Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
BMC Plant Biol ; 24(1): 793, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39169301

RESUMEN

BACKGROUND: Zanthoxylum bungeanum Maxim. is widely distributed across China, and the aroma of its peel is primarily determined by its volatile components. In this study, we analyzed the characteristics of volatile components in Z. bungeanum peels from different regions and investigated their correlation with climatic factors. RESULTS: The results identified 126 compounds in Z. bungeanum, with 27 compounds exhibiting distinct odor characteristics. Linalool was the most abundant, with an average relative content of 21.664%. The volatile oil of Z. bungeanum predominantly features spicy, floral, citrus, and mint aromas. The classification results indicated a significant difference in elevation at the ZB10 collection points in Shaanxi Province compared to other groups. Temperature, average annual precipitation, and wind speed were crucial factors influencing the accumulation of volatile components. CONCLUSIONS: This study is beneficial for enhancing the quality of Z. bungeanum, expanding the understanding of how climatic factors influence the accumulation of volatile substances, and promoting agricultural practices in regions with similar climatic conditions.


Asunto(s)
Clima , Aceites Volátiles , Compuestos Orgánicos Volátiles , Zanthoxylum , Zanthoxylum/química , Compuestos Orgánicos Volátiles/análisis , China , Aceites Volátiles/metabolismo , Odorantes/análisis , Frutas/química
2.
Plant Dis ; 2024 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215502

RESUMEN

Chinese prickly ash (Zanthoxylum bungeanum Maxim.), which is a Rutaceae plant as shrubs or small trees and indigenous to China, is widely grown in this country for its flavor, as well as its high economic and ecological value. So far, in China, the cultivated area and yield of Chinese prickly ash rank first in the world. In June 2023, a leaf spot disease with approximately 30% incidence was observed on Z. bungeanum in Zhenfeng County (25°44'21.38″ N, 105°56'47.15″ E, 1,083 m), Guizhou Province, China. Foliar symptoms appeared as irregularly shaped lesions, yellowish-brown with dark brown margins surrounded by yellow halos, which enlarged, resulting in the lesions dropping from the leaves and leaving holes. To isolate and identify the pathogen, symptomatic leaves were taken and cut into 5 mm × 5 mm pieces, surface sterilized with 2% NaClO for 3 min, 75% ethanol for 30 s, rinsed three times with sterile water, and incubated on PDA at 28°C. Ten isolates with identical morphology were obtained. After one week of incubation at 28℃, the colonies on PDA were brown, reverse dark brown, fluffy, reaching 7.0-7.5 cm in diameter. Conidia were straight or slightly curved, narrowly ellipsoidal or fusiform, 1-3 but mostly 3 septate, light or dark brown, with the middle cells usually darker than the terminal cells, smooth, 20.5-31.0 × 9.0-19.0 µm (x̄ = 26.0 × 14.0 µm, n = 30). The morphological features matched the description of Curvularia trifolii (Kauffman) Boedijn (Ellis 1971; Falloon 1976). Additionally, the internal transcribed spacer (ITS), large subunit (LSU) and glyceraldehyde-3-phosphate dehydrogenase (gapdh) genes were amplified by PCR with primers ITS5/ITS4 (White et al. 1990), LROR/LR5 (Vilgalys & Hester 1990) and GPD1/GPD2 (Berbee et al. 1999), and the ITS, LSU and gapdh sequences of the isolate GUCC 23-321 (PP837870, PP837881, PP855474) were deposited in GenBank. The BLAST showed 98.5% (ITS, HG779023, 598/709 bp), 99.87% (LSU, HG779077, 779/858 bp), and 97.79% (gapdh, HG779124, 543/498 bp) identities with C. trifolii (CBS 173.55). Furthermore, the phylogenetic tree of ML analysis based on the combined sequence data of ITS, LSU and gapdh revealed that GUCC 23-321 clustered with C. trifolii. Both morphology and phylogenetic analyses supported the identification of GUCC 23-321 as C. trifolii. Pathogenicity tests were carried out twice according to Koch's postulates. Five healthy 2-year-old Chinese prickly ash plants were sprayed with a conidial suspension (1 × 106 conidia/mL) of the isolate GUCC 23-321, while the controls (five other plants) were sprayed with sterile water. All plants were maintained in a greenhouse at 28°C, 80% relative humidity. After 8 days, the inoculated plants developed leaf spots similar to those showed in the field, but control plants were asymptomatic. Re-isolation of pathogenic fungi from the leaf lesions of the inoculated plants and according to molecular analysis and morphology, the fungi were identified as C. trifolii, fulfilling Koch's postulates. C. trifolii is a common fungal phytopathogen that has been reported to infect a variety of plants and cause leaf spot disease, such as Trifolium alexandrinum (Khadka 2016) and Nicotiana tabacum (Chen et al. 2017). This is the first worldwide report of C. trifolii causing Z. bungeanum leaf spot. The report will be beneficial for accurately diagnosing this disease, and proposing specific control measures.

3.
Molecules ; 29(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38675629

RESUMEN

In this study, we prepared high-nitrogen self-doped porous carbons (NPC1 and NPC2) derived from the pruned branches and seeds of Zanthoxylum bungeanum using a simple one-step method. NPC1 and NPC2 exhibited elevated nitrogen contents of 3.56% and 4.22%, respectively, along with rich porous structures, high specific surface areas of 1492.9 and 1712.7 m2 g-1 and abundant surface groups. Notably, both NPC1 and NPC2 demonstrated remarkable adsorption abilities for the pollutant methylene blue (MB), with maximum monolayer adsorption capacities of 568.18 and 581.40 mg g-1, respectively. The adsorption kinetics followed the pseudo-second-order kinetics and the adsorption isotherms conformed to the Langmuir isotherm model. The adsorption mechanism primarily relied on the hierarchical pore structures of NPC1 and NPC2 and their diverse strong interactions with MB molecules. This study offers a new approach for the cost-effective design of nitrogen self-doped porous carbons, facilitating the efficient removal of MB from wastewater.


Asunto(s)
Carbono , Azul de Metileno , Nitrógeno , Zanthoxylum , Zanthoxylum/química , Adsorción , Nitrógeno/química , Azul de Metileno/química , Porosidad , Carbono/química , Cinética , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Aguas Residuales/química
4.
Physiol Mol Biol Plants ; 30(3): 369-382, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38633272

RESUMEN

The Cellulose Synthase gene (CS) superfamily and COBRA-like (COBL) gene family are essential for synthesizing cellulose and hemicellulose, which play a crucial role in cell wall biosynthesis and the hardening of plant tissues. Our study identified 126 ZbCS and 31 ZbCOBL genes from the Zanthoxylum bungeanum (Zb) genome. Phylogenetic analysis and conservative domain analysis unfolded that ZbCS and ZbCOBL genes were divided into seven and two subfamilies, respectively. Gene duplication data suggested that more than 75% of these genes had tandem and fragment duplications. Codon usage patterns analysis indicated that the ZbCS and ZbCOBL genes prefer ending with A/T base, with weak codon preference. Furthermore, seven key ZbCS and five key ZbCOBL genes were identified based on the content of cellulose and hemicellulose and the expression characteristics of ZbCS and ZbCOBL genes in various stages of stipule thorns. Altogether, these results improve the understanding of CS and COBL genes and provide valuable reference data for cultivating Zb with soft thorns. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01432-x.

5.
Plant Biotechnol J ; 21(1): 78-96, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36117410

RESUMEN

Zanthoxylum armatum and Zanthoxylum bungeanum, known as 'Chinese pepper', are distinguished by their extraordinary complex genomes, phenotypic innovation of adaptive evolution and species-special metabolites. Here, we report reference-grade genomes of Z. armatum and Z. bungeanum. Using high coverage sequence data and comprehensive assembly strategies, we derived 66 pseudochromosomes comprising 33 homologous phased groups of two subgenomes, including autotetraploid Z. armatum. The genomic rearrangements and two whole-genome duplications created large (~4.5 Gb) complex genomes with a high ratio of repetitive sequences (>82%) and high chromosome number (2n = 4x = 132). Further analysis of the high-quality genomes shed lights on the genomic basis of involutional reproduction, allomones biosynthesis and adaptive evolution in Chinese pepper, revealing a high consistent relationship between genomic evolution, environmental factors and phenotypic innovation. Our study provides genomic resources and new insights for investigating diversification and phenotypic innovation in Chinese pepper, with broader implications for the protection of plants under severe environmental changes.


Asunto(s)
Zanthoxylum , Genómica , Zanthoxylum/genética , Zanthoxylum/metabolismo , Genoma de Planta , Evolución Molecular
6.
Chem Biodivers ; 20(5): e202201157, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37029634

RESUMEN

Our previous study has exhibited that one kind of Zanthoxylum bungeanum seed oil (ZSO), extracted from Zanthoxylum bungeanum seed, had inhibitory effects on osteoclastogenesis. However, the anti-osteoclastogenesis activities of different kinds of ZSO are scarcely reported. Since inflammation is related to bone loss and osteoporosis, in this study, three kinds of ZSO, Zanthoxylum schinifolium Siebold et Zucc seed oil (ZSSO), Zanthoxylum armatum DC. seed oil (ZDSO) and Zanthoxylum bungeanum maximum seed oil (ZBSO), were obtained with Soxhlet extraction and their fatty acid constituents were detected by GC-FID. RAW264.7 macrophages induced by lipopolysaccharide (LPS) were used to evaluate the inhibitory effects of three kinds of ZSO on inflammation via detecting the expression levels of inflammatory factors by RT-qPCR. Moreover, RANKL-induced osteoclastogenesis was applied to demonstrate the anti-osteoclastogenesis activities of them through tartrate-resistant acid phosphatase (TRAP) staining and RT-qPCR. The GC-FID results exhibited that the highest constituent in ZSSO and ZDSO was oleic acid (OA) and palmitoleic acid (PLA), respectively. While linoleic acid (LA) and α-Linolenic acid (ALA) in ZBSO were dominant. At the concentration of 0.5 µL/mL, all three kinds of ZSO could decrease the expression levels of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1ß) in LPS-induced macrophages. At the concentration of 0.25 µL/mL, only ZSSO could decrease the expression levels of iNOS and COX-2, which implied the inhibitory effects of ZSSO were stronger than other ZSOs. The number of RANKL-induced osteoclasts and the expressions of nuclear factor kappa-B (NF-κB), TNF-α and IL-6 in the cells were decreased after being treated with ZSOs at the concentration of 0.5 µL/mL, while the number of RANKL-induced osteoclasts after treated with ZBSO were less than those treated with other ZSOs, this indicated that the anti-osteoclastogenesis effect of ZBSO were stronger than other ZSOs. In conclusion, the fatty acid compositions of three major kinds of ZSO were compared and the content of unsaturated fatty acids especially ω-3 polyunsaturated fatty acids in ZBSO were the highest among them. All ZSOs tested had anti-inflammatory and anti-osteoclastogenesis activities. And their anti-osteoclastogenesis effects might be related to the suppression of the NF-κB pathway.


Asunto(s)
Zanthoxylum , Zanthoxylum/metabolismo , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa , Interleucina-6 , Lipopolisacáridos/farmacología , Ciclooxigenasa 2 , Semillas/metabolismo , Antiinflamatorios/farmacología , Inflamación , Ácidos Grasos , Aceites de Plantas/farmacología
7.
Plant Dis ; 2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38105455

RESUMEN

Zanthoxylum bungeanum Maxim., a deciduous shrub in Zanthoxylum genus of the Rutaceae family, has not only highly economical values as condiment and medicine, but also significantly ecological values in soil and water conservation. In March 2023, a typical leaf spot disease on Z. bungeanum (Variety "Xiao Qingjiao") was observed in the field with an area of 26.68 ha with 35% incidence and 25.4% disease intensity in Zhenfeng County (25°38'57.60″ N, 105°64'98.64″ E, 1,156 m), Guizhou Province, China. The symptom leaves showed as irregularly shaped necrotic lesions, brown to dark brown with black margin. 30 samples with typical symptoms were collected and cut into 0.5 cm × 0.5 cm pieces. Their surfaces were disinfected with 1.5% NaClO for 2 min followed by 75% ethanol for 35 s, rinsed three times with sterile distilled water, finally incubated on PDA plates at 27°C. A total of 36 isolates were obtained through single-spore cultivation. The colonies on PDA were fluffy with abundant aerial mycelia and covered the whole plates (diameter 90 mm) in 7 days. Conidia were brown to black, single-celled, smooth, spherical or oblate, 12.0-17.0 × 12.5-18.5 µm (av. = 14.5 × 15.5 µm, n = 50) and grew on a colorless transparent vesicle at the apical cell of conidiophores. The morphological characteristics were similar with N. sphaerica (Wang et al. 2017). The 5.8S DNA (ITS), translation elongation factor 1-alpha (TEF1-α) and ß-tubulin (TUB2) genes were amplified with primers ITS4/ITS5, EF1-728F/EF2, and BT2A/BT2B, respectively (White et al. 1990; Carbone and Kohn 1999, O'Donnell et al. 1998; Glass and Donaldson 1995). The ITS, TEF1-α and TUB2 sequences of two randomly selected isolates, GUCC 21-187 and GUCC 21-235, had > 99% nucleotide identities (ITS: 99.60% (504/506 bp, OR646539) and 99.61% (506/508 bp, OR640300); TEF: 100% (470/470 bp, OR654285) and 100.00% (471/471 bp, OR654286); TUB: 100.00% (408/408 bp, OR661269) and 99.52% (411/413 bp, OR661270), respectively) with those sequences of N. sphaerica (LC 7294) in GenBank (KX985932, KY019397 and KY019602, respectively). The phylogenetic tree based on sequences of ITS, TEF1-α and TUB2 indicated that GUCC 21-187 and GUCC 21-235 were most closely related to N. sphaerica (LC 7294), supported with 100%/100%/1 bootstraps. Based on morphological characteristics and molecular datasets analyses, the isolates were identified as N. sphaerica. 10 healthy 2-years-old Z. bungeanum plants were sprayed with conidial suspensions (1 × 106 conidia/mL) of the isolates and the other 5ere sprayed with sterile water as the controls, all the treated plants were cultivated in a glasshouse at 25°C under 85% relative humidity. Typical leaf spot symptoms appeared on inoculated Z. bungeanum plants after 8 days, while the control plants remained asymptomatic. N. sphaerica was re-isolated from the lesions of inoculated plants and identified by morphological and molecular identification. Pathogenicity test was performed three times with analogous results, fulfilling Koch's postulates. N. sphaerica had been reported as a common pathogen on a variety of plants including sugarcane, kiwifruit and blueberry (Cui et al. 2018; Chen et al. 2016; Wright et al. 2008). To our knowledge, this is the first report of leaf spot disease caused by N. sphaerica on Z. bungeanum in China. Our report would be helpful to Z. bungeanum growers to recognize this leaf spot disease, and corresponding measures could be taken to minimize or avoid the economic losses caused by it.

8.
J Asian Nat Prod Res ; 25(10): 1012-1020, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36916389

RESUMEN

Seventeen compounds were isolated and identified from the ethyl acetate part of Zanthoxylum bungeanum Maxim., including one new compound 18-acetyloxyneocryptotanshinone (1) and 16 known compounds (2-17). Their structures were elucidated by extensive spectroscopy. The absolute configuration of 1 was confirmed by electronic circular dichroism (ECD). All compounds were evaluated for the inhibition of LPS-induced nitric oxide (NO) production in RAW264.7 macrophages, of which 1 and 10 exhibited the most significant inhibitory effect, with IC50 of 17.29 and 10.27 µM, respectively.


Asunto(s)
Zanthoxylum , Zanthoxylum/química , Óxido Nítrico , Lipopolisacáridos/farmacología , Macrófagos
9.
Molecules ; 28(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36838801

RESUMEN

The pericarp of Zanthoxylum bungeanum maxim (PZM) is a commonly used spice and herbal medicine in China. In the present study, the structural characteristics of PPZM were investigated by saccharide mapping after enzymatic digestion by using high-performance thin layer chromatography (HPTLC) and polysaccharide analysis by using carbohydrate gel electrophoresis (PACE). The mechanisms of protective effects of PPZM on Aß25-35-induced oxidative damage were explored in PC12 cells. The results showed that PPZM contained 1,4-α-D-galactosidic, 1,4-α-D-galactosiduronic, and (1→4)-ß-D-glucosidic linkages. Pretreatment with PPZM significantly increased the cell viability of Aß25-35-injured PC12 cells. Flow cytometry and Hoechst/PI staining indicated that PPZM gradually relieved the apoptosis of the Aß25-25-treated cells. PPZM markedly decreased the ROS level of PC12 cells and suppressed Aß25-35-induced oxidative stress by increasing the SOD level, and decreasing the level of MDA and LDH. The mRNA expressions of caspase-3 and Bax were significantly downregulated, and Bcl-2 expression was upregulated by treatment with PPZM. PPZM significantly increased the mRNA expression of Nrf2 and HO-1 in Aß25-35 treated cells. The results indicated that PPZM alleviated apoptosis and oxidative stress induced by Aß25-25 through the inhibition of mitochondrial dependent apoptosis and activation of Nrf2/HO-1 pathway. PPZM can be used as a potential protective agent against Aß25-25-induced neurotoxicity.


Asunto(s)
Fármacos Neuroprotectores , Zanthoxylum , Animales , Ratas , Fármacos Neuroprotectores/farmacología , Zanthoxylum/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Apoptosis , Polisacáridos/química , Células PC12 , ARN Mensajero/metabolismo , Péptidos beta-Amiloides/metabolismo , Fragmentos de Péptidos/metabolismo
10.
BMC Plant Biol ; 22(1): 251, 2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35596133

RESUMEN

BACKGROUND: Flavonoids have strong free radical scavenging and antioxidant capacity. The high abundance of flavonoids in Chinese prickly ash peels have many benefits to human health. In this study, 'Hancheng Dahongpao', a main cultivar, was taken as materials to investigate the flavonoids biosynthesis mechanism of Zanthoxylum bungeanum Maxim at three key development stages by integration of metabolomics and transcriptomics analysis. RESULTS: A total of 19 differentially accumulated metabolites were identified, the key flavonoids compounds were kaempferol, quercetin and their glycoside derivatives, and two major anthocyanins (peonidin O-hexoside and peonidin 3-O-glucoside). 5 gene networks/modules including 15 important candidate genes were identified, which was highly correlated with flavonoids. Among these genes, ZM-163828 and ZM-184209 were strongly correlated with kaempferol and quercetin, and ZM-125833 and ZM-97481 were controlled the anthocyanins biosynthesis. Moreover, it was shown that MYB-ZM1, MYB-ZM3, MYB-ZM5, MYB-ZM6 and MYB-ZM7 coordinately controlled flavonoids accumulation through regulating the structural genes. CONCLUSIONS: Generally, this study systematically revealed the flavonoids metabolic pathways and candidate genes involved in flavonoids biosynthesis and laid a foundation for the potential targets for the breeding of new valuable Chinese prickly ash cultivars.


Asunto(s)
Antocianinas , Zanthoxylum , Antocianinas/metabolismo , Flavonoides/metabolismo , Quempferoles/metabolismo , Metabolómica , Fitomejoramiento , Quercetina/metabolismo , Transcriptoma , Zanthoxylum/genética
11.
Allergol Immunopathol (Madr) ; 50(4): 83-96, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35789407

RESUMEN

OBJECTIVE: To observe the antipruritic effect and mechanism of the volatile oil of Zanthoxylum bungeanum and Zanthoxylum schinifolium on chronic eczema to provide data support for clinical application and new drug development of Zanthoxylum bungeanum and Zanthoxylum schinifolium. METHODS: The model of chronic eczema was established by using 2-dinitrochlorobenzene (DNCB), and the composition and content of volatile oil in Zanthoxylum schinifolium and Zanthoxylum bungeanum was determined by gas chromatography-mass spectrometry (GC-MS). The antipruritic effect by (EASI) score of eczema area and severity index and scratching times was then evaluated. Then, the contents of histamine, gastrin-releasing peptide (GRP), interleukin-4 (IL-4), and immunoglobulin E (IgE) in serum of rats was determined by enzyme-linked immunosorbent assay (ELISA). The tissue morphology was observed by HE staining. The expressions of H1R, PAR-2, TRPV1, TRPA1, and GRPR was then detected by immunohistochemistry, Western blot, and QRT-PCR. RESULTS: The results revealed that there were differences in the composition of volatile oil between Zanthoxylum bungeanum and Zanthoxylum schinifolium. Compared to the model group, the medium-dose group of Zanthoxylum bungeanum and Zanthoxylum schinifolium group significantly increased the difference of EASI score and scratching times, significantly decreased the concentrations of IL-4, IgE, GRP, and histamine, and significantly decreased the expression levels of H1R, PAR-2, TRPV1, and GRPR. The degree of inhibition on the pathological manifestations of chronic eczema was evident. There was no significant difference in antipruritic effect between the two groups. The expression of TRPA1 was inconsistent at the protein and gene level, which needs to be further researched. CONCLUSION: The volatile oil of Zanthoxylum bungeanum and Zanthoxylum schinifolium can reduce the expression of H1R, PAR-2, TRPV1, and GRPR. The mechanism may be through the H1R and PAR-2-mediated GRPR pathway intervention to achieve the effect, both of which have the same antipruritic effect.


Asunto(s)
Eccema , Aceites Volátiles , Zanthoxylum , Animales , Antipruriginosos , Histamina , Inmunoglobulina E , Interleucina-4 , Ratas
12.
Chem Biodivers ; 19(3): e202100965, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35112481

RESUMEN

Wild Chinese prickly ash resources provide a valuable genetic resource for Zanthoxylum bungeanum Maxim improvement and breeding. The Qinling Mountains was an abundant source for wild Chinese prickly ash. In this study, the phenolic and flavonoid compounds of wild germplasm resources from different altitudes and six cultivated varieties were analyzed by high performance liquid chromatography (HPLC). The chromatograms of them were essentially consistent, although their chemical composition contents were greatly different. The thirty samples were divided into three categories through the hierarchical clustering analysis. Catechin, hyperoside and quercitrin were considered to be key compounds for the quality evaluation, and by contrast, the wild samples with an altitude of 2300±50 m (Group IV) had the highest content of key compounds, and presented stronger antioxidant activity and antibacterial ability, indicating that these wild samples could be identified as the excellent breeding resources. This is the first time to evaluate the quality of wild Chinese prickly ash at different altitudes in Qinling Mountains. These excellent wild germplasm resources provided substantial potential accessions for use directly in Chinese prickly ash breeding programs.


Asunto(s)
Zanthoxylum , China , Cromatografía Líquida de Alta Presión , Flavonoides , Fenoles/química , Zanthoxylum/química
13.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35269793

RESUMEN

Pericarp color is an important economic characteristic of Zanthoxylum bungeanum. Anthocyanins are the main reason for the pericarp's red appearance in Z. bungeanum. In this study, through the combined analysis of the metabolome and transcriptome, HY5, whose expression is highly correlated to changes in the anthocyanin content, was screened and identified. Under natural ripening conditions, the Z. bungeanum fruit gradually changed in color from green to red, while bagging resulted in the fruit maintaining its green color. After unbagging, the fruit gradually turned red, and the ZbHY5 expression and anthocyanin content increased. In addition, the leaves changed from green to red after exposure to UV-B radiation, and the ZbHY5 expression and anthocyanin content increased. The transient overexpression of ZbHY5 deepened the redness of the Z. bungeanum leaves and promoted the expression of ZbHY5 and ZbMYB113 as well as anthocyanin accumulation. Bimolecular fluorescence complementation (BIFC) showed that there was an interaction between ZbHY5 and ZbMYB113. These results revealed that under UV-B irradiation, ZbHY5 might regulate the expression levels of the structural genes related to anthocyanin biosynthesis through combination with ZbMYB113, thereby affecting anthocyanin accumulation. This finding provides useful insights for further studies focusing on UV-B-induced anthocyanin accumulation in Z. bungeanum.


Asunto(s)
Antocianinas , Zanthoxylum , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma , Zanthoxylum/genética , Zanthoxylum/metabolismo
14.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35563160

RESUMEN

NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) are one of the largest plant-specific TF families and play a pivotal role in adaptation to abiotic stresses. The genome-wide analysis of NAC TFs is still absent in Zanthoxylum bungeanum. Here, 109 ZbNAC proteins were identified from the Z. bungeanum genome and were classified into four groups with Arabidopsis NAC proteins. The 109 ZbNAC genes were unevenly distributed on 46 chromosomes and included 4 tandem duplication events and 17 segmental duplication events. Synteny analysis of six species pairs revealed the closely phylogenetic relationship between Z. bungeanum and C. sinensis. Twenty-four types of cis-elements were identified in the ZbNAC promoters and were classified into three types: abiotic stress, plant growth and development, and response to phytohormones. Co-expression network analysis of the ZbNACs revealed 10 hub genes, and their expression levels were validated by real-time quantitative polymerase chain reaction (qRT-PCR). Finally, ZbNAC007, ZbNAC018, ZbNAC047, ZbNAC072, and ZbNAC079 were considered the pivotal NAC genes for drought tolerance in Z. bungeanum. This study represented the first genome-wide analysis of the NAC family in Z. bungeanum, improving our understanding of NAC proteins and providing useful information for molecular breeding of Z. bungeanum.


Asunto(s)
Sequías , Zanthoxylum , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Zanthoxylum/genética , Zanthoxylum/metabolismo
15.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35216434

RESUMEN

Zanthoxylum bungeanum is one of the most important medicinal and edible homologous plants because of its potential health benefits and unique flavors. The chemical components in compositions and contents vary with plant genotype variations and various environmental stress conditions. Fatty acids participate in various important metabolic pathways in organisms to resist biotic and abiotic stresses. To determine the variations in metabolic profiling and genotypes, the fatty acid profiling and key differential genes under low temperature stress in two Z. bungeanum varieties, cold-tolerant (FG) and sensitive (FX), were investigated. Twelve main fatty acids were found in two Z. bungeanum varieties under cold stress. Results showed that the contents of total fatty acids and unsaturated fatty acids in FG were higher than those in FX, which made FG more resistant to low temperature. Based on the result of orthogonal partial least squares discriminant analysis, palmitic acid, isostearic acid, linolenic acid and eicosenoic acid were the important differential fatty acids in FG under cold stress, while isomyristic acid, palmitic acid, isostearic acid, stearic acid, oleic acid, linolenic acid and eicosenoic acid were the important differential fatty acids in FX. Furthermore, fatty acid synthesis pathway genes fatty acyl-ACP thioesterase A (FATA), Delta (8)-fatty-acid desaturase 2 (SLD2), protein ECERIFERUM 3 (CER3), fatty acid desaturase 3 (FAD3) and fatty acid desaturase 5 (FAD5) played key roles in FG, and SLD2, FAD5, 3-oxoacyl-[acyl-carrier-protein] synthase I (KAS I), fatty acyl-ACP thioesterase B (FATB) and acetyl-CoA carboxylase (ACC) were the key genes responding to low temperature in FX. The variation and strategies of fatty acids in two varieties of Z. bungeanum were revealed at the metabolic and molecular level. This work provides a reference for the study of chemical components in plant stress resistance.


Asunto(s)
Ácidos Grasos/genética , Genes de Plantas/genética , Zanthoxylum/genética , Expresión Génica/genética , Temperatura
16.
J Sci Food Agric ; 102(10): 4035-4045, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34997590

RESUMEN

BACKGROUND: Zanthoxylum bungeanum essential oil (ZBEO) is a popular seasoning, commonly used in the food industry. It contains many easily degraded and highly volatile bioactive substances. Control of the stability of the bioactive substances in ZBEO is therefore very important in the food industry. RESULTS: In this study, microencapsulation was applied to improve ZBEO stability. The key parameters for microcapsule preparation were optimized by the Box-Behnken design method, and the optimum conditions were as follows: ratio of core to wall, 1:8; ratio of hydroxypropyl-α-cyclodextrin (HPCD) to soy protein isolate (SPI), 4; total solids content, 12%; and homogenization speed, 12 000 rpm. Antioxidant experiments have indicated that tea polyphenols (TPPs) effectively inhibited hydroxy-α-sanshool degradation in ZBEO microcapsules. Application of ZBEO microcapsules in Chinese-style sausage effectively inhibited lipid oxidation in sausages and protected hydroxy-α-sanshool and typical volatiles from volatilization and degradation during sausage storage. CONCLUSION: The results suggested that ZBEO microencapsulation is an effective strategy for improving the stability of its bioactive components and flavor ingredients during food processing. © 2022 Society of Chemical Industry.


Asunto(s)
Productos de la Carne , Aceites Volátiles , Zanthoxylum , Cápsulas , China , Aceites Volátiles/química , Zanthoxylum/química
17.
J Sci Food Agric ; 102(5): 1823-1831, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-34462928

RESUMEN

BACKGROUND: Zanthoxylum bungeanum pericarps (ZBP) are commonly used as food additives and traditional herbal medicines. Several mineral elements are known to have important physiological functions in organisms, whereas others are reported to have toxic effects. We determined levels of macro elements (Mg, S and Ca), essential trace elements (B, Mn, Fe, Cu, Zn, Se and Mo) and toxic elements (Ni, Al, Cr, As, Cd, Hg and Pb) in the pericarps of 19 Z. bungeanum cultivars. Hazard index values and incremental lifetime cancer risks were calculated to express health risks associated with pericarp consumption. Moreover, several chemometric analyses based on the mineral elements were used to distinguish Z. bungeanum cultivars. RESULTS: The concentrations of 17 determined elements in the pericarps were ranked: Ca > Mg > S > Fe > Al > Mn > Zn > B > Cu > Ni > Pb > Cr > Mo > As > Cd > Hg > Se. The elements Zn, Cr and As had the highest variations in their concentrations. Cu, Mn, Se, Zn, Al, As, Cd, Cr, Hg, Ni and Pb posed some non-cancer risks, while As and Cd posed cancer risks. Mn, Fe, Zn, and Al were chosen as critical element markers for assessing ZBP using chemometric analyses. CONCLUSION: Chemometric analyses could highlight mineral concentration differentiation among the 19 cultivars. The Z. bungeanum cultivar Z12 (from Wudu, Gansu) is best for producing ZBP, and cultivar Z18 (Guanling, Guizhou) can be a reference to classify and evaluate ZBP quality. The results provide valuable information for evaluating the potential safety risks of ZBP and contribute to inter-cultivar discrimination. © 2021 Society of Chemical Industry.


Asunto(s)
Mercurio , Oligoelementos , Zanthoxylum , Quimiometría , Mercurio/análisis , Minerales/análisis , Oligoelementos/análisis , Oligoelementos/toxicidad
18.
J Environ Sci Health B ; 57(9): 739-744, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35930275

RESUMEN

In order to find and develop new botanical pesticides against storage pests, components of the essential oil (EO) from Zanthoxylum bungeanum were identified by GC-MS and their insecticidal activity against the stored product pests were studied. The EO was obtained by steam distillation. Results showed that EO was rich in limonene (23.67), linalool (21.76) and linalyl anthranilate (10.87). In contact assays, linalool exhibited strongest toxicity to red flour beetle adult (LD50 = 17.06 µg/adult) and larvae (LD50 = 16.42 µg/larvae), and linalool was the most active one against the Lasioderma serricorne (LD50 = 15.36 µg/larvae). Then limonene and linalool showed different levels of fumigant activities against the two insect species. Synergism effect existed in the proportion of contact assays against Tribolium castaneum adults, and additive was observed in the proportion of 7:1 against T. castaneum larvae. This work provides important information for the development and utilization of Z. bungeanum and suggests that the EO of Z. bungeanum has the potential to serve as bio-insecticides for controlling pest damage in stored products.


Asunto(s)
Escarabajos , Repelentes de Insectos , Insecticidas , Aceites Volátiles , Zanthoxylum , Monoterpenos Acíclicos , Animales , Insectos , Insecticidas/análisis , Insecticidas/toxicidad , Limoneno , Aceites Volátiles/toxicidad , Vapor , ortoaminobenzoatos
19.
J Food Sci Technol ; 59(1): 179-191, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35068562

RESUMEN

In this paper, the components of Zanthoxylum bungeanum Maxim. essential oil (ZBMEO) were analyzed. The efficacy of different concentrations of ZBMEO on the change in physical and chemical indicators of the rabbit meat patty was evaluated. Furthermore, kinetics models were employed to calculate the lipid oxidation induction period and microbial growth lag time. GC-MS analysis revealed that the major chemical components in ZBMEO included linalool, limonene, and sabinene. Results of the storage experiment indicated that ZBMEO had a good inhibition effect on lipid and protein oxidation, microbial growth, and formation of TVB-N, as well as slowed down the rate of change in color and pH during the 12 days storage time of rabbit meat. The models showed that adding ZBMEO could delay the lipid oxidation induction period, and extend the microbial growth lag time. Overall data showed that ZBMEO is a promising natural additive to maintain the quality of rabbit meat patty.

20.
BMC Plant Biol ; 21(1): 178, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33849456

RESUMEN

BACKGROUND: Apomixis is a form of asexual reproduction that produces offspring without the need for combining male and female gametes, and the offspring have the same genetic makeup as the mother. Therefore, apomixis technology has great application potential in plant breeding. To identify the apomixis types and critical period, embryonic development at different flower development stages of Zanthoxylum bungeanum was observed by cytology. RESULTS: The results show that the S3 stage is the critical period of apomixis, during which the nucellar cells develop into an adventitious primordial embryo. Cytological observations showed that the type of apomixis in Z. bungeanum is sporophytic apomixis. Furthermore, miRNA sequencing, miRNA-target gene interaction, dual luciferase reporter assay, and RT-qPCR verification were used to reveal the dynamic regulation of miRNA-target pairs in Z. bungeanum apomixis. The miRNA sequencing identified 96 mature miRNAs, of which 40 were known and 56 were novel. Additionally, 29 differentially expressed miRNAs were screened according to the miRNAs expression levels at the different developmental stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses showed that the target genes of the differentially expressed miRNAs were mainly enriched in plant hormone signal transduction, RNA biosynthetic process, and response to hormone pathways. CONCLUSIONS: During the critical period of apomictic embryonic development, miR172c significantly reduces the expression levels of TOE3 and APETALA 2 (AP2) genes, thereby upregulating the expression of the AGAMOUS gene. A molecular regulation model of miRNA-target pairs was constructed based on their interactions and expression patterns to further understand the role of miRNA-target pairs in apomixis. Our data suggest that miR172c may regulates AGAMOUS expression by inhibiting TOE3 in the critical period of apomixis.


Asunto(s)
Apomixis/genética , Flores/crecimiento & desarrollo , MicroARNs/genética , ARN de Planta/genética , Semillas/embriología , Zanthoxylum/fisiología , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Análisis de Secuencia de ARN , Zanthoxylum/embriología , Zanthoxylum/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda