Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Trop Anim Health Prod ; 56(2): 95, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441682

RESUMEN

As the global demand for animal protein continues to increase, the need for sustainable and resource-efficient alternatives for animal feed becomes increasingly paramount. Insects have gained significant attention as promising candidates to support the sustainable development of the feed industry, and their utilization in animal feed has seen substantial growth in recent years. Therefore, this study was conducted to optimize the superworm (Zophobas morio) larvae rearing stocking density on the biomass production, survival, and nutrient composition. Two-weeks-old Z. morio larvae were maintained at 25 ± 2 oC and 70% relative humidity, and at densities of 0.5, 0.75, 1 and 1.25 cm2 space per larva, respectively. The insects reared with a density of 1.25 cm2 per larvae had higher feed intake (FI) and weight gain (WG) (P < 0.05). However, better feed conversion efficiency (FCE) was recorded with a density of 0.75 cm2 per larvae (P < 0.05). The survival significantly increased with increasing the density per larvae (P < 0.05). High survival of Z. morio larvae was recorded at density of 1 and 1.25 cm2 per larvae. The dry matter and fat contents of Z. morio larvae were higher at density of 0.5 cm2 per larvae (P < 0.05). However, the protein content was higher at density of 1 and 1.25 cm2 per larvae (P < 0.05). Moreover, the ash content was higher at 0.5, 0.75, and 1.25 cm2 per larvae (P < 0.05). This study highlights that Z. morio larvae rearing stocking density has a profound influence on growth performance, survival and its nutrient composition.


Asunto(s)
Escarabajos , Animales , Larva , Nutrientes , Alimentación Animal , Biomasa
2.
Mycopathologia ; 187(1): 85-93, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34855103

RESUMEN

Rhodotorula spp. and Trichosporon spp. are opportunistic pathogens, and although an association between these two species in the same infection appears to be uncommon, it has been reported. This is the first study that aimed to evaluate the pathogenesis of a co-infection by R. mucilaginosa and T. asahii, using a new in vivo model, the Zophobas morio larvae. Suspensions from planktonic and biofilm-recovered cells were injected in the larvae as in monospecies as mixed (a ratio of 1:1 for both agents of a of 105 inoculum). Individual and mixed biofilms of R. mucilaginosa and T. asahii were produced for 24 and 48 h, and they were partially characterized by crystal violet and reduction of tetrazolium salt. When evaluating the impact of the planktonic suspension in vivo we verified that the fungi in monoculture were more able to kill the larvae than those from planktonic mixed suspension. On the other hand, regarding biofilm-recovered cells, there was an increase in the death of larvae infected for mixed suspensions. Moreover, the death rate was more pronounced when the larvae were infected with 48 h biofilm-recovered cells than the 24 h ones. T. asahii was the best producer of total biomass, mainly in 48 h. The metabolic activity for both yeasts organized in biofilm maintained the same pattern between 24 and 48 h. The present study proves a synergistic interaction between R. mucilaginosa and T. asahii after an experience in a mixed biofilm. Our results suggest that both species were benefited from this interaction, acquiring a greater potential for virulence after passing through the biofilm and this ability was acquired by the cells released from the biofilm.


Asunto(s)
Coinfección , Rhodotorula , Trichosporon , Antifúngicos , Biopelículas , Humanos
3.
Molecules ; 27(20)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36296556

RESUMEN

Edible insects are a potential alternative food source of high feed conversion efficiency and protein content. Zophobas atratus is an edible insect that adapts to different diets, enabling sustainable rearing by adding value to by-products and agro-industrial residues. This study aimed to evaluate the performance and nutritional characterization of Zophobas atratus larvae fed with different proportions of grape residue. Physicochemical analysis of the diets and larvae (AOAC procedures), fatty acid profile (chromatographic techniques), metals and non-metals (inductively coupled plasma optical emission spectrometry), larval mass gain, feed conversion efficiency, and mortality rate were assessed. The replacement of 25% of the conventional diet with grape residue increased lipid, ash, and fiber contents and reduced protein, carbohydrates, and energy. It promoted greater mass gain, lower mortality rate, and reduced larval growth time by 51%. Among the replacements, 25% resulted in the second-highest content of calcium, sodium, magnesium, and zinc, and the lowest content of potassium and phosphorus in the larvae. The 100% replacement resulted in the highest amounts of C18:2n6 (27.8%), C18:3n3 (2.2%), and PUFA (30.0%). Replacing 25% of the conventional diet with grape residue is equivalent to the conventional diet in many aspects and improves several larvae performance indices and nutritional values.


Asunto(s)
Calcio , Escarabajos , Animales , Larva , Calcio/metabolismo , Magnesio/metabolismo , Escarabajos/metabolismo , Alimentación Animal/análisis , Ácidos Grasos/metabolismo , Fósforo/metabolismo , Carbohidratos , Zinc/metabolismo , Sodio/metabolismo , Potasio/metabolismo
4.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34748472

RESUMEN

A novel bacterial strain, designated IPMB12T, isolated from the gut of the superworm Zophobas morio in Taiwan, was characterized using a polyphasic taxonomic approach. Cells were Gram-stain-negative, facultatively anaerobic, non-motile, coccoid or rod-shaped and formed translucent colonies. Optimal growth occurred at 25-37 °C, pH 9-10, and with 0-2 % NaCl. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 92 protein clusters indicated that strain IPMB12T is affiliated with genus in the the family Orbaceae in the class Gammaproteobacteria. Strain IPMB12T was most closely related to Gilliamella mensalis LMG 29880T with a 94.6 % 16S rRNA gene sequence similarity. Strain IPMB12T showed less than 71.6 % average nucleotide identity, less than 71.5 % average amino acid identity and less than 21.2 % digital DNA-DNA hybridization identity compared to the strains of related genera within the family Orbaceae. The major fatty acids of strain IPMB12T were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), C16 : 0 and C14 : 0. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one uncharacterized phosphoaminoglycolipid and one uncharacterized aminophospholipid. The major isoprenoid quinone was Q-8. Genomic DNA G+C content of strain IPMB12T was 39.3 mol%. On the basis of phenotypic and genotypic properties and phylogenetic inference, strain IPMB12T represents a novel species of a new genus in the family Orbaceae, for which the name Zophobihabitans entericus gen. nov., sp. nov. is proposed. The type strain is IPMB12T (=BCRC 80908T =LMG 32079T=KCTC 82347T=KACC 22323T).


Asunto(s)
Ácidos Grasos , Gammaproteobacteria , Invertebrados/microbiología , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Gammaproteobacteria/clasificación , Gammaproteobacteria/aislamiento & purificación , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Taiwán , Ubiquinona/química
5.
Dev Genes Evol ; 230(5-6): 339-345, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33006642

RESUMEN

Recent large-scale studies of opsin gene contents in representatives of the largest order of insects, the Coleoptera (beetles), revealed that the blue wavelength-sensitive (B) opsin subfamily is absent in this clade, while the ultraviolet- (UV) and long wavelength-sensitive (LW) opsin subfamilies are broadly conserved with gene duplications possibly reintroducing blue sensitivity in select subclades. Little is known yet, however, how opsin genes are expressed in the compound eyes of beetles. In a previous study, we analyzed opsin gene expression in the red flour beetle Tribolium castaneum, a member of the family of darkling beetles (Tenebrionidae), and found that a singleton LW opsin homolog is homogeneously expressed in all photoreceptors of the compound eye retina with a singleton UV opsin homolog being co-expressed in the R7 subtype photoreceptors. To probe for the evolutionary conservation of these expression patterns, we isolated complete opsin transcript sequences from three additional species in the subfamily Tenebrionidae (Tribolium confusum, Tenebrio molitor, Zophobas morio) and studied their expression via whole mount in situ hybridization in the pupal retina. These experiments revealed very similar, if not identical, photoreceptor subtype-specific expression patterns in all three species compared with T. castaneum. Documenting a deep conservation of photoreceptor subtype-specific opsin gene expression in this range of darkling beetles, our study provides a first point of reference for broader comparative studies of retinal organization in the Coleoptera.


Asunto(s)
Escarabajos/genética , Opsinas/genética , Opsinas/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Animales , Evolución Biológica , Duplicación de Gen , Expresión Génica , Hibridación in Situ , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Pupa/genética , Pupa/metabolismo , Retina/metabolismo , Opsinas de Bastones , Tenebrio/genética , Tenebrio/metabolismo , Tribolium/genética , Tribolium/metabolismo
6.
Naturwissenschaften ; 107(1): 7, 2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31900598

RESUMEN

Insects employ different defense strategies against fungal infections and chemicals. We aimed to identify the lipid compositions of the fat body of Zophobas morio larvae before and after fungal infection with the entomopathogenic fungus Metarhizium flavoviride. We used gas chromatography-mass spectrometry to analyze lipid extracts of the fat body isolated of Z. morio 2, 5, and 7 days after fungal infection (treatment group) and compared it with the lipid extracts in a control group injected with physiological isotonic saline. In all the samples, fatty acids were the most abundant compound found in the fat body extracts, with hexadecanoic acid/C16:0 being the most abundant lipid. However, the types and concentrations of lipids changed after fungal infection, likely as an immune response. The most considerable changes occurred in the concentrations of long-chain fatty acids, i.e., hexadecanoic acid/C16:0, octadecenoic acid/C18:1, and octadecanoic acid/C18:0. Contents of methyl ester increased significantly after infection, but that of other esters, especially octanoic acid decyl ester/OADE, decreased on the 5th day after infection. To the best of our knowledge, this is the first detailed analysis of the changes in the lipid composition of the fat body of Z. morio larvae as a result of fungal infection. Our results suggest that entomopathogenic fungal infection affects the internal lipid composition of insects, potentially as a way of adjusting to such infection. These results can help understand infection processes and defense strategies of insects against fungal infection. Ultimately, they can contribute to the creation of more effective chemicals against pest insects.


Asunto(s)
Escarabajos/microbiología , Lípidos/química , Metarhizium/fisiología , Animales , Escarabajos/química , Cuerpo Adiposo/química , Cuerpo Adiposo/microbiología , Larva/microbiología
7.
Polymers (Basel) ; 16(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38794597

RESUMEN

Polystyrene (PS) is an extremely stable polymer with a relatively high molecular weight and a strong hydrophobic character that makes it highly resistant to biodegradation. In this study, PS was subjected to biodegradation tests by Tenebrio Molitor (T. Molitor) and Zophobas Morio (Z. Morio) larvae. Specifically, six different experimental diets were compared: (i) T. Molitor fed with bran; (ii) T. Molitor fed only PS; (iii) T. Molitor fed only PS treated with H2O2; (iv) Z. Morio fed with bran; (v) Z. Morio fed only PS; and (vi) Z. Morio fed only PS treated with H2O2. Therefore, the mass change of the larvae and the survival rate were measured periodically, while the frass collected after 15 and 30 days was analyzed by different analyses, such as spectroscopy (FTIR), spectrometry (molecular weight and polydispersity), thermal analysis (TGA) and microscopy (scanning electron microscopy observations). The obtained results suggest that in the case of T. Molitor larvae, larvae feeding on bran showed the highest survival rate of ~94% at 30 days, while in the case of the Z. Morio larvae, the highest survival rate was exhibited by larvae eating PS-H2O2. Although not strongly pronounced, the Mw and Mn of PS in the frass of both T. Molitor and Z. Morio larvae decreased over 30 days, suggesting PS biodegradation. Finally, the morphological analysis shows that PS samples isolated from the frass of T. Molitor and Z. Morio larvae showed completely different, rough and irregularly carved surface structures, in comparison to PS before biodegradation.

8.
J Glob Antimicrob Resist ; 36: 65-69, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38128729

RESUMEN

OBJECTIVES: OCH class C ß-lactamases have been reported in several species belonging to the Brucella genus that were formerly known as Ochrobactrum. Moreover, only one complete genome of Brucella pseudintermedia has been published. In this work, we describe the genome of a B. pseudintermedia strain possessing a new blaOCH gene that was isolated from Zophobas morio larvae. METHODS: Hybrid whole-genome sequencing analysis (Illumina and Nanopore) was used to identify and characterise the strain (Ops-OCH-23). Phylogenetic analyses based on the 16S rRNA gene sequence and a core-genome alignment were performed to study the relationships among Ops-OCH-23 and deposited genomes. Moreover, all deposited blaOCH genes were compared to the one found in Ops-OCH-23. RESULTS: Ops-OCH-23 showed a susceptibility profile consistent with the production of AmpC ß-lactamase(s). Its genome consisted of two chromosomes, of which one carried the blaOCH gene. Such gene encoded a new class C OCH ß-lactamase among the fifteen so far reported. Two plasmids (120-Kb and 59-Kb) without any associated antimicrobial resistance genes were also found. Analysis of 16S rRNA revealed that Ops-OCH-23 shared 100% homology with four deposited B. pseudintermedia strains. Moreover, the core-genome analysis indicated that the closest match (279 ΔSNVs) to Ops-OCH-23 was strain CTOTU49018 isolated from an urban environment in Germany in 2013. CONCLUSION: We described the second complete genome of a B. pseudintermedia that also encoded a new OCH ß-lactamase variant. Overall, this report expands our knowledge regarding this rarely isolated Brucella species that have been reported so far only a few times in human sources.


Asunto(s)
Brucella , Ochrobactrum , Animales , Humanos , Larva , Filogenia , ARN Ribosómico 16S/genética , beta-Lactamasas/genética , Ochrobactrum/genética , Brucella/genética
9.
Food Chem ; 445: 138719, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401309

RESUMEN

The present work aimed to quantify the macronutrients and the fatty acid (FA) profile in different killing methods, blanching (BC) and freezing (FR), on edible insects of the speciesTenebrio molitor(TM) andZophobas morio(ZM). Concerning macronutrients TM-BC and TM-FR presented 51.2% and 50.6% of protein, 28% and 29.4% of lipids, and 12.4% and 11.4%. Meanwhile, ZM-BC and ZM-FR expressed 42.8% and 43.7% of protein, 39.1% and 40.1% of lipids, and 10.7% and 8.9% of carbohydrates. The FA of TM and ZM shows respectively values of Saturated Fatty Acids (∑SFA) 30% - 45%, Monounsaturated (MUFA) 47% - 32%, Polyunsaturated (∑PUFA) 23% - 22%, Atherogenicity Index (AI) 0.64 - 0.75, Thrombogenicity Index (TI) 0.77 - 1.44 and hypocholesterolemic/hypercholesterolemic index (h/H) of 2.50-1.51. Based on the results obtained, the slaughter methods showed statistically differences in relation to MUFA's in TM, and ZM larvae only in the minority fraction of FA.


Asunto(s)
Escarabajos , Insectos Comestibles , Tenebrio , Animales , Ácidos Grasos , Larva
10.
Front Microbiol ; 15: 1375787, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476953

RESUMEN

The use of mammalian models for in vivo testing of bacterial virulence raises ethical concerns and is expensive and time-consuming. As an alternative, non-mammalian models are sought. Galleria mellonella larvae have been used as a model to study several bacterial pathogens. However, their maintenance is challenging, and commercial supply is low. In this study, we aimed to establish the Zophobas morio larvae as an alternative non-mammalian model for the evaluation of the pathogenicity and antimicrobial susceptibility of Acinetobacter baumannii. We infected Z. morio with Acinetobacter strains and determined the optimal temperature and inoculum. To visualize the bacterial distribution within the larvae, hematoxylin and eosin (H&E) staining was performed. Next, a survival model of infected larvae was established, and virulence was compared between strains. The effect of antimicrobial treatment in relation to antibiotic susceptibility was studied. Our results demonstrate that Z. morio can be used as a model system for in vivo studies of A. baumannii.

11.
Animals (Basel) ; 13(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37370468

RESUMEN

Super mealworm Zophobas morio (Coleoptera: Tenbrionidea) larvae (ZML) are being investigated as potential candidates for biodiesel production. Several studies have revealed that the crude fat content of ZML can be enhanced by increasing the feed consumed. We aimed to develop an optimized ZML feed that enhances the lipid gain using 10 different ingredients. The results revealed that the highest lipid content was observed in ZML fed food waste (FW). Furthermore, we found that the weight gain of ZML improved when fed fermented FW using three selected microorganisms (3M), Lactobacillus fermentum, Lactobacillus acidophilus, and Pediococcus acidilactici. We also analyzed the effects of preservatives on the weight gain of ZML, and the results revealed that ZML fed 5-day 3M-fermented FW (FFW) containing 0.05% sorbic acid exhibited the highest weight gain. Based on these findings, we produced solid FFW containing 0.05% sorbic acid using 5% agar and established a manufacturing process. Body composition analysis revealed that the lipid content of the ZML fed manufactured feed was higher than that of the ZML fed wheat bran. Therefore, this study suggests that solid FFW containing 0.05% sorbic acid should be used as a commercial feed for ZML breeding to enhance lipid gain, making it an economical substrate for raw biodiesel production.

12.
J Comp Physiol B ; 193(5): 495-507, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37460758

RESUMEN

In insects, enzyme phenoloxidase plays a critical role in cuticular sclerotisation and defensive functions. In the present investigation, haemolymph phenoloxidase activity from the grub of Zophobas morio was attempted to evaluate as a reliable predictor of insect's immunological response. Among the various substrates tested, L-DOPA was chosen as an appropriate substrate due to its high oxidation. The optimum pH and temperature for haemolymph PO activity was found to be 8 and 30 °C, respectively. The optimum substrate concentration of L-DOPA was found to be 7.5 mM for subsequent PO enzymatic characterisation. Among the various chemical inhibitors and copper chelators, PO activity was significantly reduced in the case of PMSF and thiourea. Preincubation of haemolymph with non-self-molecules showed enhancement of PO activity in the case of LPS from Serratia marcescens. In addition, exogenous proteases like α-chymotrypsin enhanced the PO activity of haemolymph and an increase in PO activity was demonstrated when haemolymph was preincubated with the anionic detergent, SDS and cationic detergent, cetyl pyridium chloride. Alteration of PO activity was observed under agonising conditions of starvation, ligation and microplastics injection at different time intervals. Interestingly, there were no correlation between PO and insect defence under live challenge of microbes. SDS protein profile revealed a significant increase in the 85 kDa and 55 kDa polypeptides in all the experiments over control after 24 h, 48 h and 96 h. Mass spectrophotometric analysis of the polypeptides revealed their homology to antimicrobial peptides for 55 kDa protein and 85 kDa protein. A significant increase in 85 kDa polypeptide was observed in the haemolymph of the grubs after 72 h in the case of starved and microplastics injected groups only. These results demonstrated that PO may not be a reliable benchmark of immunological response in this insect.


Asunto(s)
Detergentes , Monofenol Monooxigenasa , Animales , Monofenol Monooxigenasa/metabolismo , Detergentes/análisis , Levodopa/análisis , Microplásticos/análisis , Plásticos/análisis , Hemolinfa , Péptidos , Inmunidad
13.
G3 (Bethesda) ; 13(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37002914

RESUMEN

Zophobas morio (=Zophobas atratus) and Tenebrio molitor are darkling beetles with industrial importance due to their use as feeder insects and their apparent ability to biodegrade plastics. High quality genome assemblies were recently reported for both species. Here, we report additional independent Z. morio and T. molitor genome assemblies generated from Nanopore and Illumina data. Following scaffolding against the published genomes, haploid assemblies of 462 Mb (scaffold N90 of 16.8 Mb) and 258 Mb (scaffold N90 of 5.9 Mb) were produced for Z. morio and T. molitor, respectively. Gene prediction led to the prediction of 28,544 and 19,830 genes for Z. morio and T. molitor, respectively. Benchmarking Universal Single Copy Orthologs (BUSCO) analyses suggested that both assemblies have a high level of completeness; 91.5 and 89.0% of the BUSCO endopterygota marker genes were complete in the Z. morio assembly and proteome, respectively, while 99.1 and 92.8% were complete in the T. molitor assembly and proteome, respectively. Phylogenomic analyses of four genera from the family Tenebrionidae yielded phylogenies consistent with those previously constructed based on mitochondrial genomes. Synteny analyses revealed large stretches of macrosynteny across the family Tenebrionidae, as well as numerous within-chromosome rearrangements. Finally, orthogroup analysis identified ∼28,000 gene families across the family Tenebrionidae, of which 8,185 were identified in all five of the analyzed species, and 10,837 were conserved between Z. morio and T. molitor. We expect that the availability of multiple whole genome sequences for Z. morio and T. molitor will facilitate population genetics studies to identify genetic variation associated with industrially relevant phenotypes.


Asunto(s)
Escarabajos , Genoma Mitocondrial , Tenebrio , Animales , Tenebrio/genética , Proteoma , Larva
14.
PeerJ Comput Sci ; 8: e884, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35494845

RESUMEN

Zophobas Morio and Tenebrio Molitor are popular larvae as feed ingredients that are widely used by animal lovers to feed reptiles, songbirds, and other poultry. These two larvae share a similar appearance, however; the nutritional ingredients are significantly different. Zophobas Morio is more nutritious and has a higher economic value compared to Tenebrio Molitor. Due to limited knowledge, many animal lovers find it difficult to distinguish between the two. This study aims to build a machine learning model that is able to distinguish between the two. The model is trained using images that are taken from a standard camera on a mobile phone. The training is carried on using a deep learning algorithm, by adopting an architecture through transfer learning, namely VGG-19 and Inception v3. The experimental results on the datasets show that the accuracy rates of the model are 94.219% and 96.875%, respectively. The results are quite promising for practical use and can be improved for future works.

15.
Animals (Basel) ; 12(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35625124

RESUMEN

Edible insects are acknowledged as a valuable nutritional source and promising alternative to traditional feed ingredients, while the optimization of rearing conditions is required for their wider utilization in the animal feed industry. The main goal of this study was to compare and optimize the rearing conditions of the two species' larvae and identify the most favorable nutritive composition of the full-fat larval meal. For that purpose, Tenebrio molitor (TM) and Zophobas morio (ZM) were reared on three different substrates and harvested after three time periods. An artificial neural network (ANN) with multi-objective optimization (MOO) was used to investigate the influence between the observed parameters as well as to optimize and determine rearing conditions. The optimization of the larval rearing conditions showed that the best nutritive composition of full-fat larval meal was obtained for ZM larvae reared on a mixture of cabbage, carrot and flaxseed and harvested after 104 days. The best nutritive composition contained 39.52% protein, 32% crude fat, 44.01% essential amino acids, 65.21 mg/100 g Ca and 651.15 mg/100 g P with a favorable ratio of 1.5 of n6/n3 fatty acids. Additionally, the incorporation of flaxseed in the larval diet resulted in an increase in C18:3n3 content in all samples.

16.
J Fungi (Basel) ; 7(9)2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34575812

RESUMEN

The study of fungal antibiotics in their competitive interactions with arthropods may lead to the development of novel biorational insecticides. Extracts of Alternaria tenuissima MFP253011 obtained using various methods showed a wide range of biological activities, including entomotoxic properties. Analysis of their composition and bioactivity allowed us to reveal several known mycotoxins and unidentified compounds that may be involved in the entomotoxic activity of the extracts. Among them, tenuazonic acid (TeA), which was the major component of the A. tenuissima extracts, was found the most likely to have larvicidal activity against Galleria mellonella. In the intrahaemocoel injection bioassay, TeA was toxic to G. mellonella and of Zophobas morio with an LT50 of 6 and 2 days, respectively, at the level of 50 µg/larva. Administered orally, TeA inhibited the growth of G. mellonella larvae and caused mortality of Acheta domesticus adults (LT50 7 days) at a concentration of 250 µg/g of feed. TeA showed weak contact intestinal activity against the two phytophages, Tetranychus urticae and Schizaphis graminum, causing 15% and 27% mortality at a concentration of 1 mg/mL, respectively. TeA was cytotoxic to the Sf9 cell line (IC50 25 µg/mL). Thus, model insects such as G. mellonella could be used for further toxicological characterization of TeA.

17.
Huan Jing Ke Xue ; 41(12): 5609-5616, 2020 Dec 08.
Artículo en Zh | MEDLINE | ID: mdl-33374078

RESUMEN

Polystyrene (PS) foam is one of the main plastic materials dispersed in the environment. In this study, we observed that the insect-super mealworms (Zophobas morio), which belong to a species of the Tenebrio genus, are able to consume and degrade PS foam. Individual Z. morio consumed an extracellular polymeric substance (EPS) over 50 days with high survival rates. Analyses of the frass egested using fourier transform infrared spectroscopy (FTIR) confirmed the formation of a new oxygen-bearing functional group in the EPS. Gel permeation chromatography (GPC) analyses indicated that the depolymerization of ingested EPS with decreases in both Mw and Mn was observed, suggesting that the EPS was biodegraded. We also used 16S rRNA gene sequences to analyze the gut bacteria of Z. morio under three different feeding conditions, including with polystyrene, bran, and bran plus polystyrene. Under different dietary conditions, the gut microbiota of Z. morio showed significant differences, such as Klebsiella and Citrobacter becoming significantly enriched. In vitro studies using 90-days gut microbial culturing experiments indicated that gut microbiota contributed to PS degradation. Our research demonstrates that intestinal bacteria played an essential role in the degradation of PS by Z. morio, and provides a new theoretical basis and application ideas for the biodegradation of PS.


Asunto(s)
Microbioma Gastrointestinal , Poliestirenos , Animales , Matriz Extracelular de Sustancias Poliméricas , Larva , ARN Ribosómico 16S
18.
Microorganisms ; 8(10)2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998225

RESUMEN

Coliforms and Staphylococcus spp. infections are the leading causes of bovine mastitis. Despite extensive research and development in antibiotics, they have remained inadequately effective in treating bovine mastitis induced by multiple pathogen infection. In the present study, we showed the protective effect of Zophobas morio (Z. morio) hemolymph on bovine mammary epithelial cells against bacterial infection. Z. morio hemolymph directly kills both Gram-positive and Gram-negative bacteria through membrane permeation and prevents the adhesion of E. coli or the clinically isolated S. simulans strain to bovine mammary epithelial (MAC-T) cells. In addition, Z. morio hemolymph downregulates the expression of nucleotide-binding oligomerization domain (NOD)-like receptor family member pyrin domain-containing protein 3 (NLRP3), caspase-1, and NLRP6, as well as inhibits the secretion of interleukin-1ß (IL-1ß) and IL-18, which attenuates E. coli or S. simulans-induced pyroptosis. Overall, our results suggest the potential role of Z. morio hemolymph as a novel therapeutic candidate for bovine mastitis.

19.
Food Res Int ; 137: 109703, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33233277

RESUMEN

In order to better understand structure formation in hybrid meat products containing insects, viscoelastic properties, protein aggregation and surface hydrophobicity of extracted insect and meat proteins in different insect:meat nitrogen ratios (100:0, 75:25, 50:50, 25:75 and 0:100) at different heating temperatures (from 20 to 80 °C) were studied. During heating, meat proteins showed best gelling properties. This was probably associated with the formation of hydrophobic interactions, as was confirmed by the strong increase in surface hydrophobicity of the meat proteins upon heating. Insect proteins, on the other hand, formed a considerable amount of additional structure during cooling, resulting in gels with high gel strength, although their gel stability was low. As for the mixtures of insect and meat proteins, they showed lower final gel strengths compared to the pure insect and meat protein samples. Furthermore, proteins with molecular weights of 230 and 16 kDa, that aggregated in the pure samples, did not aggregate in the mixtures. Although the mechanism of the latter effect remains to be elucidated, it probably explains the lower gel strength observed in the protein mixtures.


Asunto(s)
Carne de Cerdo , Carne Roja , Animales , Calefacción , Insectos , Carne , Carne Roja/análisis , Porcinos , Temperatura
20.
Animals (Basel) ; 10(6)2020 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-32545777

RESUMEN

The present study is the first introduction of hydrolyzed superworm meal in sea trout nutrition. It was conducted to evaluate the effects of inclusion in the diet of hydrolyzed insect meals as a partial replacement for fishmeal on growth performance, feed utilization, organosomatic indices, serum biochemical parameters, gut histomorphology, and microbiota composition of sea trout (Salmo trutta m. trutta). The experiment was performed on 225 sea trout fingerlings distributed into three groups (3 tanks/treatment, 25 fish/tank). The control diet was fishmeal-based. In the experimental groups, 10% of hydrolyzed mealworm (TMD) and superworm (ZMD) meals were included. The protein efficiency ratio was lower in the TMD and ZMD. Higher organosomatic indices and liver lipid contents were found in the group fed ZMD. The ZMD increased levels of aspartate aminotransferase, and decreased levels of alkaline phosphatase. The Aeromonas spp. and Enterococcus spp. populations decreased in the ZMD. The concentrations of the Carnobacterium spp. decreased in the ZMD and TMD, as did that of the Lactobacillus group in the TMD. In conclusion, insect meals may be an alternative protein source in sea trout nutrition, as they yield satisfying growth performance and have the capability to modulate biochemical blood parameters and microbiota composition.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda