Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
BMC Plant Biol ; 24(1): 589, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38902627

RESUMEN

BACKGROUND: The plant-specific YABBY transcription factor family plays important roles in plant growth and development, particularly leaf growth, floral organ formation, and secondary metabolite synthesis. RESULTS: Here, we identified a total of 13 OfYABBY genes from the Osmanthus fragrans genome. These 13 OfYABBY genes were divided into five subfamilies through phylogenetic analysis, and genes in the same subfamily showed similar gene structures and conserved protein motifs. Gene duplication promoted the expansion of the OfYABBY family in O. fragrans. Tissue-specific expression analysis showed that the OfYABBY family was mainly expressed in O. fragrans leaves and floral organs. To better understand the role of OfYABBY genes in plant growth and development, OfYABBY12 was selected for heterologous stable overexpression in tobacco, and OfYABBY12-overexpressing tobacco leaves released significantly fewer volatile organic compounds than wild-type tobacco leaves. Overexpression of OfYABBY12 led to the downregulation of NtCCD1/4 and decreased ß-ionone biosynthesis. Correspondingly, a dual-luciferase assay showed that OfYABBY12 negatively regulated the expression of OfCCD4, which promotes ß-ionone synthesis. Furthermore, tobacco leaves overexpressing OfYABBY12 were curled and wrinkled and had significantly reduced leaf thickness and leaf inclusions and significantly extended flower pistils (styles). CONCLUSION: Overall, the results suggest that the OfYABBY gene family may influence the biosynthesis of the floral scent (especially ß-ionone) in O. fragrans and may regulate leaf morphogenesis and lateral organs.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Oleaceae , Hojas de la Planta , Proteínas de Plantas , Factores de Transcripción , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/anatomía & histología , Oleaceae/genética , Oleaceae/crecimiento & desarrollo , Oleaceae/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/anatomía & histología , Flores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Nicotiana/metabolismo , Odorantes , Compuestos Orgánicos Volátiles/metabolismo
2.
BMC Plant Biol ; 24(1): 114, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365570

RESUMEN

BACKGROUND: The small YABBY plant-specific transcription factor has a prominent role in regulating plant growth progress and responding to abiotic stress. RESULTS: Here, a total of 16 PvYABBYs from switchgrass (Panicum virgatum L.) were identified and classified into four distinct subgroups. Proteins within the same subgroup exhibited similar conserved motifs and gene structures. Synteny analyses indicated that segmental duplication contributed to the expansion of the YABBY gene family in switchgrass and that complex duplication events occurred in rice, maize, soybean, and sorghum. Promoter regions of PvYABBY genes contained numerous cis-elements related to stress responsiveness and plant hormones. Expression profile analysis indicated higher expression levels of many PvYABBY genes during inflorescence development and seed maturation, with lower expression levels during root growth. Real-time quantitative PCR analysis demonstrated the sensitivity of multiple YABBY genes to PEG, NaCl, ABA, and GA treatments. The overexpression of PvYABBY14 in Arabidopsis resulted in increased root length after treatment with GA and ABA compared to wild-type plants. CONCLUSIONS: Taken together, our study provides the first genome-wide overview of the YABBY transcription factor family, laying the groundwork for understanding the molecular basis and regulatory mechanisms of PvYABBY14 in response to ABA and GA responses in switchgrass.


Asunto(s)
Arabidopsis , Panicum , Panicum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas , Genes de Plantas , Estrés Fisiológico/genética , Factores de Transcripción/genética , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/metabolismo
3.
J Exp Bot ; 75(7): 1919-1933, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37988572

RESUMEN

The determination of fruit size and shape are of considerable interest in horticulture and developmental biology. Fruit typically exhibits three-dimensional structures characterized by geometric features that are dependent on the genotype. Although minor developmental variations have been recognized, few studies have fully visualized and measured these variations throughout fruit growth. Here, a high-resolution 3D scanner was used to investigate the fruit development of 51 persimmon (Diospyros kaki) cultivars with various complex shapes. We obtained 2380 3D models that fully represented fruit appearance, and enabled precise and automated measurements of shape features throughout fruit development, including horizontal and vertical grooves, length-to-width ratio, and roundness. The 3D fruit model analysis identified key stages that determined the shape attributes at maturity. Typically, genetic diversity was found in vertical groove development, and these grooves could be filled by tissue expansion in the carpel fusion zone during fruit development. In addition, transcriptome analysis of fruit tissues from groove and non-groove tissues revealed gene co-expression networks that were highly associated with groove depth variation. The presence of YABBY homologs was most closely associated with groove depth and indicated the possibility that this pathway is a key molecular contributor to vertical groove depth variation. Overall, our results revealed deterministic patterns of complex shape traits in persimmon fruit and showed that different growth patterns among tissues are the main factor contributing to the shape of both vertical and horizontal grooves.


Asunto(s)
Diospyros , Diospyros/genética , Frutas/metabolismo , Redes Reguladoras de Genes , Membrana Celular
4.
Crit Rev Biotechnol ; : 1-22, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830825

RESUMEN

Transcription factors often contain several different functional regions, including DNA-binding domains, and play an important regulatory role in plant growth, development, and the response to external stimuli. YABYY transcription factors are plant-specific and contain two special domains (N-terminal C2C2 zinc-finger and C-terminal helix-loop-helix domains) that are indispensable. Specifically, YABBY transcription factors play key roles in maintaining the polarity of the adaxial-abaxial axis of leaves, as well as in regulating: vegetative and reproductive growth, hormone response, stress resistance, and secondary metabolite synthesis in plants. Recently, the identification and functional verification of YABBY transcription factors in different plants has increased. On this basis, we summarize recent advances in the: identification, classification, expression patterns, and functions of the YABBY transcription factor family. The normal expression and function of YABBY transcription factors rely on a regulatory network that is established through the interaction of YABBY family members with other genes. We discuss the interaction network of YABBY transcription factors during leaf polarity establishment and floral organ development. This article provides a reference for research on YABBY function, plant genetic improvement, and molecular breeding.

5.
Int J Mol Sci ; 25(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38791245

RESUMEN

The tomato fruit is a complex organ and is composed of various structures from the inside out, such as columella, septum, and placenta. However, our understanding of the development and function of these internal structures remains limited. In this study, we identified a plant-specific YABBY protein, SlYABBY2a, in the tomato (Solanum lycopersicum). SlYABBY2a exhibits relatively high expression levels among the nine YABBY genes in tomatoes and shows specific expression in the septum of the fruit. Through the use of a gene-editing technique performed by CRISPR/Cas9, we noticed defects in septum development in the Slyabby2a mutant fruits, leading to the inward concavity of the fruit pericarp and delayed septum ripening. Notably, the expression levels of key genes involved in auxin (SlFZY4, SlFZY5, and SlFZY6) and ethylene (SlACS2) biosynthesis were significantly downregulated in the septum of the Slalkbh10b mutants. Furthermore, the promoter activity of SlYABBY2a was regulated by the ripening regulator, SlTAGL1, in vivo. In summary, these discoveries provide insights into the positive regulation of SlYABBY2a on septum development and ripening and furnish evidence of the coordinated regulation of the auxin and ethylene signaling pathways in the ripening process, which expands our comprehension of septum development in the internal structure of the fruit.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Solanum lycopersicum , Factores de Transcripción , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ácidos Indolacéticos/metabolismo , Mutación , Sistemas CRISPR-Cas , Etilenos/metabolismo
6.
Funct Integr Genomics ; 23(4): 344, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37991590

RESUMEN

Schisandra chinensis is a monoecious plant with unisex flowers. The fruit of S. chinensis is of high medical with economic value. The yield of S. chinensis fruit is related to the ratio of its female and male flowers. However, there is little research on its floral development and sex differentiation. To elucidate the possible mechanism for the sex differentiation of S. chinensis, we collected 18 samples of female and male flowers from three developmental stages and performed a comparative RNA-seq analysis aimed at identifying differentially expressed genes (DEGs) that may be related to sex differentiation. The results showed 936, 7179, and 6890 differentially expressed genes between female and male flowers at three developmental stages, respectively, and 466 candidate genes may play roles in sex differentiation. KEGG analysis showed genes involved in the flavonoid biosynthesis pathway and DNA replication pathway were essential for the development of female flowers. 51 MADS-box genes and 10 YABBY genes were identified in S. chinensis. The DEGs analysis indicated that MADS-box and YABBY genes were strongly related to the sex determination of S. chinensis. RT-qPCR confirmed the RNA-seq results of 20 differentially expressed genes, including three male-biased genes and 17 female-biased genes. A possible regulatory model of sex differentiation in S. chinensis was proposed according to our results. This study helps reveal the sex-differentiation mechanism of S. chinensis and lays the foundation for regulating the male-female ratio of S. chinensis in the future.


Asunto(s)
Schisandra , Schisandra/genética , Diferenciación Sexual , Perfilación de la Expresión Génica , Transcriptoma , Flores , Regulación de la Expresión Génica de las Plantas
7.
New Phytol ; 240(2): 846-862, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37533135

RESUMEN

Abscission is predetermined in specialized cell layers called the abscission zone (AZ) and activated by developmental or environmental signals. In the grass family, most identified AZ genes regulate AZ anatomy, which differs among lineages. A YABBY transcription factor, SHATTERING1 (SH1), is a domestication gene regulating abscission in multiple cereals, including rice and Setaria. In rice, SH1 inhibits lignification specifically in the AZ. However, the AZ of Setaria is nonlignified throughout, raising the question of how SH1 functions in species without lignification. Crispr-Cas9 knockout mutants of SH1 were generated in Setaria viridis and characterized with histology, cell wall and auxin immunofluorescence, transmission electron microscopy, hormonal treatment and RNA-Seq analysis. The sh1 mutant lacks shattering, as expected. No differences in cell anatomy or cell wall components including lignin were observed between sh1 and the wild-type (WT) until abscission occurs. Chloroplasts degenerated in the AZ of WT before abscission, but degeneration was suppressed by auxin treatment. Auxin distribution and expression of auxin-related genes differed between WT and sh1, with the signal of an antibody to auxin detected in the sh1 chloroplast. SH1 in Setaria is required for activation of abscission through auxin signaling, which is not reported in other grass species.


Asunto(s)
Oryza , Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Ácidos Indolacéticos/metabolismo , Factores de Transcripción/metabolismo , Oryza/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37373311

RESUMEN

The small plant-specific YABBY gene family plays key roles in diverse developmental processes in plants. Dendrobium chrysotoxum, D. huoshanense, and D. nobile are perennial herbaceous plants belonging to Orchidaceae with a high ornamental value. However, the relationships and specific functions of the YABBY genes in the Dendrobium species remain unknown. In this study, six DchYABBYs, nine DhuYABBYs, and nine DnoYABBYs were identified from the genome databases of the three Dendrobium species, which were unevenly distributed on five, eight, and nine chromosomes, respectively. The 24 YABBY genes were classified into four subfamilies (CRC/DL, INO, YAB2, and FIL/YAB3) based on their phylogenetic analysis. A sequence analysis showed that most of the YABBY proteins contained conserved C2C2 zinc-finger and YABBY domains, while a gene structure analysis revealed that 46% of the total YABBY genes contained seven exons and six introns. All the YABBY genes harbored a large number of Methyl Jasmonate responsive elements, as well as anaerobic induction cis-acting elements in the promoter regions. Through a collinearity analysis, one, two, and two segmental duplicated gene pairs were identified in the D. chrysotoxum, D. huoshanense, and D. nobile genomes, respectively. The Ka/Ks values of these five gene pairs were lower than 0.5, indicating that the Dendrobium YABBY genes underwent negative selection. In addition, an expression analysis revealed that DchYABBY2 plays a role in ovary and early-stage petal development, while DchYABBY5 is essential for lip development and DchYABBY6 is crucial for early sepal formation. DchYABBY1 primarily regulates sepals during blooming. Furthermore, there is the potential involvement of DchYABBY2 and DchYABBY5 in gynostemium development. The results of a comprehensive genome-wide study would provide significant clues for future functional investigations and pattern analyses of YABBY genes in different flower parts during flower development in the Dendrobium species.


Asunto(s)
Dendrobium , Dendrobium/genética , Dendrobium/metabolismo , Filogenia , Estudio de Asociación del Genoma Completo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
9.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36835586

RESUMEN

The YABBY gene family plays an important role in plant growth and development, such as response to abiotic stress and lateral organ development. YABBY TFs are well studied in numerous plant species, but no study has performed a genome-wide investigation of the YABBY gene family in Melastoma dodecandrum. Therefore, a genome-wide comparative analysis of the YABBY gene family was performed to study their sequence structures, cis-acting elements, phylogenetics, expression, chromosome locations, collinearity analysis, protein interaction, and subcellular localization analysis. A total of nine YABBY genes were found, and they were further divided into four subgroups based on the phylogenetic tree. The genes in the same clade of phylogenetic tree had the same structure. The cis-element analysis showed that MdYABBY genes were involved in various biological processes, such as cell cycle regulation, meristem expression, responses to low temperature, and hormone signaling. MdYABBYs were unevenly distributed on chromosomes. The transcriptomic data and real-time reverse transcription quantitative PCR (RT-qPCR) expression pattern analyses showed that MdYABBY genes were involved in organ development and differentiation of M. dodecandrum, and some MdYABBYs in the subfamily may have function differentiation. The RT-qPCR analysis showed high expression of flower bud and medium flower. Moreover, all MdYABBYs were localized in the nucleus. Therefore, this study provides a theoretical basis for the functional analysis of YABBY genes in M. dodecandrum.


Asunto(s)
Flores , Proteínas de Plantas , Filogenia , Proteínas de Plantas/genética , Flores/genética , Familia de Multigenes , Meristema/metabolismo , Regulación de la Expresión Génica de las Plantas , Evolución Molecular , Estrés Fisiológico , Perfilación de la Expresión Génica
10.
BMC Plant Biol ; 22(1): 124, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35300591

RESUMEN

BACKGROUND: Cell polarity establishment and maintenance is indispensable for plant growth and development. In plants, the YABBY transcription factor family has a distinct role in leaf asymmetric polarity establishment and lateral organ initiation. However, for the important sugar crop Saccharum, little information on YABBY genes is available. RESULTS: In this study, a total of 20 sequences for 7 SsYABBY genes were identified in the sugarcane genome, designated as SsYABBY1-7 based on their chromosome locations, and characterized by phylogenetic analysis. We provided a high-resolution map of SsYABBYs' global expression dynamics during vegetative and reproductive organ morphogenesis and revealed that SsYABBY3/4/5 are predominately expressed at the seedling stage of stem and leaf basal zone; SsYABBY2/5/7 are highly expressed in ovules. Besides, cross-species overexpression and/or complementation verified the conserved function of SsYABBY2 in establishing leaf adaxial-abaxial polarity and ovules development. We found that the SsYABBY2 could successfully rescue the leaves curling, carpel dehiscence, and ovule abortion defects in Arabidopsis crc mutant. CONCLUSIONS: Collectively, our study demonstrates that SsYABBY genes retained a conserved function in establishing and preserving leaf adaxial-abaxial polarity and lateral organ development during evolution.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Saccharum , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Filogenia , Hojas de la Planta/metabolismo , Saccharum/genética , Saccharum/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda