Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
New Phytol ; 241(2): 861-877, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37897070

RESUMEN

In plants, exoribonuclease-resistant RNAs (xrRNAs) are produced by many viruses. Whereas xrRNAs contribute to the pathogenicity of these viruses, the role of xrRNAs in the virus infectious cycle remains elusive. Here, we show that xrRNAs produced by a benyvirus (a multipartite RNA virus with four genomic segments) in plants are involved in the formation of monocistronic coat protein (CP)-encoding chimeric RNAs. Naturally occurring chimeric RNAs, we discovered, are composed of 5'-end of RNA 2 and 3'-end of either RNA 3 or RNA 4 bearing conservative exoribonuclease-resistant 'coremin' region. Using computational tools and site-directed mutagenesis, we show that de novo formation of chimeric RNAs requires intermolecular base-pairing interaction between 'coremin' and 3'-proximal part of the CP gene of RNA 2 as well as a stem-loop structure immediately adjacent to the CP gene. Moreover, knockdown of the expression of the XRN4 gene, encoding 5'→3' exoribonuclease, inhibits biogenesis of both xrRNAs and chimeric RNAs. Our findings suggest a novel mechanism involving a unique tropology of the intermolecular base-pairing complex between xrRNAs and RNA2 to promote formation of chimeric RNAs in plants. XrRNAs, essential for chimeric RNA biogenesis, are generated through the action of cytoplasmic Xrn 4 5'→3' exoribonuclease conserved in all plant species.


Asunto(s)
Exorribonucleasas , ARN Viral , ARN Viral/genética , ARN Viral/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , ARN no Traducido/genética
2.
J Virol ; 96(3): e0181521, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34851690

RESUMEN

In recent years, a new class of viral noncoding subgenomic RNA (ncsgRNA) has been identified. This RNA is generated as a stable degradation product via an exoribonuclease-resistant RNA (xrRNA) structure, which blocks the progression of 5'→3' exoribonuclease on viral RNAs in infected cells. Here, we assess the effects of the ncsgRNA of red clover necrotic mosaic virus (RCNMV), called SR1f, in infected plants. We demonstrate the following: (i) the absence of SR1f reduces symptoms and decreases viral RNA accumulation in Nicotiana benthamiana and Arabidopsis thaliana plants; (ii) SR1f has an essential function other than suppression of RNA silencing; and (iii) the cytoplasmic exoribonuclease involved in mRNA turnover, XRN4, is not required for SR1f production or virus infection. A comparative transcriptomic analysis in N. benthamiana infected with wild-type RCNMV or an SR1f-deficient mutant RCNMV revealed that wild-type RCNMV infection, which produces SR1f and much higher levels of virus, has a greater and more significant impact on cellular gene expression than the SR1f-deficient mutant. Upregulated pathways include plant hormone signaling, plant-pathogen interaction, MAPK signaling, and several metabolic pathways, while photosynthesis-related genes were downregulated. We compare this to host genes known to participate in infection by other tombusvirids. Viral reads revealed a 10- to 100-fold ratio of positive to negative strand, and the abundance of reads of both strands mapping to the 3' region of RCNMV RNA1 support the premature transcription termination mechanism of synthesis for the coding sgRNA. These results provide a framework for future studies of the interactions and functions of noncoding RNAs of plant viruses. IMPORTANCE Knowledge of how RNA viruses manipulate host and viral gene expression is crucial to our understanding of infection and disease. Unlike viral protein-host interactions, little is known about the control of gene expression by viral RNA. Here, we begin to address this question by investigating the noncoding subgenomic RNA (ncsgRNA) of red clover necrotic mosaic virus (RCNMV), called SR1f. Similar exoribonuclease-resistant RNAs of flaviviruses are well studied, but the roles of plant viral ncsgRNAs, and how they arise, are poorly understood. Surprisingly, we find the likely exonuclease candidate, XRN4, is not required to generate SR1f, and we assess the effects of SR1f on virus accumulation and symptom development. Finally, we compare the effects of infection by wild-type RCNMV versus an SR1f-deficient mutant on host gene expression in Nicotiana benthamiana, which reveals that ncsgRNAs such as SR1f are key players in virus-host interactions to facilitate productive infection.


Asunto(s)
Regulación Viral de la Expresión Génica , Genoma Viral , Enfermedades de las Plantas/virología , ARN no Traducido , ARN Viral , Tombusviridae/fisiología , Biología Computacional/métodos , Técnicas de Silenciamiento del Gen , Ontología de Genes , Interacciones Huésped-Patógeno/genética , Sistemas de Lectura Abierta , Fenotipo , Virus de Plantas , Transcriptoma , Replicación Viral
3.
J Virol ; 95(20): e0103421, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34346764

RESUMEN

One of the many challenges faced by RNA viruses is the maintenance of their genomes during infections of host cells. Members of the family Tombusviridae are plus-strand RNA viruses with unmodified triphosphorylated genomic 5' termini. The tombusvirus Carnation Italian ringspot virus was used to investigate how it protects its RNA genome from attack by 5'-end-targeting degradation enzymes. In vivo and in vitro assays were employed to determine the role of genomic RNA structure in conferring protection from the 5'-to-3' exoribonuclease Xrn. The results revealed that (i) the CIRV RNA genome is more resistant to Xrn than its sg mRNAs, (ii) the genomic 5'-untranslated region (UTR) folds into a compact RNA structure that effectively and independently prevents Xrn access, (iii) the RNA structure limiting 5' access is formed by secondary and tertiary interactions that function cooperatively, (iv) the structure is also able to block access of RNA pyrophosphohydrolase to the genomic 5' terminus, and (v) the RNA structure does not stall an actively digesting Xrn. Based on its proficiency at impeding Xrn 5' access, we have termed this 5'-terminal structure an Xrn-evading RNA, or xeRNA. These and other findings demonstrate that the 5'UTR of the CIRV RNA genome folds into a complex structural conformation that helps to protect its unmodified 5' terminus from enzymatic decay during infections. IMPORTANCE The plus-strand RNA genomes of plant viruses in the large family Tombusviridae are not 5' capped. Here, we explored how a species in the type genus Tombusvirus protects its genomic 5' end from cellular nuclease attack. Our results revealed that the 5'-terminal sequence of the CIRV genome folds into a complex RNA structure that limits access of the 5'-to-3' exoribonuclease Xrn, thereby protecting it from processive degradation. The RNA conformation also impeded access of RNA pyrophosphohydrolase, which converts 5'-triphosphorylated RNA termini into 5'-monophosphorylated forms, the preferred substrate for Xrn. This study represents the first report of a higher-order RNA structure in an RNA plant virus genome independently conferring resistance to 5'-end-attacking cellular enzymes.


Asunto(s)
Regiones no Traducidas 5'/genética , Estabilidad del ARN/genética , Tombusvirus/genética , Regiones no Traducidas 3'/genética , Secuencia de Bases/genética , Exorribonucleasas , Genoma Viral/genética , Conformación de Ácido Nucleico , Biosíntesis de Proteínas/genética , Estabilidad del ARN/fisiología , Virus ARN/genética , ARN Mensajero/metabolismo , ARN Viral/genética , Ribonucleasas/metabolismo , Relación Estructura-Actividad , Tombusvirus/metabolismo , Proteínas Virales/metabolismo
4.
New Phytol ; 224(2): 789-803, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31292958

RESUMEN

RNA processing and decay pathways have important impacts on RNA viruses, particularly animal-infecting bunyaviruses, which utilize a cap-snatching mechanism to translate their mRNAs. However, their effects on plant-infecting bunyaviruses have not been investigated. The roles of mRNA degradation and non-sense-mediated decay components, including DECAPPING 2 (DCP2), EXORIBONUCLEASE 4 (XRN4), ASYMMETRIC LEAVES2 (AS2) and UP-FRAMESHIFT 1 (UPF1) were investigated in infection of Arabidopsis thaliana by several RNA viruses, including the bunyavirus, tomato spotted wilt virus (TSWV). TSWV infection on mutants with decreased or increased RNA decapping ability resulted in increased and decreased susceptibility, respectively. By contrast, these mutations had the opposite, or no, effect on RNA viruses that use different mRNA capping strategies. Consistent with this, the RNA capping efficiency of TSWV mRNA was higher in a dcp2 mutant. Furthermore, the TSWV N protein partially colocalized with RNA processing body (PB) components and altering decapping activity by heat shock or coinfection with another virus resulted in corresponding changes in TSWV accumulation. The present results indicate that TSWV infection in plants depends on its ability to snatch caps from mRNAs destined for decapping in PBs and that genetic or environmental alteration of RNA processing dynamics can affect infection outcomes.


Asunto(s)
Arabidopsis/virología , Enfermedades de las Plantas/virología , ARN Viral/fisiología , Tospovirus/fisiología , Proteínas Virales/metabolismo , Regulación Viral de la Expresión Génica/fisiología , Calor , Mutación , Nicotiana/virología , Proteínas Virales/genética , Replicación Viral
5.
Plant J ; 73(1): 50-62, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22974464

RESUMEN

Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality control system that identifies and degrades mRNAs containing premature termination codons (PTCs). If translation terminates at a PTC, the UPF1 NMD factor binds the terminating ribosome and recruits UPF2 and UPF3 to form a functional NMD complex, which triggers the rapid decay of the PTC-containing transcript. Although NMD deficiency is seedling lethal in plants, the mechanism of plant NMD remains poorly understood. To understand how the formation of the NMD complex leads to transcript decay we functionally mapped the UPF1 and SMG7 plant NMD factors, the putative key players of NMD target degradation. Our data indicate that the cysteine-histidine-rich (CH) and helicase domains of UPF1 are only essential for the early steps of NMD, whereas the heavily phosphorylated N- and C-terminal regions play a redundant but essential role in the target transcript degradation steps of NMD. We also show that both the N- and the C-terminal regions of SMG7 are essential for NMD. The N terminus contains a phosphoserine-binding domain that is required for the early steps of NMD, whereas the C terminus is required to trigger the degradation of NMD target transcripts. Moreover, SMG7 is a P-body component that can also remobilize UPF1 from the cytoplasm into processing bodies (P bodies). We propose that the N- and C-terminal phosphorylated regions of UPF1 recruit SMG7 to the functional NMD complex, and then SMG7 transports the PTC-containing transcripts into P bodies for degradation.


Asunto(s)
Degradación de ARNm Mediada por Codón sin Sentido , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Proteínas Portadoras/fisiología , Exorribonucleasas/fisiología , Degradación de ARNm Mediada por Codón sin Sentido/fisiología , Fosforilación , Proteínas de Plantas/fisiología , ARN Helicasas/fisiología
6.
Genes (Basel) ; 9(12)2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30563022

RESUMEN

Auxin is a major hormone which plays crucial roles in instructing virtually all developmental programs of plants. Its signaling depends primarily on its perception by four partially redundant receptors of the TIR1/AFB2 clade (TAARs), which subsequently mediate the specific degradation of AUX/IAA transcriptional repressors to modulate the expression of primary auxin-responsive genes. Auxin homeostasis depends on complex regulations at the level of synthesis, conjugation, and transport. However, the mechanisms and principles involved in the homeostasis of its signaling are just starting to emerge. We report that xrn4 mutants exhibit pleiotropic developmental defects and strong auxin hypersensitivity phenotypes. We provide compelling evidences that these phenotypes are directly caused by improper regulation of TAAR transcript degradation. We show that the cytoplasmic 5'-3' exoribonuclease XRN4 is required for auxin response. Thus, our work identifies new targets of XRN4 and a new level of regulation for TAAR transcripts important for auxin response and for plant development.

7.
Gene ; 639: 44-51, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-28987346

RESUMEN

Plant Xrn4 is a cytoplasmic 5' to 3' exoribonuclease that is reported to play an antiviral role during viral infection as demonstrated by experiments using the Xrn4s of Nicotiana benthamiana and Arabidopsis thaliana. Meanwhile, little is known about the anti-viral activity of Xrn4 from other plants. Here, we cloned the cytoplasmic Xrn4 gene of Oryza sativa (OsXrn4), and demonstrated that its over-expression elevated the 5'-3' exoribonuclease activity in rice plants and conferred resistance to rice stripe virus, a negative-sense RNA virus causing serious losses in East Asia. The accumulation of viral RNAs was also decreased. Moreover, the ectopic expression of OsXrn4 in N. benthamiana also conferred plant resistance to tobacco mosaic virus infection. These results show that the monocotyledonous plant cytoplasmic Xrn4 also has an antiviral role and thus provides a strategy for producing transgenic plants resistant to viral infection.


Asunto(s)
Resistencia a la Enfermedad , Genes de Plantas , Oryza/genética , Enfermedades de las Plantas/inmunología , Virus del Mosaico del Tabaco/patogenicidad , Secuencia de Aminoácidos , Clonación Molecular , Oryza/inmunología , Oryza/virología , Enfermedades de las Plantas/virología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Homología de Secuencia de Aminoácido , Nicotiana/virología
8.
Front Microbiol ; 6: 1508, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26779163

RESUMEN

Bamboo mosaic virus (BaMV) has a 6.4-kb (+) sense RNA genome with a 5' cap and a 3' poly(A) tail. ORF1 of this potexvirus encodes a 155-kDa replication protein responsible for the viral RNA replication/transcription and 5' cap formation. To learn more about the replication complex of BaMV, a protein preparation enriched in the 155-kDa replication protein was obtained from Nicotiana benthamiana by a protocol involving agroinfiltration and immunoprecipitation. Subsequent analysis by SDS-PAGE and mass spectrometry identified a handful of host proteins that may participate in the viral replication. Among them, the cytoplasmic exoribonuclease NbXRN4 particularly caught our attention. NbXRN4 has been shown to have an antiviral activity against Tomato bushy stunt virus and Tomato mosaic virus. In Arabidopsis, the enzyme could reduce RNAi- and miRNA-mediated RNA decay. This study found that downregulation of NbXRN4 greatly decreased BaMV accumulation, while overexpression of NbXRN4 resulted in an opposite effect. Mutations at the catalytically essential residues abolished the function of NbXRN4 in the increase of BaMV accumulation. Nonetheless, NbXRN4 was still able to promote BaMV accumulation in the presence of the RNA silencing suppressor P19. In summary, the replication efficiency of BaMV may be improved by the exoribonuclease activity of NbXRN4.

9.
Enzymes ; 31: 31-52, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-27166439

RESUMEN

The exosome is a large protein complex mediating 3'-5' RNA degradation in both nucleus and cytosol of all eukaryotic cells. It consists of nine conserved subunits forming the core complex, which associates with ribonucleolytic enzymes and other cofactors such as RNA-binding proteins or RNA helicases. Both the composition of the core exosome and its general role as a major player in RNA maturation, RNA surveillance, and RNA turnover are largely conserved between plants, human, and fungi. However, plant exosomes have some peculiar and interesting features including a catalytically active core subunit, or a certain extent of functional specialization among both core subunits and putative exosome cofactors.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda