Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Crit Rev Biotechnol ; : 1-19, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267262

RESUMEN

Plants, anchored throughout their life cycles, face a unique set of challenges from fluctuating environments and pathogenic assaults. Central to their adaptative mechanisms are transcription factors (TFs), particularly the AP2/ERF superfamily-one of the most extensive TF families unique to plants. This family plays instrumental roles in orchestrating diverse biological processes ranging from growth and development to secondary metabolism, and notably, responses to both biotic and abiotic stresses. Distinguished by the presence of the signature AP2 domain or its responsiveness to ethylene signals, the AP2/ERF superfamily has become a nexus of research focus, with increasing literature elucidating its multifaceted roles. This review provides a synoptic overview of the latest research advancements on the AP2/ERF family, spanning its taxonomy, structural nuances, prevalence in higher plants, transcriptional and post-transcriptional dynamics, and the intricate interplay in DNA-binding and target gene regulation. Special attention is accorded to the ethylene response factor B3 subgroup protein Pti5 and its role in stress response, with speculative insights into its functionalities and interaction matrix in tomatoes. The overarching goal is to pave the way for harnessing these TFs in the realms of plant genetic enhancement and novel germplasm development.

2.
Plant Cell Environ ; 46(12): 3887-3901, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37656830

RESUMEN

Alfalfa (Medicago sativa L.) is considered to be the most important forage crop on a global scale. Nevertheless, soil salinity significantly decreases productivity, seriously threatening food security worldwide. One viable strategy is to explore salt stress-responsive factors and elucidate their underlying molecular mechanism, and utilize them in further alfalfa breeding. In the present study, we designated MsWRKY33 as a representative salt stress-responsive factor preferentially expressed in alfalfa roots and leaves. Subsequently, it was demonstrated that MsWRKY33 was localized in the cell nucleus, and functioned as a transcriptional activator of the W-box element. Transgenic alfalfa overexpressing MsWRKY33 displayed enhanced salt stress tolerance and antioxidant activities with no significant difference in other agronomic traits. Transcriptome profiling of MsWRKY33 transgenic alfalfa under control and salt treatment unveiled significantly altered expression of reactive oxygen species (ROS) scavenger genes in transgenic alfalfa. Subsequent examination revealed that MsWRKY33 binded to the promoter of MsERF5, activating its expression and consequently fine-tuning the ROS-scavenging enzyme activity. Furthermore, MsWRKY33 interacted with the functional fragment of MsCaMBP25, which participates in Ca2+ signaling transduction. Collectively, this research offers new insight into the molecular mechanism of alfalfa salt stress tolerance and highlights the potential utility of MsWRKY33 in alfalfa breeding.


Asunto(s)
Medicago sativa , Tolerancia a la Sal , Medicago sativa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tolerancia a la Sal/genética , Perfilación de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Plant Cell Environ ; 43(12): 2969-2986, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32520430

RESUMEN

To succeed in life, living organisms have to adapt to the environmental issues to which they are subjected. Some plants, defined as hyperaccumulators, have adapted to metalliferous environments, acquiring the ability to tolerate and accommodate high amounts of toxic metal into their shoot, without showing symptoms of toxicity. The determinants for these traits and their mode of action have long been the subject of research, whose attention lately moved to the evolution of the hypertolerance and hyperaccumulation traits. Genetic evidence indicates that the evolution of both traits includes significant evolutionary events that result in species-wide tolerant and accumulating backgrounds. Different edaphic environments are responsible for subsequent refinement, by local adaptive processes, leading to specific strategies and various degrees of hypertolerance and hyperaccumulation, which characterize metallicolous from non-metallicolous ecotypes belonging to the same genetic unit. In this review, we overview the most updated concepts regarding the evolution of hyperaccumulation and hypertolerance, highlighting also the ecological context concerning the plant populations displaying this fascinating phenomenon.


Asunto(s)
Adaptación Fisiológica/fisiología , Metales/metabolismo , Adaptación Fisiológica/genética , Evolución Biológica , Fenómenos Fisiológicos de las Plantas/genética , Plantas/genética , Plantas/metabolismo , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología
4.
Int J Mol Sci ; 21(2)2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31968543

RESUMEN

Abiotic stresses, such as drought and salt, are major environmental stresses, affecting plant growth and crop productivity. Plant bZIP transcription factors (bZIPs) confer stress resistances in harsh environments and play important roles in each phase of plant growth processes. In this research, 15 soybean bZIP family members were identified from drought-induced de novo transcriptomic sequences of soybean, which were unevenly distributed across 12 soybean chromosomes. Promoter analysis showed that these 15 genes were rich in ABRE, MYB and MYC cis-acting elements which were reported to be involved in abiotic stress responses. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that 15 GmbZIP genes could be induced by drought and salt stress. GmbZIP2 was significantly upregulated under stress conditions and thus was selected for further study. Subcellular localization analysis revealed that the GmbZIP2 protein was located in the cell nucleus. qRT-PCR results show that GmbZIP2 can be induced by multiple stresses. The overexpression of GmbZIP2 in Arabidopsis and soybean hairy roots could improve plant resistance to drought and salt stresses. The result of differential expression gene analysis shows that the overexpression of GmbZIP2 in soybean hairy roots could enhance the expression of the stress responsive genes GmMYB48, GmWD40, GmDHN15, GmGST1 and GmLEA. These results indicate that soybean bZIPs played pivotal roles in plant resistance to abiotic stresses.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Glycine max/genética , Arabidopsis/genética , Arabidopsis/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Sequías , Fenotipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Estrés Salino , Glycine max/fisiología , Estrés Fisiológico
5.
Int J Mol Sci ; 21(24)2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33327508

RESUMEN

MicroRNAs are important regulators in plant developmental processes and stress responses. In this study, we generated a series of maize STTM166 transgenic plants. Knock-down of miR166 resulted in various morphological changes, including rolled leaves, enhanced abiotic stress resistance, inferior yield-related traits, vascular pattern and epidermis structures, tassel architecture, as well as abscisic acid (ABA) level elevation and indole acetic acid (IAA) level reduction in maize. To profile miR166 regulated genes, we performed RNA-seq and qRT-PCR analysis. A total of 178 differentially expressed genes (DEGs) were identified, including 118 up-regulated and 60 down-regulated genes. These DEGs were strongly enriched in cell and intercellular components, cell membrane system components, oxidoreductase activity, single organism metabolic process, carbohydrate metabolic process, and oxidation reduction process. These results indicated that miR166 plays important roles in auxin and ABA interaction in monocots, yet the specific mechanism may differ from dicots. The enhanced abiotic stress resistance is partly caused via rolling leaves, high ABA content, modulated vascular structure, and the potential changes of cell membrane structure. The inferior yield-related traits and late flowering are partly controlled by the decreased IAA content, the interplay of miR166 with other miRNAs and AGOs. Taken together, the present study uncovered novel functions of miR166 in maize, and provide insights on applying short tandem target mimics (STTM) technology in plant breeding.


Asunto(s)
MicroARNs/fisiología , Zea mays/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , MicroARNs/genética , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología , Zea mays/fisiología
6.
Genome ; 59(4): 243-51, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26966988

RESUMEN

SGT1 genes are involved in enhancing plant responses to various biotic and abiotic stresses. Brassica oleracea is known to contain two types of SGT1 genes, namely suppressor of G2 allele of SKP1 and suppressor of GCR2. In this study, through systematic analysis, four putative SGT1 genes were identified and characterized in B. oleracea. In phylogenetic analysis, the genes clearly formed separate groups, namely BolSGT1a, BolSGT1b (both suppressor of G2 allele of SKP1 types), and BolSGT1 (suppressor of GCR2). Functional domain analysis and organ-specific expression patterns suggested possible roles for BolSGT1 genes during stress conditions. BolSGT1 genes showed significant changes in expression in response to heat, cold, drought, salt, or ABA treatment. Interaction network analysis supported the expression analysis, and showed that the BolSGT1a and BolSGT1b genes are strongly associated with co-regulators during stress conditions. However, the BolSGT1 gene did not show any strong association. Hence, BolSGT1 might be a stress resistance-related gene that functions without a co-regulator. Our results show that BolSGT1 genes are potential target genes to improve B. oleracea resistance to abiotic stresses such as heat, cold, and salt.


Asunto(s)
Brassica/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Sequías , Filogenia , Análisis de Secuencia de ADN , Cloruro de Sodio , Temperatura
7.
Plant Physiol Biochem ; 214: 108908, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38976942

RESUMEN

Drought stress strongly affects crop yield. Although knowledge of long non-coding RNAs (lncRNAs) has been updated continuously and rapidly, information about lncRNAs in drought resistance regulation is extremely limited in sorghum. Here, lncRNA-sequencing was performed with seedlings of a sorghum cultivar (Jinza29) under three water control treatments to investigate the mechanism of lncRNAs responsible for drought resistance in sorghum. A total of 377 differentially expressed lncRNAs (DElncRNAs) were identified. We also predicted 4322 and 2827 transcripts as potential cis-target and trans-target genes for drought-responsive lncRNAs, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that those target genes exhibited marked enrichment into "oxidoreductase activity", "signal transducer activity", "DNA repair", "photosynthesis", "glutathione metabolism", and "phenylpropanoid biosynthesis" and other terms associated with abiotic stress resistance. Moreover, several lncRNAs were estimated to modulate the expression of other genes related to stress response and photosynthetic carbon metabolism. Additionally, we found 107 DElncRNAs that might be candidate target mimics for 56 miRNAs. LncRNAs play important roles in drought adaptation of sorghum through interacting with protein-encoding genes. The obtained results provided novel insights into the biological characteristics of lncRNAs and offered potential regulatory factors for genetically enhancing drought resistance in sorghum.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , ARN Largo no Codificante , Sorghum , Sorghum/genética , Sorghum/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN de Planta/genética , Genoma de Planta/genética , Estrés Fisiológico/genética , Ontología de Genes
8.
Front Plant Sci ; 15: 1404889, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015289

RESUMEN

Introduction: Effective weed management tools are crucial for maintaining the profitable production of snap bean (Phaseolus vulgaris L.). Preemergence herbicides help the crop to gain a size advantage over the weeds, but the few preemergence herbicides registered in snap bean have poor waterhemp (Amaranthus tuberculatus) control, a major pest in snap bean production. Waterhemp and other difficult-to-control weeds can be managed by flumioxazin, an herbicide that inhibits protoporphyrinogen oxidase (PPO). However, there is limited knowledge about crop tolerance to this herbicide. We aimed to quantify the degree of snap bean tolerance to flumioxazin and explore the underlying mechanisms. Methods: We investigated the genetic basis of herbicide tolerance using genome-wide association mapping approach utilizing field-collected data from a snap bean diversity panel, combined with gene expression data of cultivars with contrasting response. The response to a preemergence application of flumioxazin was measured by assessing plant population density and shoot biomass variables. Results: Snap bean tolerance to flumioxazin is associated with a single genomic location in chromosome 02. Tolerance is influenced by several factors, including those that are indirectly affected by seed size/weight and those that directly impact the herbicide's metabolism and protect the cell from reactive oxygen species-induced damage. Transcriptional profiling and co-expression network analysis identified biological pathways likely involved in flumioxazin tolerance, including oxidoreductase processes and programmed cell death. Transcriptional regulation of genes involved in those processes is possibly orchestrated by a transcription factor located in the region identified in the GWAS analysis. Several entries belonging to the Romano class, including Bush Romano 350, Roma II, and Romano Purpiat presented high levels of tolerance in this study. The alleles identified in the diversity panel that condition snap bean tolerance to flumioxazin shed light on a novel mechanism of herbicide tolerance and can be used in crop improvement.

9.
Front Plant Sci ; 14: 1248476, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38179476

RESUMEN

The important role of microbial associations in mediating plant protection and responses to abiotic stresses has been widely recognized. However, there have been limited studies on the functional profile of the phyllosphere microbiota from tobacco (Nicotiana tabacum), hindering our understanding of the mechanisms underlying stress resilience in this representative and easy-to-cultivate model species from the solanaceous family. To address this knowledge gap, our study employed shotgun metagenomic sequencing for the first time to analyze the genetic catalog and identify putative plant growth promoting bacteria (PGPB) candidates that confer abiotic stress resilience throughout the growth period of cigar tobacco in the phyllosphere. We identified abundant genes from specific bacterial lineages, particularly Pseudomonas, within the cigar tobacco phyllospheric microbiome. These genes were found to confer resilience against a wide range of stressors, including osmotic and drought stress, heavy metal toxicity, temperature perturbation, organic pollutants, oxidative stress, and UV light damage. In addition, we conducted a virome mining analysis on the metagenome to explore the potential roles of viruses in driving microbial adaptation to environmental stresses. Our results identified a total of 3,320 scaffolds predicted to be viral from the cigar tobacco phyllosphere metagenome, with various phages infecting Pseudomonas, Burkholderia, Enterobacteria, Ralstonia, and related viruses. Within the virome, we also annotated genes associated with abiotic stress resilience, such as alkaline phosphatase D (phoD) for nutrient solubilization and glutamate-5-semialdehyde dehydrogenase (proA) for osmolyte synthesis. These findings shed light on the unexplored roles of viruses in facilitating and transferring abiotic stress resilience in the phyllospheric microbiome through beneficial interactions with their hosts. The findings from this study have important implications for agricultural practices, as they offer potential strategies for harnessing the capabilities of the phyllosphere microbiome to enhance stress tolerance in crop plants.

10.
Nanomaterials (Basel) ; 13(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37836325

RESUMEN

Carbon dots are carbon-based nanoparticles, which have the characteristics of a simple preparation process, photoluminescence, biocompatibility, an adjustable surface function, water solubility, and low-level toxicity. They are widely used in biological applications, such as imaging, biosensing, photocatalysis, and molecular transfer. They have also aroused great interest among researchers in agriculture, and there has been significant progress in improving crop growth and production. This review presents the physiological functions of carbon dots for crop growth and development, photosynthesis, water and nutrient absorption, and abiotic stress resistance and their applications in improving the ecological environment and agriculture as biosensors, and future application prospects and research directions of carbon dots in agriculture.

11.
Plants (Basel) ; 12(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37514285

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) are members of the plant rhizomicrobiome that enhance plant growth and stress resistance by increasing nutrient availability to the plant, producing phytohormones or other secondary metabolites, stimulating plant defense responses against abiotic stresses and pathogens, or fixing nitrogen. The use of PGPR to increase crop yield with minimal environmental impact is a sustainable and readily applicable replacement for a portion of chemical fertilizer and pesticides required for the growth of high-yielding varieties. Increased plant health and productivity have long been gained by applying PGPR as commercial inoculants to crops, although with uneven results. The establishment of plant-PGPR relationships requires the exchange of chemical signals and nutrients between the partners, and polyamines (PAs) are an important class of compounds that act as physiological effectors and signal molecules in plant-microbe interactions. In this review, we focus on the role of PAs in interactions between PGPR and plants. We describe the basic ecology of PGPR and the production and function of PAs in them and the plants with which they interact. We examine the metabolism and the roles of PAs in PGPR and plants individually and during their interaction with one another. Lastly, we describe some directions for future research.

12.
Mol Plant ; 16(10): 1518-1546, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37515323

RESUMEN

The disciplines of evolutionary biology and plant and animal breeding have been intertwined throughout their development, with responses to artificial selection yielding insights into the action of natural selection and evolutionary biology providing statistical and conceptual guidance for modern breeding. Here we offer an evolutionary perspective on a grand challenge of the 21st century: feeding humanity in the face of climate change. We first highlight promising strategies currently under way to adapt crops to current and future climate change. These include methods to match crop varieties with current and predicted environments and to optimize breeding goals, management practices, and crop microbiomes to enhance yield and sustainable production. We also describe the promise of crop wild relatives and recent technological innovations such as speed breeding, genomic selection, and genome editing for improving environmental resilience of existing crop varieties or for developing new crops. Next, we discuss how methods and theory from evolutionary biology can enhance these existing strategies and suggest novel approaches. We focus initially on methods for reconstructing the evolutionary history of crops and their pests and symbionts, because such historical information provides an overall framework for crop-improvement efforts. We then describe how evolutionary approaches can be used to detect and mitigate the accumulation of deleterious mutations in crop genomes, identify alleles and mutations that underlie adaptation (and maladaptation) to agricultural environments, mitigate evolutionary trade-offs, and improve critical proteins. Continuing feedback between the evolution and crop biology communities will ensure optimal design of strategies for adapting crops to climate change.


Asunto(s)
Cambio Climático , Fitomejoramiento , Animales , Fitomejoramiento/métodos , Productos Agrícolas/genética , Edición Génica , Genoma de Planta
13.
Front Plant Sci ; 13: 1025122, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407614

RESUMEN

Colonization by beneficial microbes can enhance plant tolerance to abiotic stresses. However, there are still many unknown fields regarding the beneficial plant-microbe interactions. In this study, we have assessed the amount or impact of horizontal gene transfer (HGT)-derived genes in plants that have potentials to confer abiotic stress resistance. We have identified a total of 235 gene entries in fourteen high-quality plant genomes belonging to phyla Chlorophyta and Streptophyta that confer resistance against a wide range of abiotic pressures acquired from microbes through independent HGTs. These genes encode proteins contributed to toxic metal resistance (e.g., ChrA, CopA, CorA), osmotic and drought stress resistance (e.g., Na+/proline symporter, potassium/proton antiporter), acid resistance (e.g., PcxA, ArcA, YhdG), heat and cold stress resistance (e.g., DnaJ, Hsp20, CspA), oxidative stress resistance (e.g., GST, PoxA, glutaredoxin), DNA damage resistance (e.g., Rad25, Rad51, UvrD), and organic pollutant resistance (e.g., CytP450, laccase, CbbY). Phylogenetic analyses have supported the HGT inferences as the plant lineages are all clustering closely with distant microbial lineages. Deep-learning-based protein structure prediction and analyses, in combination with expression assessment based on codon adaption index (CAI) further corroborated the functionality and expressivity of the HGT genes in plant genomes. A case-study applying fold comparison and molecular dynamics (MD) of the HGT-driven CytP450 gave a more detailed illustration on the resemblance and evolutionary linkage between the plant recipient and microbial donor sequences. Together, the microbe-originated HGT genes identified in plant genomes and their participation in abiotic pressures resistance indicate a more profound impact of HGT on the adaptive evolution of plants.

14.
Plant Signal Behav ; 17(1): 2108253, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-35959678

RESUMEN

Abiotic stresses are the foremost limiting factors for crop productivity. Crop plants need to cope with adverse external pressure caused by various environmental conditions with their intrinsic biological mechanisms to keep their growth, development, and productivity. Climate-resilient, high-yielding crops need to be developed to maintain sustainable food supply. Over the last decade, understanding of the genetic complexity of agronomic traits in sugarcane has prompted the integrated application of genetic engineering to address specific biological questions. Genes for adaptation to environmental stress and yield enhancement traits are being determined and introgressed to develop elite sugarcane cultivars with improved characteristics through genetic engineering approaches. Here, we discuss the advancement to provide a reference for future sugarcane (Saccharum spp.) genetic engineering.


Asunto(s)
Saccharum , Productos Agrícolas/genética , Grano Comestible/genética , Ingeniería Genética , Saccharum/genética , Estrés Fisiológico/genética
15.
Front Plant Sci ; 13: 985900, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147229

RESUMEN

Drought and high salinity are key limiting factors for cotton quality and yield. Therefore, research is increasingly focused on mining effective genes to improve the stress resistance of cotton. Few studies have demonstrated that bacterial Cold shock proteins (Csps) overexpression can enhance plants stress tolerance. Here, we first identified and cloned a gene DgCspC encoding 88 amino acids (aa) with an open reading frame (ORF) of 264 base pairs (bp) from a Deinococcus gobiensis I-0 with high resistance to strong radiation, drought, and high temperature. In this study, heterologous expression of DgCspC promoted cotton growth, as exhibited by larger leaf size and higher plant height than the wild-type plants. Moreover, transgenic cotton lines showed higher tolerance to drought and salts stresses than wild-type plants, as revealed by susceptibility phenotype and physiological indexes. Furthermore, the enhanced stresses tolerance was attributed to high capacity of cellular osmotic regulation and ROS scavenging resulted from DgCspC expression modulating relative genes upregulated to cause proline and betaine accumulation. Meanwhile, photosynthetic efficiency and yield were significantly higher in the transgenic cotton than in the wild-type control under field conditions. This study provides a newly effective gene resource to cultivate new cotton varieties with high stresses resistance and yield.

16.
Mol Plant Pathol ; 19(2): 369-380, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-27997759

RESUMEN

Fungal biotrophy is associated with a reduced capacity to produce potentially toxic secondary metabolites (SMs). Yet, the genome of the biotrophic plant pathogen Cladosporium fulvum contains many SM biosynthetic gene clusters, with several related to toxin production. These gene clusters are, however, poorly expressed during the colonization of tomato. The sole detectable SM produced by C. fulvum during in vitro growth is the anthraquinone cladofulvin. Although this pigment is not detected in infected leaves, cladofulvin biosynthetic genes are expressed throughout the pre-penetration phase and during conidiation at the end of the infection cycle, but are repressed during the biotrophic phase of tomato colonization. It has been suggested that the tight regulation of SM gene clusters is required for C. fulvum to behave as a biotrophic pathogen, whilst retaining potential fitness determinants for growth and survival outside its host. To address this hypothesis, we analysed the disease symptoms caused by mutant C. fulvum strains that do not produce or over-produce cladofulvin during the biotrophic growth phase. Non-producers infected tomato in a similar manner to the wild-type, suggesting that cladofulvin is not a virulence factor. In contrast, the cladofulvin over-producers caused strong necrosis and desiccation of tomato leaves, which, in turn, arrested conidiation. Consistent with the role of pigments in survival against abiotic stresses, cladofulvin protects conidia against UV light and low-temperature stress. Overall, this study demonstrates that the repression of cladofulvin production is required for C. fulvum to sustain its biotrophic lifestyle in tomato, whereas its production is important for survival outside its host.


Asunto(s)
Cladosporium/metabolismo , Cladosporium/patogenicidad , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología , Productos Biológicos/metabolismo , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Virulencia
17.
Front Plant Sci ; 9: 1420, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319678

RESUMEN

Aluminum (Al) toxicity on acidic soils significantly damages plant roots and inhibits root growth. Hence, crops intoxicated by Al become more sensitive to drought stress and mineral nutrient deficiencies, particularly phosphorus (P) deficiency, which is highly unavailable on tropical soils. Advances in our understanding of the physiological and genetic mechanisms that govern plant Al resistance have led to the identification of Al resistance genes, both in model systems and in crop species. It has long been known that Al resistance has a beneficial effect on crop adaptation to acidic soils. This positive effect happens because the root systems of Al resistant plants show better development in the presence of soil ionic Al3+ and are, consequently, more efficient in absorbing sub-soil water and mineral nutrients. This effect of Al resistance on crop production, by itself, warrants intensified efforts to develop and implement, on a breeding scale, modern selection strategies to profit from the knowledge of the molecular determinants of plant Al resistance. Recent studies now suggest that Al resistance can exert pleiotropic effects on P acquisition, potentially expanding the role of Al resistance on crop adaptation to acidic soils. This appears to occur via both organic acid (OA)- and non-OA transporters governing a joint, iron-dependent interplay between Al resistance and enhanced P uptake, via changes in root system architecture. Current research suggests this interplay to be part of a P stress response, suggesting that this mechanism could have evolved in crop species to improve adaptation to acidic soils. Should this pleiotropism prove functional in crop species grown on acidic soils, molecular breeding based on Al resistance genes may have a much broader impact on crop performance than previously anticipated. To explore this possibility, here we review the components of this putative effect of Al resistance genes on P stress responses and P nutrition to provide the foundation necessary to discuss the recent evidence suggesting pleiotropy as a genetic linkage between Al resistance and P efficiency. We conclude by exploring what may be needed to enhance the utilization of Al resistance genes to improve crop production on acidic soils.

18.
19.
Sheng Wu Gong Cheng Xue Bao ; 33(1): 111-121, 2017 Jan 25.
Artículo en Zh | MEDLINE | ID: mdl-28959868

RESUMEN

Studies have shown that some plant-specific NAC (NAM, ATAF1/2, CUC2) transcription factors may increase plants resistance to stress. We screened the genes differentially expressed in transgenic SlNAC1 Arabidopsis compared to the wild type by cDNA microarry, to provide scientific basis for studying the genes related to abiotic stress responses in transgenic Arabidopsis. There were 3 046 genes differentially expressed more than twice in the total 43 604 genes of transgenic SlNAC1 Arabidopsis. Gene ontology analysis was used on genes differentially expressed more than five-fold. Genes relevant to cellular components occupied 33.05%, genes correlated with molecular function accounted for 33.95% and genes pertinent to biological process constituted a 33.00% portion. The genes differentially expressed more than twice were processed through kyoto encyclopedia of genes and genomes pathways enrichment (KEGG) analysis. The total 2 431 genes were involved in 88 different signaling pathways. The screened genes related to abiotic stress responses provide direction and theoretical support for the following research on the downstream genes regulated by NAC and construction of the regulatory networks.


Asunto(s)
Arabidopsis/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas de Arabidopsis , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción
20.
Front Microbiol ; 8: 2167, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29209284

RESUMEN

The intriguing sit-and-wait hypothesis predicts that bacterial durability in the external environment is positively correlated with their virulence. Since its first proposal in 1987, the hypothesis has been spurring debates in terms of its validity in the field of bacterial virulence. As a special case of the vector-borne transmission versus virulence tradeoff, where vector is now replaced by environmental longevity, there are only sporadic studies over the last three decades showing that environmental durability is possibly linked with virulence. However, no systematic study of these works is currently available and epidemiological analysis has not been updated for the sit-and-wait hypothesis since the publication of Walther and Ewald's (2004) review. In this article, we put experimental evidence, epidemiological data and theoretical analysis together to support the sit-and-wait hypothesis. According to the epidemiological data in terms of gain and loss of virulence (+/-) and durability (+/-) phenotypes, we classify bacteria into four groups, which are: sit-and-wait pathogens (++), vector-borne pathogens (+-), obligate-intracellular bacteria (--), and free-living bacteria (-+). After that, we dive into the abundant bacterial proteomic data with the assistance of bioinformatics techniques in order to investigate the two factors at molecular level thanks to the fast development of high-throughput sequencing technology. Sequences of durability-related genes sourced from Gene Ontology and UniProt databases and virulence factors collected from Virulence Factor Database are used to search 20 corresponding bacterial proteomes in batch mode for homologous sequences via the HMMER software package. Statistical analysis only identified a modest, and not statistically significant correlation between mortality and survival time for eight non-vector-borne bacteria with sit-and-wait potentials. Meanwhile, through between-group comparisons, bacteria with higher host-mortality are significantly more durable in the external environment. The results of bioinformatics analysis correspond well with epidemiological data, that is, non-vector-borne pathogens with sit-and-wait potentials have higher number of virulence and durability genes compared with other bacterial groups. However, the conclusions are constrained by the relatively small bacterial sample size and non-standardized experimental data.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda