Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 2.625
Filtrar
Más filtros

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(41): e2313098121, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39312679

RESUMEN

One of the remaining issues regarding the Anthropocene is the lack of stratigraphic evidence indicating when the cumulative human pressure from the early Holocene began to fundamentally change the Earth system. Herein, we compile anthropogenic fingerprints from various high-precision-dated proxy records for 137 global sites to determine the age of the unprecedented surge in these records over the last 7700 y. The cumulative number of fingerprints revealed an unprecedented surge in diverse anthropogenic fingerprints starting in 1952 ± 3 CE, corresponding to the onset of the Great Acceleration. Notably, the period from 1953 to 1958 CE saw a nearly simultaneous surge in fingerprints across all regions, including Antarctica, the Arctic, East Asia, Europe, North America, and Oceania. This synchronous upsurge reflects the moment when human impacts led to rapid transformations in various natural processes and cycles, with humans becoming a geological force capable of inscribing abundant and diverse anthropogenic fingerprints in global strata. Following this global fingerprint explosion, profound planetary-scale changes, including deviations from the established natural climatic conditions, begin. This unprecedented surge in anthropogenic signals worldwide suggests that human influences started to match many natural forces controlling the processes and cycles and overwhelm some of the functioning of the Earth system around 1952.


Asunto(s)
Efectos Antropogénicos , Humanos , Geología , Planeta Tierra , Archivos
2.
Proc Natl Acad Sci U S A ; 121(25): e2322572121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38875148

RESUMEN

Shear forces affect self-assembly processes ranging from crystallization to fiber formation. Here, the effect of mild agitation on amyloid fibril formation was explored for four peptides and investigated in detail for A[Formula: see text]42, which is associated with Alzheimer's disease. To gain mechanistic insights into the effect of mild agitation, nonseeded and seeded aggregation reactions were set up at various peptide concentrations with and without an inhibitor. First, an effect on fibril fragmentation was excluded by comparing the monomer-concentration dependence of aggregation kinetics under idle and agitated conditions. Second, using a secondary nucleation inhibitor, Brichos, the agitation effect on primary nucleation was decoupled from secondary nucleation. Third, an effect on secondary nucleation was established in the absence of inhibitor. Fourth, an effect on elongation was excluded by comparing the seeding potency of fibrils formed under idle or agitated conditions. We find that both primary and secondary nucleation steps are accelerated by gentle agitation. The increased shear forces facilitate both the detachment of newly formed aggregates from catalytic surfaces and the rate at which molecules are transported in the bulk solution to encounter nucleation sites on the fibril and other surfaces. Ultrastructural evidence obtained with cryogenic transmission electron microscopy and free-flow electrophoresis in microfluidics devices imply that agitation speeds up the detachment of nucleated species from the fibril surface. Our findings shed light on the aggregation mechanism and the role of detachment for efficient secondary nucleation. The results inform on how to modulate the relative importance of different microscopic steps in drug discovery and investigations.


Asunto(s)
Amiloide , Amiloide/metabolismo , Amiloide/química , Cinética , Humanos , Resistencia al Corte , Agregado de Proteínas , Péptidos/química , Péptidos/metabolismo , Enfermedad de Alzheimer/metabolismo
3.
Mol Biol Evol ; 41(10)2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39302728

RESUMEN

Transcriptional enhancers orchestrate cell type- and time point-specific gene expression programs. Genetic variation within enhancer sequences is an important contributor to phenotypic variation including evolutionary adaptations and human disease. Certain genes and pathways may be more prone to regulatory evolution than others, with different patterns across diverse organisms, but whether such patterns exist has not been investigated at a sufficient scale. To address this question, we identified signatures of accelerated sequence evolution in conserved enhancer elements throughout the mammalian phylogeny at an unprecedented scale. While different genes and pathways were enriched for regulatory evolution in different parts of the tree, we found a striking overall pattern of pleiotropic genes involved in gene regulatory and developmental processes being enriched for accelerated enhancer evolution. These genes were connected to more enhancers than other genes, which was the basis for having an increased amount of sequence acceleration over all their enhancers combined. We provide evidence that sequence acceleration is associated with turnover of regulatory function. Detailed study of one acceleration event in an enhancer of HES1 revealed that sequence evolution led to a new activity domain in the developing limb that emerged concurrently with the evolution of digit reduction in hoofed mammals. Our results provide evidence that enhancer evolution has been a frequent contributor to regulatory innovation at conserved developmental signaling genes in mammals.


Asunto(s)
Secuencia Conservada , Elementos de Facilitación Genéticos , Evolución Molecular , Mamíferos , Filogenia , Animales , Mamíferos/genética , Humanos , Genes del Desarrollo , Regulación del Desarrollo de la Expresión Génica
4.
Arterioscler Thromb Vasc Biol ; 44(6): 1419-1431, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38634280

RESUMEN

BACKGROUND: Epigenetic age estimators (clocks) are predictive of human mortality risk. However, it is not yet known whether the epigenetic age of atherosclerotic plaques is predictive for the risk of cardiovascular events. METHODS: Whole-genome DNA methylation of human carotid atherosclerotic plaques (n=485) and of blood (n=93) from the Athero-Express endarterectomy cohort was used to calculate epigenetic age acceleration (EAA). EAA was linked to clinical characteristics, plaque histology, and future cardiovascular events (n=136). We studied whole-genome DNA methylation and bulk and single-cell transcriptomics to uncover molecular mechanisms of plaque EAA. We experimentally confirmed our in silico findings using in vitro experiments in primary human coronary endothelial cells. RESULTS: Male and female patients with severe atherosclerosis had a median chronological age of 69 years. The median epigenetic age was 65 years in females (median EAA, -2.2 [interquartile range, -4.3 to 2.2] years) and 68 years in males (median EAA, -0.3 [interquartile range, -2.9 to 3.8] years). Patients with diabetes and a high body mass index had higher plaque EAA. Increased EAA of plaque predicted future events in a 3-year follow-up in a Cox regression model (univariate hazard ratio, 1.7; P=0.0034) and adjusted multivariate model (hazard ratio, 1.56; P=0.02). Plaque EAA predicted outcome independent of blood EAA (hazard ratio, 1.3; P=0.018) and of plaque hemorrhage (hazard ratio, 1.7; P=0.02). Single-cell RNA sequencing in plaque samples from 46 patients in the same cohort revealed smooth muscle and endothelial cells as important cell types in plaque EAA. Endothelial-to-mesenchymal transition was associated with EAA, which was experimentally confirmed by TGFß-triggered endothelial-to-mesenchymal transition inducing rapid epigenetic aging in coronary endothelial cells. CONCLUSIONS: Plaque EAA is a strong and independent marker of poor outcome in patients with severe atherosclerosis. Plaque EAA was linked to mesenchymal endothelial and smooth muscle cells. Endothelial-to-mesenchymal transition was associated with EAA, which was experimentally validated. Epigenetic aging mechanisms may provide new targets for treatments that reduce atherosclerosis complications.


Asunto(s)
Metilación de ADN , Células Endoteliales , Epigénesis Genética , Placa Aterosclerótica , Humanos , Masculino , Femenino , Anciano , Pronóstico , Persona de Mediana Edad , Células Endoteliales/patología , Células Endoteliales/metabolismo , Factores de Edad , Enfermedades de las Arterias Carótidas/genética , Enfermedades de las Arterias Carótidas/patología , Enfermedades de las Arterias Carótidas/cirugía , Células Cultivadas , Factores de Riesgo , Medición de Riesgo
5.
Methods ; 231: 37-44, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39251102

RESUMEN

The process of aging is a notable risk factor for numerous age-related illnesses. Hence, a reliable technique for evaluating biological age or the pace of aging is crucial for understanding the aging process and its influence on the progression of disease. Epigenetic alterations are recognized as a prominent biomarker of aging, and epigenetic clocks formulated on this basis have been shown to provide precise estimations of chronological age. Extensive research has validated the effectiveness of epigenetic clocks in determining aging rates, identifying risk factors for aging, evaluating the impact of anti-aging interventions, and predicting the emergence of age-related diseases. This review provides a detailed overview of the theoretical principles underlying the development of epigenetic clocks and their utility in aging research. Furthermore, it explores the existing obstacles and possibilities linked to epigenetic clocks and proposes potential avenues for future studies in this field.

6.
Proc Natl Acad Sci U S A ; 119(47): e2118589119, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36375067

RESUMEN

As a ubiquitous paradigm of instabilities and mixing that occur in instances as diverse as supernovae, plasma fusion, oil recovery, and nanofabrication, the Rayleigh-Taylor (RT) problem is rightly regarded as important. The acceleration of the fluid medium in these instances often depends on time and space, whereas most past studies assume it to be constant or impulsive. Here, we analyze the symmetries of RT mixing for variable accelerations and obtain the scaling of correlations and spectra for classes of self-similar dynamics. RT mixing is shown to retain the memory of deterministic conditions for all accelerations, with the dynamics ranging from superballistic to subdiffusive. These results contribute to our understanding and control of the RT phenomena and reveal specific conditions under which Kolmogorov turbulence might be realized in RT mixing.


Asunto(s)
Aceleración , Análisis Espacio-Temporal
7.
Nano Lett ; 24(31): 9505-9510, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39046144

RESUMEN

In this contribution, we report on the visualization of 12-crown-4 molecular diffusion behavior within a single-crystal particle of covalent organic framework-300 (COF-300) using operando dark-field optical microscopy. The diffusion area and front of 12-crown-4 are directly tracked in real time, offering key information for quantifying the diffusion coefficient (D). The direction of the diffusion and variation of D reveal intraparticle and interparticle heterogeneity. Notably, an unexpected hydration-accelerated diffusion process of 12-crown-4 within the pore channels of COF-300 is captured, in which a relatively low concentration of 12-crown-4 aqueous solution induces a fast diffusion, whereas the pure 12-crown-4 liquid cannot access the framework. The observed acceleration diffusion is demonstrated to arise from the hydrogen-bonding interactions between surface water molecules of hydrated 12-crown-4 and the imine groups of COF-300. These findings expand the mechanistic understanding of the noncovalent interactions between COFs and crown ethers (CEs), which will help to design and prepare CE-based COFs with improved performance.

8.
Kidney Int ; 106(2): 258-272, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38782200

RESUMEN

Alteration of DNA methylation leads to diverse diseases, and the dynamic changes of DNA methylation (DNAm) on sets of CpG dinucleotides in mammalian genomes are termed "DNAm age" and "epigenetic clocks" that can predict chronological age. However, whether and how dysregulation of DNA methylation promotes cyst progression and epigenetic age acceleration in autosomal dominant polycystic kidney disease (ADPKD) remains elusive. Here, we show that DNA methyltransferase 1 (DNMT1) is upregulated in cystic kidney epithelial cells and tissues and that knockout of Dnmt1 and targeting DNMT1 with hydralazine, a safe demethylating agent, delays cyst growth in Pkd1 mutant kidneys and extends life span of Pkd1 conditional knockout mice. With methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq), DNMT1 chromatin immunoprecipitation (ChIP)-sequencing and RNA-sequencing analysis, we identified two novel DNMT1 targets, PTPRM and PTPN22 (members of the protein tyrosine phosphatase family). PTPRM and PTPN22 function as mediators of DNMT1 and the phosphorylation and activation of PKD-associated signaling pathways, including ERK, mTOR and STAT3. With whole-genome bisulfide sequencing in kidneys of patients with ADPKD versus normal individuals, we found that the methylation of epigenetic clock-associated genes was dysregulated, supporting that epigenetic age is accelerated in the kidneys of patients with ADPKD. Furthermore, five epigenetic clock-associated genes, including Hsd17b14, Itpkb, Mbnl1, Rassf5 and Plk2, were identified. Thus, the diverse biological roles of these five genes suggest that their methylation status may not only predict epigenetic age acceleration but also contribute to disease progression in ADPKD.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1 , Metilación de ADN , Epigénesis Genética , Ratones Noqueados , Riñón Poliquístico Autosómico Dominante , Canales Catiónicos TRPP , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/enzimología , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Animales , Humanos , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Ratones , Transducción de Señal , Modelos Animales de Enfermedad , Masculino , Progresión de la Enfermedad , Riñón/patología , Riñón/metabolismo
9.
Am J Physiol Heart Circ Physiol ; 327(1): H255-H260, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38787385

RESUMEN

Accelerations and decelerations of heart rate are nonsymmetrical in the magnitude and number of beat-to-beat changes. The asymmetric features of heart rate variability are related to respiratory durations. To explore the link between respiration and heart rate asymmetry (HRA), we evaluated 14 seated, healthy young adults who breathed with nine combinations of inspiration duration (TI) and expiration duration (TE), chosen respectively from 2, 4, and 6 s. A 5-min R-R interval (RRI) time series was obtained from each study period to construct an averaged pattern waveform relative to the respiratory cycle. We observed that the time interval between inspiration onset and RRI minimum progressively lengthened as TI and TE increased. The time interval between expiration onset and RRI maximum also lengthened when TE increased but shortened when TI increased. Consequently, TI and TE had different effects on the acceleration time (AT; from RRI maximum to RRI minimum) and deceleration time (DT; from RRI minimum to RRI maximum). The percentage of AT within the respiratory cycle showed a strong correlation with traditional Guzik's (r = 0.862, P < 0.001) and Porta's (r = 0.878, P < 0.001) indexes of HRA assessed in a Poincaré plot analysis. These findings suggest that, in addition to considering the magnitude and number of beat-to-beat changes, HRA can also be assessed based on another aspect: the duration of consecutive changes. The stepwise link between the duration of heart rate change and respiratory duration provides insight into the mechanisms connecting respiration to HRA.NEW & NOTEWORTHY In healthy adults who regulated their breathing across nine combinations of inspiration and expiration durations, we used averaged pattern waveform technique to quantify the durations of heart rate acceleration and deceleration within the respiratory cycle. The percent duration of acceleration showed a strong correlation with traditional heart rate asymmetry indexes, which evaluate the magnitude and number of beat-to-beat changes. This new approach opens a window to explore the asymmetric features of heart rate variability.


Asunto(s)
Frecuencia Cardíaca , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Aceleración , Factores de Tiempo , Espiración/fisiología , Inhalación/fisiología , Respiración , Electrocardiografía
10.
J Comput Chem ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143827

RESUMEN

Structure clustering is a general but time-consuming work in the study of life science. Up to now, most published tools do not support the clustering analysis on graphics processing unit (GPU) with root mean square deviation metric. In this work, we specially write codes to do the work. It supports multiple threads on multiple GPUs. To show the performance, we apply the program to a 33-residue fragment in protein Pin1 WW domain mutant. The dataset contains 1,400,000 snapshots, which are extracted from an enhanced sampling simulation and distribute widely in the conformational space. Various testing results present that our program is quite efficient. Particularly, with two NVIDIA RTX4090 GPUs and single precision data type, the clustering calculation on 1 million snapshots is completed in a few seconds (including the uploading time of data from memory to GPU and neglecting the reading time from hard disk). This is hundreds of times faster than central processing unit. Our program could be a powerful tool for fast extraction of representative states of a molecule among its thousands to millions of candidate structures.

11.
BMC Med ; 22(1): 359, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39227814

RESUMEN

BACKGROUND: Psychological and trauma-related factors are associated with many diseases and mortality. However, a comprehensive assessment of the association between psycho-trauma exposures and aging acceleration is currently lacking. METHODS: Using data from 332,359 UK Biobank participants, we calculated biological aging acceleration, indexed by the presence of leukocyte telomere length (LTL) deviation (i.e., the difference between genetically determined and observed LTL > 0). The acceleration of facial aging (i.e., looking older than the chronological age) was assessed using a self-report question. Then, we estimated the associations of each psycho-trauma factor with biological and facial aging acceleration, using logistic regression models adjusted for multiple important covariates. Furthermore, restricted to 99,180 participants with complete psychological and trauma-related data, we identified clusters of individuals with distinct psycho-trauma patterns using the latent class analysis method and assessed their associations with aging acceleration using similar models. RESULTS: We observed most of the studied psycho-trauma factors were associated with biological and facial aging acceleration. Compared to the "Absence of trauma and psychopathology" cluster, the "adverse childhood experiences (ACEs) with psychopathology" cluster showed strong associations with those aging measurements (odds ratio [OR] = 1.13 [1.05 - 1.23] for biological and 1.52 [1.18 - 1.95] for facial aging acceleration), while no such association was observed for the "ACEs without psychopathology" cluster (1.04 [0.99 - 1.09] and 1.02 [0.84 - 1.24]. CONCLUSIONS: Our study demonstrated significant associations of psycho-trauma factors with both biological and facial aging acceleration. The differential aging consequences observed among ACEs exposed individuals with and without psychopathology prompt interventions aimed to improve individuals' psychological resilience to prevent aging acceleration.


Asunto(s)
Envejecimiento , Humanos , Reino Unido/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Envejecimiento/fisiología , Anciano , Bancos de Muestras Biológicas , Adulto , Cara , Leucocitos , Experiencias Adversas de la Infancia , Biobanco del Reino Unido
12.
Small ; : e2404614, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38966870

RESUMEN

Modulating interfacial electrochemistry represents a prevalent approach for mitigating lithium dendrite growth and enhancing battery performance. Nevertheless, while most additives exhibit inhibitory characteristics, the accelerating effects on interfacial electrochemistry have garnered limited attention. In this work, perfluoromorpholine (PFM) with facilitated kinetics is utilized to preferentially adsorb on the lithium metal interface. The PFM molecules disrupt the solvation structure of Li+ and enhance the migration of Li+. Combined with the benzotrifluoride, a synergistic acceleration-inhibition system is formed. The ab initio molecular dynamics (AIMD) and density functional theory (DFT) calculation of the loose outer solvation clusters and the key adsorption-deposition step supports the fast diffusion and stable interface electrochemistry with an accelerated filling mode with C─F and C─H groups. The approach induces the uniform lithium deposition. Excellent cycling performance is achieved in Li||Li symmetric cells, and even after 200 cycles in Li||NCM811 full cells, 80% of the capacity is retained. This work elucidates the accelerated electrochemical processes at the interface and expands the design strategies of acceleration fluorinated additives for lithium metal batteries.

13.
Proc Biol Sci ; 291(2030): 20241173, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39255839

RESUMEN

During long-distance migrations, some bird species make use of in-wake flying, which should allow them to profit from the upwash produced by another bird. While indirect evidence supports energy saving as the primary benefit of in-wake flying, measurements are still missing. We equipped migrating northern bald ibises (Geronticus eremita) with high-precision global navigation satellite system data loggers to track their position in the flock. We estimated birds' energy expenditure through different proxies, namely dynamic body acceleration (DBA), heart rate and effective wingbeat frequency. During active flapping flight, DBA estimates dropped off when in-wake compared with when not-in-wake. In addition, effective wingbeat frequency decreased, suggesting an increased use of intermittent gliding flight during in-wake periods. Heart rate varied greatly among individuals, with a clear decrease during gliding-corroborating its energy-saving function. Furthermore, we found consistent proof for decreased heart rate during in-wake flying, by up to 4.2%. Hence, we have shown that flying in the wake of another individual reduces birds' DBA, heart rate and effective wingbeat frequency, which could reflect reduced energy requirement.


Asunto(s)
Migración Animal , Aves , Metabolismo Energético , Vuelo Animal , Frecuencia Cardíaca , Animales , Aves/fisiología , Alas de Animales/fisiología , Aceleración
14.
J Synchrotron Radiat ; 31(Pt 3): 517-526, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38517755

RESUMEN

Physical optics simulations for beamlines and experiments allow users to test experiment feasibility and optimize beamline settings ahead of beam time in order to optimize valuable beam time at synchrotron light sources like NSLS-II. Further, such simulations also help to develop and test experimental data processing methods and software in advance. The Synchrotron Radiation Workshop (SRW) software package supports such complex simulations. We demonstrate how recent developments in SRW significantly improve the efficiency of physical optics simulations, such as end-to-end simulations of time-dependent X-ray photon correlation spectroscopy experiments with partially coherent undulator radiation (UR). The molecular dynamics simulation code LAMMPS was chosen to model the sample: a solution of silica nanoparticles in water at room temperature. Real-space distributions of nanoparticles produced by LAMMPS were imported into SRW and used to simulate scattering patterns of partially coherent hard X-ray UR from such a sample at the detector. The partially coherent UR illuminating the sample can be represented by a set of orthogonal coherent modes obtained by simulation of emission and propagation of this radiation through the coherent hard X-ray (CHX) scattering beamline followed by a coherent-mode decomposition. GPU acceleration is added for several key functions of SRW used in propagation from sample to detector, further improving the speed of the calculations. The accuracy of this simulation is benchmarked by comparison with experimental data.

15.
Brief Bioinform ; 23(4)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35794713

RESUMEN

In recent years there has been a widespread interest in researching biomarkers of aging that could predict physiological vulnerability better than chronological age. Aging, in fact, is one of the most relevant risk factors for a wide range of maladies, and molecular surrogates of this phenotype could enable better patients stratification. Among the most promising of such biomarkers is DNA methylation-based biological age. Given the potential and variety of computational implementations (epigenetic clocks), we here present a systematic review of such clocks. Furthermore, we provide a large-scale performance comparison across different tissues and diseases in terms of age prediction accuracy and age acceleration, a measure of deviance from physiology. Our analysis offers both a state-of-the-art overview of the computational techniques developed so far and a heterogeneous picture of performances, which can be helpful in orienting future research.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Biomarcadores , Epigenómica/métodos
16.
Magn Reson Med ; 91(4): 1384-1403, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38181170

RESUMEN

PURPOSE: To present a theoretical framework that rigorously defines and analyzes key concepts and quantities for velocity selective arterial spin labeling (VSASL). THEORY AND METHODS: An expression for the VSASL arterial delivery function is derived based on (1) labeling and saturation profiles as a function of velocity and (2) physiologically plausible approximations of changes in acceleration and velocity across the vascular system. The dependence of labeling efficiency on the amplitude and effective bolus width of the arterial delivery function is defined. Factors that affect the effective bolus width are examined, and timing requirements to minimize quantitation errors are derived. RESULTS: The model predicts that a flow-dependent negative bias in the effective bolus width can occur when velocity selective inversion (VSI) is used for the labeling module and velocity selective saturation (VSS) is used for the vascular crushing module. The bias can be minimized by choosing a nominal labeling cutoff velocity that is lower than the nominal cutoff velocity of the vascular crushing module. CONCLUSION: The elements of the model are specified in a general fashion such that future advances can be readily integrated. The model can facilitate further efforts to understand and characterize the performance of VSASL and provide critical theoretical insights that can be used to design future experiments and develop novel VSASL approaches.


Asunto(s)
Arterias , Angiografía por Resonancia Magnética , Marcadores de Spin , Arterias/diagnóstico por imagen , Modelos Teóricos , Aceleración , Circulación Cerebrovascular/fisiología , Velocidad del Flujo Sanguíneo/fisiología
17.
Magn Reson Med ; 92(6): 2607-2615, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39155399

RESUMEN

PURPOSE: Myocardial T1ρ mapping techniques commonly acquire multiple images in one breathhold to calculate a single-slice T1ρ map. Recently, non-selective adiabatic pulses have been used for robust spin-lock preparation (T1ρ,adiab). The objective of this study was to develop a fast multi-slice myocardial T1ρ,adiab mapping approach. METHODS: The proposed-sequence reduces the number of breathholds required for whole-heart 2D T1ρ,adiab mapping by acquiring multiple interleaved slices in each breathhold using slice-selective T1ρ,adiab preparation pulses. The proposed-sequence was implemented with two interleaved slices per breathhold scan and was quantitatively evaluated in phantom experiments and 10 healthy-volunteers against a single-slice T1ρ,adiab mapping sequence. The sequence was demonstrated in two patients with myocardial scar. RESULTS: The phantom experiments showed the proposed-sequence had slice-to-slice variation of 1.62% ± 1.05% and precision of 4.51 ± 0.68 ms. The healthy volunteer cohort subject-wise mean relaxation time was lower for the proposed-sequence than the single-slice sequence (137.7 ± 5.3 ms vs. 148.4 ± 8.3 ms, p < 0.001), and spatial-standard-deviation was better (18.7 ± 1.8 ms vs. 21.8 ± 3.4 ms, p < 0.018). The mean within-subject, coefficient of variation was 5.93% ± 1.57% for the proposed-sequence and 6.31% ± 1.92% for the single-slice sequence (p = 0.35) and the effect of slice variation (0.81 ± 4.87 ms) was not significantly different to zero (p = 0.61). In both patient examples increased T1ρ,adiab (maximum American Heart Association-segment mean = 174 and 197 ms) was measured within the myocardial scar. CONCLUSION: The proposed sequence provides a twofold acceleration for myocardial T1ρ,adiab mapping using a multi-slice approach. It has no significant difference in within-subject variability, and significantly better precision, compared to a 2D T1ρ,adiab mapping sequence based on non-selective adiabatic spin-lock preparations.


Asunto(s)
Algoritmos , Corazón , Fantasmas de Imagen , Humanos , Adulto , Corazón/diagnóstico por imagen , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Procesamiento de Imagen Asistido por Computador/métodos , Interpretación de Imagen Asistida por Computador/métodos , Miocardio/patología , Voluntarios Sanos
18.
Magn Reson Med ; 91(2): 600-614, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37849064

RESUMEN

PURPOSE: To develop a novel deep learning approach for 4D-MRI reconstruction, named Movienet, which exploits space-time-coil correlations and motion preservation instead of k-space data consistency, to accelerate the acquisition of golden-angle radial data and enable subsecond reconstruction times in dynamic MRI. METHODS: Movienet uses a U-net architecture with modified residual learning blocks that operate entirely in the image domain to remove aliasing artifacts and reconstruct an unaliased motion-resolved 4D image. Motion preservation is enforced by sorting the input image and reference for training in a linear motion order from expiration to inspiration. The input image was collected with a lower scan time than the reference XD-GRASP image used for training. Movienet is demonstrated for motion-resolved 4D MRI and motion-resistant 3D MRI of abdominal tumors on a therapeutic 1.5T MR-Linac (1.5-fold acquisition acceleration) and diagnostic 3T MRI scanners (2-fold and 2.25-fold acquisition acceleration for 4D and 3D, respectively). Image quality was evaluated quantitatively and qualitatively by expert clinical readers. RESULTS: The reconstruction time of Movienet was 0.69 s (4 motion states) and 0.75 s (10 motion states), which is substantially lower than iterative XD-GRASP and unrolled reconstruction networks. Movienet enables faster acquisition than XD-GRASP with similar overall image quality and improved suppression of streaking artifacts. CONCLUSION: Movienet accelerates data acquisition with respect to compressed sensing and reconstructs 4D images in less than 1 s, which would enable an efficient implementation of 4D MRI in a clinical setting for fast motion-resistant 3D anatomical imaging or motion-resolved 4D imaging.


Asunto(s)
Imagen por Resonancia Magnética , Técnicas de Imagen Sincronizada Respiratorias , Imagen por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos , Movimiento (Física) , Aceleración , Técnicas de Imagen Sincronizada Respiratorias/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Respiración
19.
Magn Reson Med ; 92(3): 1138-1148, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38730565

RESUMEN

PURPOSE: To develop a highly accelerated multi-echo spin-echo method, TEMPURA, for reducing the acquisition time and/or increasing spatial resolution for kidney T2 mapping. METHODS: TEMPURA merges several adjacent echoes into one k-space by either combining independent echoes or sharing one echo between k-spaces. The combined k-space is reconstructed based on compressed sensing theory. Reduced flip angles are used for the refocusing pulses, and the extended phase graph algorithm is used to correct the effects of indirect echoes. Two sequences were developed: a fast breath-hold sequence; and a high-resolution sequence. The performance was evaluated prospectively on a phantom, 16 healthy subjects, and two patients with different types of renal tumors. RESULTS: The fast TEMPURA method reduced the acquisition time from 3-5 min to one breath-hold (18 s). Phantom measurements showed that fast TEMPURA had a mean absolute percentage error (MAPE) of 8.2%, which was comparable to a standardized respiratory-triggered sequence (7.4%), but much lower than a sequence accelerated by purely k-t undersampling (21.8%). High-resolution TEMPURA reduced the in-plane voxel size from 3 × 3 to 1 × 1 mm2, resulting in improved visualization of the detailed anatomical structure. In vivo T2 measurements demonstrated good agreement (fast: MAPE = 1.3%-2.5%; high-resolution: MAPE = 2.8%-3.3%) and high correlation coefficients (fast: R = 0.85-0.98; high-resolution: 0.82-0.96) with the standardized method, outperforming k-t undersampling alone (MAPE = 3.3-4.5%, R = 0.57-0.59). CONCLUSION: TEMPURA provides fast and high-resolution renal T2 measurements. It has the potential to improve clinical throughput and delineate intratumoral heterogeneity and tissue habitats at unprecedented spatial resolution.


Asunto(s)
Algoritmos , Neoplasias Renales , Riñón , Fantasmas de Imagen , Humanos , Neoplasias Renales/diagnóstico por imagen , Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Femenino , Adulto , Masculino , Interpretación de Imagen Asistida por Computador/métodos , Reproducibilidad de los Resultados , Persona de Mediana Edad , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Contencion de la Respiración
20.
J Vasc Surg ; 79(2): 405-411, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37913945

RESUMEN

BACKGROUND: Diagnosing peripheral arterial disease (PAD) can be challenging owing to medial arterial calcification (MAC) in patients with diabetes mellitus (DM) and chronic kidney disease (CKD). Current bedside tests, such as the ankle-brachial index and toe-brachial index, are often insufficient. The maximal systolic acceleration (ACCmax) is a velocimetric Doppler-derived parameter and could be a new promising test in the diagnostic workup of these patients. The primary aim of this study was to evaluate the diagnostic performance of the ACCmax to detect PAD. METHODS: A retrospective cohort study was performed in a tertiary referral hospital. Patients ≥18 years old with suspected PAD who underwent ACCmax measurement(s) along with computed tomography angiography of the abdominal aorta and lower extremities (reference test) were eligible for inclusion. ACCmax measurements of the posterior tibial artery, anterior tibial artery and peroneal artery were collected. Diagnostic performance was assessed by using sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and area under the curve (AUC). RESULTS: In total, 340 patients (618 limbs) were included. Approximately 40% suffered from DM and 30% had CKD. Diagnostic performance of the ACCmax to detect PAD for the posterior tibial artery showed a sensitivity of 90%, specificity of 93%, positive likelihood ratio of 12.83, and negative likelihood ratio of 0.11 (AUC, 0.953). For the anterior tibial artery, these results were 94%, 97%, 32.06, and 0.06 (same sequence as presented before) with an AUC of 0.984. The peroneal artery had a performance of 86%, 89%, 7.51, and 0.16, respectively (AUC, 0.893). Diagnostic accuracy of the ACCmax did not diminish in subgroup analysis for patients with DM or CKD. CONCLUSIONS: The ACCmax showed excellent diagnostic performance to detect PAD, independent of patients prone to medial arterial calcification.


Asunto(s)
Diabetes Mellitus , Enfermedad Arterial Periférica , Insuficiencia Renal Crónica , Humanos , Adolescente , Estudios Retrospectivos , Enfermedad Arterial Periférica/diagnóstico por imagen , Índice Tobillo Braquial , Insuficiencia Renal Crónica/diagnóstico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda