular Tumoral , ADN Glicosilasas/biosíntesis , ADN Glicosilasas/genética , Reparación del ADN/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de la radiación , Humanos , Masculino
3.
Australas J Dermatol ; 64(2): e165-e167, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36866916

RESUMEN

We herein report a case of a 4-year-old Filipino girl initially seen through online consultation from a general physician. She was born to a 22-year-old primigravid mother, with no birth complications nor a history of consanguinity in the family. During the 1st month of life, she developed hyperpigmented macules over the face, neck, upper back, and limbs, which were exacerbated by sun exposure. At 2 years old, she developed a solitary erythematous papule on the nasal area, which gradually enlarged within one year and developed into an exophytic ulcerating tumor extending to the right supra-alar crease. Xeroderma pigmentosum and squamous cell carcinoma were confirmed by whole-exome sequencing and skin biopsy, respectively.


Asunto(s)
Carcinoma de Células Escamosas , Xerodermia Pigmentosa , Preescolar , Femenino , Humanos , Mutación , Xerodermia Pigmentosa/complicaciones , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/patología , Proteína de la Xerodermia Pigmentosa del Grupo A/genética
4.
Exp Dermatol ; 31(10): 1607-1617, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35751582

RESUMEN

Non-melanoma skin cancer (NMSC) is mainly caused by ultraviolet (UV)-induced somatic mutations and is characterized by UV signature modifications. Xeroderma pigmentosum group A (Xpa) knockout mice exhibit extreme UV-induced photo-skin carcinogenesis, along with a photosensitive phenotype. We performed whole-exome sequencing (WES) of squamous cell carcinoma (SCC) samples after repetitive ultraviolet B (UVB) exposure to investigate the differences in the landscape of somatic mutations between Xpa knockout and wild-type mice. Although the tumors that developed in mice harboured UV signature mutations in a similar set of cancer-related genes, the pattern of transcriptional strand asymmetry was largely different; UV signature mutations in Xpa knockout and wild-type mice preferentially occurred in transcribed and non-transcribed strands, respectively, reflecting a deficiency in transcription-coupled nucleotide excision repair in Xpa knockout mice. Serial time point analyses of WES for a tumor induced by only a single UVB exposure showed pathogenic mutations in Kras, Fat1, and Kmt2c, which may be driver genes for the initiation and promotion of SCC in Xpa knockout mice. Furthermore, the inhibitory effects on tumor production in Xpa knockout mice by the anti-inflammatory CXCL1 monoclonal antibody affected the pattern of somatic mutations, wherein the transcriptional strand asymmetry was attenuated and the activated signal transduction was shifted from the RAS/RAF/MAPK to the PIK3CA pathway.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Cutáneas , Xerodermia Pigmentosa , Animales , Anticuerpos Monoclonales , Carcinoma de Células Escamosas/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Reparación del ADN , Ratones , Ratones Noqueados , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Rayos Ultravioleta , Xerodermia Pigmentosa/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/genética
5.
Pediatr Dermatol ; 39(3): 478-480, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35178751

RESUMEN

The association of multiple pilomatricomas with xeroderma pigmentosum has not been described. We report a case of a child with multiple pilomatricomas and photosensitivity who was found to have a pathogenic variant in exon 4 of XPA and a likely pathogenic variant in COL6A1.


Asunto(s)
Enfermedades del Cabello , Pilomatrixoma , Neoplasias Cutáneas , Xerodermia Pigmentosa , Niño , Enfermedades del Cabello/complicaciones , Humanos , Pilomatrixoma/complicaciones , Neoplasias Cutáneas/complicaciones , Xerodermia Pigmentosa/complicaciones , Proteína de la Xerodermia Pigmentosa del Grupo A
6.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232946

RESUMEN

Defects in DNA repair pathways have been associated with an improved response to immune checkpoint inhibition (ICI). In particular, patients with the nucleotide excision repair (NER) defect disease Xeroderma pigmentosum (XP) responded impressively well to ICI treatment. Recently, in melanoma patients, pretherapeutic XP gene expression was predictive for anti-programmed cell death-1 (PD-1) ICI response. The underlying mechanisms of this finding are still to be revealed. Therefore, we used CRISPR/Cas9 to disrupt XPA in A375 melanoma cells. The resulting subclonal cell lines were investigated by Sanger sequencing. Based on their genetic sequence, candidates from XPA exon 1 and 2 were selected and further analyzed by immunoblotting, immunofluorescence, HCR and MTT assays. In XPA exon 1, we established a homozygous (c.19delG; p.A7Lfs*8) and a compound heterozygous (c.19delG/c.19_20insG; p.A7Lfs*8/p.A7Gfs*55) cell line. In XPA exon 2, we generated a compound heterozygous mutated cell line (c.206_208delTTG/c.208_209delGA; p.I69_D70delinsN/p.D70Hfs*31). The better performance of the homozygous than the heterozygous mutated exon 1 cells in DNA damage repair (HCR) and post-UV-C cell survival (MTT), was associated with the expression of a novel XPA protein variant. The results of our study serve as the fundamental basis for the investigation of the immunological consequences of XPA disruption in melanoma.


Asunto(s)
Melanoma , Proteína de la Xerodermia Pigmentosa del Grupo A , Xerodermia Pigmentosa , Sistemas CRISPR-Cas/genética , Daño del ADN , Reparación del ADN/genética , Exones/genética , Humanos , Inhibidores de Puntos de Control Inmunológico , Melanoma/genética , Receptor de Muerte Celular Programada 1/metabolismo , Rayos Ultravioleta , Xerodermia Pigmentosa/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
7.
Cancer Cell Int ; 20: 164, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32435155

RESUMEN

BACKGROUND: The objective of the present study is to comprehensively evaluate the impact of the rs1800975 A/G polymorphism within the human xeroderma pigmentosum group A (XPA) gene on susceptibility to overall cancer by performing an integrative analysis of the current evidence. METHODS: We retrieved possible relevant publications from a total of six electronic databases (updated to April 2020) and selected eligible case-control studies for pooled assessment. P-values of association and odds ratio (OR) were calculated for the assessment of association effect. We also performed Begg's test and Egger's test, sensitivity analysis, false-positive report probability (FPRP) analysis, trial sequential analysis (TSA), and expression/splicing quantitative trait loci (eQTL/sQTL) analyses. RESULTS: In total, 71 case-control studies with 19,257 cases and 30,208 controls from 52 publications were included for pooling analysis. We observed an enhanced overall cancer susceptibility in cancer cases compared with negative controls in the Caucasian subgroup analysis for the genetic models of allelic G vs. A, carrier G vs. A, homozygotic GG vs AA, heterozygotic AG vs. AA, dominant AG + GG vs. AA and recessive GG vs. AA + AG (P < 0.05, OR > 1). A similar positive conclusion was also detected in the "skin cancer" or "skin basal cell carcinoma (BCC)" subgroup analysis of the Caucasian population. Our FPRP analysis and TSA results further confirmed the robustness of the conclusion. However, our eQTL/sQTL data did not support the strong links of rs1800975 with the gene expression or splicing changes of XPA in the skin tissue. In addition, even though we observed a decreased risk of lung cancer under the homozygotic, heterozygotic and dominant models (P < 0.05, OR < 1) and an enhanced risk of colorectal cancer under the allelic, homozygotic, heterozygotic, dominant (P < 0.05, OR > 1), our data from FPRP analysis and another pooling analysis with only the population-based controls in the Caucasian population did not support the strong links between the XPA rs1800975 A/G polymorphism and the risk of lung or colorectal cancer. CONCLUSIONS: Our findings provide evidence of the close relationship between the XPA rs1800975 A/G polymorphism and susceptibility to skin cancer in the Caucasian population. The potential effect of XPA rs1800975 on the risk of developing lung or colorectal cancer still merits the enrollment of larger well-scaled studies.

8.
BMC Cancer ; 20(1): 17, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31906898

RESUMEN

BACKGROUND: Germ cell tumours (GCTs) represent a highly curable malignity as they respond well to cisplatin (CDDP)-based chemotherapy. Nevertheless, a small proportion of GCT patients relapse or do not respond to therapy. As this might be caused by an increased capacity to repair CDDP-induced DNA damage, identification of DNA repair biomarkers predicting inadequate or aberrant response to CDDP, and thus poor prognosis for GCT patients, poses a challenge. The objective of this study is to examine the expression levels of the key nucleotide excision repair (NER) factors, XPA, ERCC1 and XPF, in GCT patients and cell lines. METHODS: Two hundred seven GCT patients' specimens with sufficient follow-up clinical-pathological data and pairwise combinations of CDDP-resistant and -sensitive GCT cell lines were included. Immunohistochemistry was used to detect the ERCC1, XPF and XPA protein expression levels in GCT patients' specimen and Western blot and qRT-PCR examined the protein and mRNA expression levels in GCT cell lines. RESULTS: GCT patients with low XPA expression had significantly better overall survival than patients with high expression (hazard ratio = 0.38, 95% confidence interval: 0.12-1.23, p = 0.0228). In addition, XPA expression was increased in the non-seminomatous histological subtype, IGCCCG poor prognosis group, increasing S stage, as well as the presence of lung, liver and non-pulmonary visceral metastases. Importantly, a correlation between inadequate or aberrant CDDP response and XPA expression found in GCT patients was also seen in GCT cell lines. CONCLUSIONS: XPA expression is an additional independent prognostic biomarker for stratifying GCT patients, allowing for improvements in decision-making on treatment for those at high risk of refractoriness or relapse. In addition, it could represent a novel therapeutic target in GCTs.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Reparación del ADN/genética , Neoplasias de Células Germinales y Embrionarias/metabolismo , Neoplasias Testiculares/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Resistencia a Antineoplásicos , Endonucleasas/genética , Endonucleasas/metabolismo , Humanos , Inmunohistoquímica , Masculino , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/metabolismo , Neoplasias de Células Germinales y Embrionarias/tratamiento farmacológico , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias de Células Germinales y Embrionarias/patología , Fosforilación , Pronóstico , Neoplasias Testiculares/tratamiento farmacológico , Neoplasias Testiculares/genética , Neoplasias Testiculares/patología , Proteína de la Xerodermia Pigmentosa del Grupo A/genética
9.
Int J Mol Sci ; 21(23)2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291532

RESUMEN

Cisplatin is a chemotherapeutic drug used for the treatment of a number of cancers. The efficacy of cisplatin relies on its binding to DNA and the induction of cytotoxic DNA damage to kill cancer cells. Cisplatin-based therapy is best known for curing testicular cancer; however, treatment of other solid tumors with cisplatin has not been as successful. Pre-clinical and clinical studies have revealed nucleotide excision repair (NER) as a major resistance mechanism against cisplatin in tumor cells. NER is a versatile DNA repair system targeting a wide range of helix-distorting DNA damage. The NER pathway consists of multiple steps, including damage recognition, pre-incision complex assembly, dual incision, and repair synthesis. NER proteins can recognize cisplatin-induced DNA damage and remove the damage from the genome, thereby neutralizing the cytotoxicity of cisplatin and causing drug resistance. Here, we review the molecular mechanism by which NER repairs cisplatin damage, focusing on the recent development of genome-wide cisplatin damage mapping methods. We also discuss how the expression and somatic mutations of key NER genes affect the response of cancer cells to cisplatin. Finally, small molecules targeting NER factors provide important tools to manipulate NER capacity in cancer cells. The status of research on these inhibitors and their implications in cancer treatment will be discussed.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Reparación del ADN , Resistencia a Antineoplásicos/genética , Animales , Línea Celular Tumoral , Aductos de ADN , Daño del ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Humanos
10.
Int J Mol Sci ; 21(6)2020 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-32235701

RESUMEN

The nucleotide excision repair (NER) pathway is activated in response to a broad spectrum of DNA lesions, including bulky lesions induced by platinum-based chemotherapeutic agents. Expression levels of NER factors and resistance to chemotherapy has been examined with some suggestion that NER plays a role in tumour resistance; however, there is a great degree of variability in these studies. Nevertheless, recent clinical studies have suggested Xeroderma Pigmentosum group A (XPA) protein, a key regulator of the NER pathway that is essential for the repair of DNA damage induced by platinum-based chemotherapeutics, as a potential prognostic and predictive biomarker for response to treatment. XPA functions in damage verification step in NER, as well as a molecular scaffold to assemble other NER core factors around the DNA damage site, mediated by protein-protein interactions. In this review, we focus on the interacting partners and mechanisms of regulation of the XPA protein. We summarize clinical oncology data related to this DNA repair factor, particularly its relationship with treatment outcome, and examine the potential of XPA as a target for small molecule inhibitors.


Asunto(s)
Reparación del ADN , Mapas de Interacción de Proteínas , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , Animales , Reparación del ADN/efectos de los fármacos , Descubrimiento de Drogas , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Mapas de Interacción de Proteínas/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Activación Transcripcional/efectos de los fármacos , Proteína de la Xerodermia Pigmentosa del Grupo A/antagonistas & inhibidores , Proteína de la Xerodermia Pigmentosa del Grupo A/genética
11.
Int J Cancer ; 145(11): 3163-3172, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31107542

RESUMEN

We examined whether 66 germline single-nucleotide polymorphisms (SNPs) in 10 candidate genes would predict clinical outcome in 316 patients with resectable locally advanced rectal cancer (LARC) enrolled in the ACCORD-12 phase III trial who were randomly treated with preoperative radiotherapy plus capecitabine (CAP45; n = 155) or dose-intensified radiotherapy plus capecitabine and oxaliplatin (CAPOX50; n = 161). The primary endpoint was tumor response according to the Dworak score. Multivariate logistic regression models adjusted on treatment arm and T stage determined the SNPs prognostic and predictive values for tumor response. In univariate analysis, five SNPs in ERCC2, XPA, MTHFR and ERCC1 were associated with the Dworak score in the CAPOX50 arm. In the overall population, interaction with treatment arm was significant for ERCC2 rs1799787 (pinteraction = 0.05) and XPA rs3176683 (pinteraction = 0.008), suggesting a predictive effect for response to oxaliplatin-based chemoradiotherapy (CRT). All but XPA rs3176683 had a prognostic effect on tumor response. In a multivariate model, interaction remained significant for XPA rs3176683 ([OR 7.33, 95% CI 1.40-38.23], pinteraction = 0.018) and the prognostic effect significant for ERCC2 rs1799787 ([OR 0.55, 95%CI 0.32-0.93], p = 0.027) and ERCC1 rs10412761 ([OR 0.57, 95%CI 0.34-0.98], p = 0.042). Patients with the T/G haplotype of rs1799787 and rs10412761 had a 60% decrease in odds of response (p < 0.001). None of the five SNPs were associated with toxicity, overall and disease-free survival. These data suggest that genetic variation in DNA repair genes influences response to preoperative CRT in LARC and identify patients who benefit from the addition of oxaliplatin to CRT.


Asunto(s)
Capecitabina/uso terapéutico , Quimioradioterapia/métodos , Oxaliplatino/uso terapéutico , Polimorfismo de Nucleótido Simple , Neoplasias del Recto/terapia , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Reparación del ADN , Femenino , Redes Reguladoras de Genes , Mutación de Línea Germinal , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Neoplasias del Recto/genética , Análisis de Supervivencia , Resultado del Tratamiento
12.
Clin Oral Investig ; 23(8): 3319-3329, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30498981

RESUMEN

OBJECTIVES: Nucleotide excision repair protein expression has been claimed to be responsible for platinum-based chemotherapy resistance. ERCC1, XPF and XPA, core proteins in DNA repair, were evaluated regarding their prognostic value in patients with head and neck squamous cell carcinoma by looking at overall survival and time to recurrence. MATERIALS AND METHODS: Tissue microarrays were constructed from 453 cases of HNSCC, including 222 oral (49%), 126 oropharyngeal (27.8%) and 105 laryngeal (23.2%) tumours. There were 284 XPF, 293 XPA and 294 ERCC1 specimens evaluable for protein expression analysis after immunohistochemical workup. Expression levels were dichotomised into high- and low-expressing groups. Outcomes for overall survival (OS) and time to recurrence (TTR) were analysed using the Kaplan-Meier method. RESULTS: No correlation between ERCC1, XPA and XPF expression and OS was found by looking at the overall patient cohort. However, subsite analysis revealed that high ERCC1 expression was associated with a significantly inferior OS in patients with SCC of the oral cavity (p = 0.028) and showed an independent predictive value in multivariate analysis (p = 0.0123). High XPA expression showed a significantly increased OS in patients with oropharyngeal SCC (p = 0.0386). Regarding XPF, no impact on OS in any subsite could be shown. CONCLUSIONS: While high ERCC1 expression functions as a predictive marker with decreased OS in patients with squamous cell carcinoma of the oral cavity, high XPA expression shows an inverse effect in the subsite of the oropharynx, which has not been described previously. CLINICAL RELEVANCE: ERCC1 and XPA might be candidates to overcome chemotherapy resistance in subtypes of HNSCC.


Asunto(s)
Reparación del ADN , Endonucleasas , Carcinoma de Células Escamosas de Cabeza y Cuello , Biomarcadores de Tumor , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Femenino , Humanos , Masculino , Recurrencia Local de Neoplasia , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
13.
BMC Pulm Med ; 18(1): 42, 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29506519

RESUMEN

BACKGROUND: There is a need for more powerful methods to identify low-effect SNPs that contribute to hereditary COPD pathogenesis. We hypothesized that SNPs contributing to COPD risk through cis-regulatory effects are enriched in genes comprised by bronchial epithelial cell (BEC) expression patterns associated with COPD. METHODS: To test this hypothesis, normal BEC specimens were obtained by bronchoscopy from 60 subjects: 30 subjects with COPD defined by spirometry (FEV1/FVC < 0.7, FEV1% < 80%), and 30 non-COPD controls. Targeted next generation sequencing was used to measure total and allele-specific expression of 35 genes in genome maintenance (GM) genes pathways linked to COPD pathogenesis, including seven TP53 and CEBP transcription factor family members. Shrinkage linear discriminant analysis (SLDA) was used to identify COPD-classification models. COPD GWAS were queried for putative cis-regulatory SNPs in the targeted genes. RESULTS: On a network basis, TP53 and CEBP transcription factor pathway gene pair network connections, including key DNA repair gene ERCC5, were significantly different in COPD subjects (e.g., Wilcoxon rank sum test for closeness, p-value = 5.0E-11). ERCC5 SNP rs4150275 association with chronic bronchitis was identified in a set of Lung Health Study (LHS) COPD GWAS SNPs restricted to those in putative regulatory regions within the targeted genes, and this association was validated in the COPDgene non-hispanic white (NHW) GWAS. ERCC5 SNP rs4150275 is linked (D' = 1) to ERCC5 SNP rs17655 which displayed differential allelic expression (DAE) in BEC and is an expression quantitative trait locus (eQTL) in lung tissue (p = 3.2E-7). SNPs in linkage (D' = 1) with rs17655 were predicted to alter miRNA binding (rs873601). A classifier model that comprised gene features CAT, CEBPG, GPX1, KEAP1, TP73, and XPA had pooled 10-fold cross-validation receiver operator characteristic area under the curve of 75.4% (95% CI: 66.3%-89.3%). The prevalence of DAE was higher than expected (p = 0.0023) in the classifier genes. CONCLUSIONS: GM genes comprised by COPD-associated BEC expression patterns were enriched for SNPs with cis-regulatory function, including a putative cis-rSNP in ERCC5 that was associated with COPD risk. These findings support additional total and allele-specific expression analysis of gene pathways with high prior likelihood for involvement in COPD pathogenesis.


Asunto(s)
Bronquios/patología , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Células Epiteliales/metabolismo , Proteínas Nucleares/genética , Enfermedad Pulmonar Obstructiva Crónica/genética , Factores de Transcripción/genética , Alelos , Estudios de Casos y Controles , Femenino , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Enfermedad Pulmonar Obstructiva Crónica/patología , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ARN
14.
Proc Natl Acad Sci U S A ; 112(27): 8272-7, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26100901

RESUMEN

Nucleotide excision repair (NER) is responsible for the removal of a large variety of structurally diverse DNA lesions. Mutations of the involved proteins cause the xeroderma pigmentosum (XP) cancer predisposition syndrome. Although the general mechanism of the NER process is well studied, the function of the XPA protein, which is of central importance for successful NER, has remained enigmatic. It is known, that XPA binds kinked DNA structures and that it interacts also with DNA duplexes containing certain lesions, but the mechanism of interactions is unknown. Here we present two crystal structures of the DNA binding domain (DBD) of the yeast XPA homolog Rad14 bound to DNA with either a cisplatin lesion (1,2-GG) or an acetylaminofluorene adduct (AAF-dG). In the structures, we see that two Rad14 molecules bind to the duplex, which induces DNA melting of the duplex remote from the lesion. Each monomer interrogates the duplex with a ß-hairpin, which creates a 13mer duplex recognition motif additionally characterized by a sharp 70° DNA kink at the position of the lesion. Although the 1,2-GG lesion stabilizes the kink due to the covalent fixation of the crosslinked dG bases at a 90° angle, the AAF-dG fully intercalates into the duplex to stabilize the kinked structure.


Asunto(s)
Daño del ADN , Enzimas Reparadoras del ADN/química , Reparación del ADN , Proteínas de Saccharomyces cerevisiae/química , 2-Acetilaminofluoreno/química , 2-Acetilaminofluoreno/metabolismo , Secuencia de Aminoácidos , Cisplatino/química , Cisplatino/metabolismo , Cristalografía por Rayos X , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , ADN de Hongos/química , ADN de Hongos/genética , ADN de Hongos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Desnaturalización de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Termodinámica , Temperatura de Transición
15.
Chembiochem ; 18(14): 1379-1382, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28444956

RESUMEN

Aromatic amines are strongly carcinogenic. They are activated in the liver to give reactive nitrenium ions that react with nucleobases within the DNA duplex. The reaction occurs predominantly at the C8 position of the dG base, thereby giving C8-acetyl-aryl- or C8-aryl-dG adducts in an electrophilic aromatic substitution reaction. Alternatively, reaction with the exocyclic 2-NH2 group is observed. Although the C8 adducts retain base-pairing properties, base pairing is strongly compromised in the case of the N2 adducts. Here we show crystal structures of two DNA lesions, N2 -acetylnaphthyl-dG and C8-fluorenyl-dG, within a DNA duplex recognized by the repair protein Rad14. The structures confirm that two molecules of the repair protein recognize the lesion and induce a 72 or 78° kink at the site of the damage. Importantly, the same overall kinked structure is induced by binding of the repair proteins, although the structurally different lesions result in distinct stacking interactions of the lesions within the duplex. The results suggest that the repair protein XPA/Rad14 is a sensor that recognizes flexibility. The protein converts the information that structurally different lesions are present in the duplex into a unifying sharply kinked recognition motif.


Asunto(s)
Daño del ADN , Enzimas Reparadoras del ADN/metabolismo , ADN/química , ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Especificidad por Sustrato
16.
Mol Carcinog ; 56(2): 447-463, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27253463

RESUMEN

The enhancer of zeste homolog 2 (EZH2) is involved in a number of fundamental pathological processes of cancer. However, its role in DNA repair pathway is still unclear. Here, we have identified XPA as a novel target gene of EZH2 via a DNA repair pathway PCR array. XPA plays a pivot role in nucleotide excision repair (NER). The expression of XPA was significantly increased by EZH2 specific inhibitor GSK126 or lentiviral shEZH2 in nasopharyngeal carcinoma (NPC) CNE and 8F cell lines. Chromatin immunoprecipitation assay demonstrated that EZH2 catalyzes H3K27 trimethylation at the XPA promoters. Furthermore, we validated the negative correlation of EZH2 and XPA in a NPC tissue microarray by immunohistochemistry staining. We also found that high expression of EZH2 was positively correlated with advanced T, N, and AJCC stage of NPC; and low expression of XPA was positively correlated with advanced T and N stage. In NPC cell lines, increased XPA expression by EZH2 inhibition resulted in a more rapid removal of UVC induced 6-4PP- and CPD-DNA adducts, as well as enhanced efficiency of DNA repair after UVC irradiation as detected by the Comet assay and immunofluorescence staining of γH2Ax. Consistently, increased cell clonogenic survival, decreased apoptosis, and necrosis after UVC irradiation, and increased resistance to DNA damaging agent cisplatin was also observed in EZH2 inhibited cells. These results illustrate that EZH2 may promote carcinogenesis and cancer development of NPC by transcriptional repression of XPA gene and inactivation of NER pathway. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Carcinoma/genética , Carcinoma/patología , Reparación del ADN , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Nasofaringe/patología , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Antineoplásicos/farmacología , Carcinoma/tratamiento farmacológico , Carcinoma/metabolismo , Línea Celular Tumoral , Cisplatino/farmacología , Regulación hacia Abajo , Proteína Potenciadora del Homólogo Zeste 2/análisis , Proteína Potenciadora del Homólogo Zeste 2/genética , Código de Histonas , Humanos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Nasofaringe/efectos de los fármacos , Nasofaringe/metabolismo , Regiones Promotoras Genéticas , Proteína de la Xerodermia Pigmentosa del Grupo A/análisis , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
17.
Toxicol Appl Pharmacol ; 331: 108-115, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28552776

RESUMEN

Arsenite directly binds to the zinc finger domains of the DNA repair protein poly (ADP ribose) polymerase (PARP)-1, and inhibits PARP-1 activity in the base excision repair (BER) pathway. PARP inhibition by arsenite enhances ultraviolet radiation (UVR)-induced DNA damage in keratinocytes, and the increase in DNA damage is reduced by zinc supplementation. However, little is known about the effects of arsenite and zinc on the zinc finger nucleotide excision repair (NER) protein xeroderma pigmentosum group A (XPA). In this study, we investigated the difference in response to arsenite exposure between XPA and PARP-1, and the differential effectiveness of zinc supplementation in restoring protein DNA binding and DNA damage repair. Arsenite targeted both XPA and PARP-1 in human keratinocytes, resulting in zinc loss from each protein and a pronounced decrease in XPA and PARP-1 binding to chromatin as demonstrated by Chip-on-Western assays. Zinc effectively restored DNA binding of PARP-1 and XPA to chromatin when zinc concentrations were equal to those of arsenite. In contrast, zinc was more effective in rescuing arsenite-augmented direct UVR-induced DNA damage than oxidative DNA damage. Taken together, our findings indicate that arsenite interferes with PARP-1 and XPA binding to chromatin, and that zinc supplementation fully restores DNA binding activity to both proteins in the cellular context. Interestingly, rescue of arsenite-inhibited DNA damage repair by supplemental zinc was more sensitive for DNA damage repaired by the XPA-associated NER pathway than for the PARP-1-dependent BER pathway. This study expands our understanding of arsenite's role in DNA repair inhibition and co-carcinogenesis.


Asunto(s)
Arsenitos/farmacología , Queratinocitos/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , Zinc/farmacología , Línea Celular , Daño del ADN/efectos de los fármacos , Daño del ADN/fisiología , Reparación del ADN/efectos de los fármacos , Reparación del ADN/fisiología , Relación Dosis-Respuesta a Droga , Humanos , Queratinocitos/efectos de los fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología
18.
Tumour Biol ; 39(2): 1010428317691679, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28222669

RESUMEN

Bladder cancer is the most common malignant tumor of urinary system, largely resulting from failure of repair of DNA damage to the environmental insults. The function of XPA in nucleotide excision repair pathway has been well documented. However, participation of XPA in the repair of DNA double-strand break remains unknown. Here, we reported that bladder cancer expressed low XPA levels compared to adjacent non-tumor bladder tissue, and this phenotype was closely associated with chromosomal aberrations. Moreover, downregulated XPA appeared to increase incidence of chromosome aberration. XPA reduction increased cell viability of a bladder cancer cell line RT4, while XPA re-expression decreased the cell viability of RT4 cells. Since high mutation frequency is the basis of mutations of oncogenes and anti-oncogenes, and may be the essence of bladder cancer susceptibility, our study suggests that downregulated XPA may promote carcinogenesis of bladder cancer via impairment of DNA repair.


Asunto(s)
Carcinogénesis/genética , Reparación del ADN , Neoplasias de la Vejiga Urinaria/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Anciano , Proteína Quinasa CDC2 , Ciclo Celular/genética , Línea Celular Tumoral , Aberraciones Cromosómicas , Ensayo Cometa , Ciclina B/genética , Ciclina B/metabolismo , Ciclina E/genética , Ciclina E/metabolismo , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Roturas del ADN de Doble Cadena , Regulación hacia Abajo , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Neoplasias de la Vejiga Urinaria/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
19.
Adv Exp Med Biol ; 996: 41-54, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29124689

RESUMEN

The sensitivity of Xeroderma pigmentosa (XP) patients to sunlight has spurred the discovery and genetic and biochemical analysis of the eight XP gene products (XPA-XPG plus XPV) responsible for this disorder. These studies also have served to elucidate the nucleotide excision repair (NER) process, especially the critical role played by the XPA protein. More recent studies have shown that NER also involves numerous other proteins normally employed in DNA metabolism and cell cycle regulation. Central among these is ataxia telangiectasia and Rad3-related (ATR), a protein kinase involved in intracellular signaling in response to DNA damage, especially DNA damage-induced replicative stresses. This review summarizes recent findings on the interplay between ATR as a DNA damage signaling kinase and as a novel ligand for intrinsic cell death proteins to delay damage-induced apoptosis, and on ATR's regulation of XPA and the NER process for repair of UV-induced DNA adducts. ATR's regulatory role in the cytosolic-to-nuclear translocation of XPA will be discussed. In addition, recent findings elucidating a non-NER role for XPA in DNA metabolism and genome stabilization at ds-ssDNA junctions, as exemplified in prematurely aging progeroid cells, also will be reviewed.


Asunto(s)
Núcleo Celular/efectos de la radiación , Daño del ADN , Reparación del ADN/efectos de la radiación , Luz Solar/efectos adversos , Rayos Ultravioleta/efectos adversos , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , Xerodermia Pigmentosa/enzimología , Animales , Apoptosis/efectos de la radiación , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Núcleo Celular/enzimología , Núcleo Celular/patología , Predisposición Genética a la Enfermedad , Humanos , Fenotipo , Transducción de Señal/efectos de la radiación , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/patología , Proteína de la Xerodermia Pigmentosa del Grupo A/genética
20.
Tumour Biol ; 37(2): 2127-36, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26346170

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is the predominant type of esophageal cancer in Asia. Cisplatin is commonly used in chemoradiation for unresectable ESCC patients. However, the treatment efficacy is diminished in patients with established cisplatin resistance. To understand the mechanism leading to the development of cisplatin resistance in ESCC, we compared the proteomes from a cisplatin-resistant HKESC-2R cell line with its parental-sensitive counterpart HKESC-2 to identify key molecule involved in this process. Mass spectrometry analysis detected 14-3-3σ as the most abundant molecule expressed exclusively in HKESC-2R cells, while western blot result further validated it to be highly expressed in HKESC-2R cells when compared to HKESC-2 cells. Ectopic expression of 14-3-3σ increased cisplatin resistance in HKESC-2 cells, while its suppression sensitized SLMT-1 cells to cisplatin. Among the molecules involved in drug detoxification, drug transportation, and DNA repair, the examined DNA repair molecules HMGB1 and XPA were found to be highly expressed in HKESC-2R cells with high 14-3-3σ expression. Subsequent manipulation of 14-3-3σ by both overexpression and knockdown approaches concurrently altered the expression of HMGB1 and XPA. 14-3-3σ, HMGB1, and XPA were preferentially expressed in cisplatin-resistant SLMT-1 cells when compared to those more sensitive to cisplatin. In ESCC patients with poor response to cisplatin-based chemoradiation, their pre-treatment tumors expressed higher expression of HMGB1 than those with response to such treatment. In summary, our results demonstrate that 14-3-3σ induces cisplatin resistance in ESCC cells and that 14-3-3σ-mediated cisplatin resistance involves DNA repair molecules HMGB1 and XPA. Results from this study provide evidences for further work in researching the potential use of 14-3-3σ and DNA repair molecules HMGB1 and XPA as biomarkers and therapeutic targets for ESCC.


Asunto(s)
Proteínas 14-3-3/metabolismo , Antineoplásicos/farmacología , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/metabolismo , Cisplatino/farmacología , Resistencia a Antineoplásicos/fisiología , Neoplasias Esofágicas/metabolismo , Exorribonucleasas/metabolismo , Western Blotting , Cromatografía Líquida de Alta Presión , Reparación del ADN/efectos de los fármacos , Reparación del ADN/fisiología , Carcinoma de Células Escamosas de Esófago , Técnicas de Silenciamiento del Gen , Proteína HMGB1/metabolismo , Humanos , Espectrometría de Masas , Reacción en Cadena de la Polimerasa , Transcriptoma , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda