RESUMEN
Sclerotia of Wolfiporia hoelen are one of the most important traditional Chinese medicines and are commonly used in China, Japan, Korea, and other Asian countries. In the present study, we presented the first high-quality homokaryotic genome of W. hoelen with 14 chromosomes which was evaluated with assembly index, telomere position detection, and whole-genome collinearity. A 64.44 Mb genome was assembled with a Contig N50 length of 3.76 Mb. The imbalanced distribution of transposons and chromosome characters revealed the probable two-speed genome of W. hoelen. High consistency between methylation and transposon conserved the genome stability. The expansion of the gene family about signal transduction and nutritional transport has intimate relationships with sclerotial formation. Up-regulation of expression for distinctive decomposition enzymes, ROS clearance genes, biosynthesis of unsaturated fatty acids, and change of the cell wall components maintained high-speed growth of mycelia that may be the high-temperature adaption strategy of W. hoelen. Further, the analysis of mating-control genes demonstrated that HD3 probably had no function on mating recognition, with the HD protein in a distant genetic with known species. Overall, the high-quality genome of W. hoelen provided crucial information for genome structure and stability, high-temperature adaption, and sexual and asexual process.
Asunto(s)
Wolfiporia , Ácidos Grasos Insaturados/metabolismo , Genoma , Filogenia , Especies Reactivas de Oxígeno/metabolismo , Temperatura , Wolfiporia/químicaRESUMEN
B chromosomes (Bs) are enigmatic accessory genomic elements extensively characterized in diverse eukaryotes. Since their discovery in the beginning of the 20th century, B chromosomes have been the subject of investigation in laboratories all around the world. As a consequence, scientific meetings have dealt with B chromosomes, including the most specific and important conference in the field, "The B Chromosome Conference." The 4th B Chromosome Conference (4BCC) took place in Botucatu, Brazil, in 2019 and was an excellent opportunity to discuss the latest developments in the B chromosome research field. B chromosome science has advanced from classical and molecular cytogenetics to genomics and bioinformatics approaches. The recent advances in next-generation sequencing technologies and high-throughput molecular biology protocols have led Bs to be the subject of massive data analysis, thus enabling the investigation of structural and functional issues not considered before. Although extensive progress has been made, questions are still remaining to be answered. The advances in functional studies based on RNA, epigenetics, and gene ontologies open the perspective to a better understanding of the complex biology of B chromosomes.
Asunto(s)
Cromosomas/genética , Citogenética , Eucariontes/genética , Evolución Molecular , Brasil , Epigenómica , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , ARN/genéticaRESUMEN
Most genomes within the species complex of Fusarium oxysporum are organized into two compartments: the core chromosomes (CCs) and accessory chromosomes (ACs). As opposed to CCs, which are conserved and vertically transmitted to carry out essential housekeeping functions, lineage- or strain-specific ACs are believed to be initially horizontally acquired through unclear mechanisms. These two genomic compartments are different in terms of gene density, the distribution of transposable elements, and epigenetic markers. Although common in eukaryotes, the functional importance of ACs is uniquely emphasized among fungal species, specifically in relationship to fungal pathogenicity and their adaptation to diverse hosts. With a focus on the cross-kingdom fungal pathogen F. oxysporum, this review provides a summary of the differences between CCs and ACs based on current knowledge of gene functions, genome structures, and epigenetic signatures, and explores the transcriptional crosstalk between the core and accessory genomes.
Asunto(s)
Fusarium/genética , Cromosomas Fúngicos , Genoma Fúngico , Filogenia , Enfermedades de las PlantasRESUMEN
The wheat pathogen Zymoseptoria tritici possesses a large number of accessory chromosomes that may be present or absent in its genome. The genome of the reference isolate IPO323 has been assembled to a very high standard and contains 21 full length chromosome sequences, 8 of which represent accessory chromosomes. The IPO323 reference, when combined with low-cost next-generation sequencing and bioinformatics, can be used as a powerful tool to assess the presence or absence of accessory chromosomes. We present an outline of a range of bioinformatics techniques that can be applied to the analysis of presence-absence variation among accessory chromosomes across 13 novel isolates of Z. tritici.
Asunto(s)
Ascomicetos/genética , Biología Computacional , Genes Fúngicos , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Cromosomas FúngicosRESUMEN
Colletotrichum destructivum (Cd) is a phytopathogenic fungus causing significant economic losses on forage legume crops (Medicago and Trifolium species) worldwide. To gain insights into the genetic basis of fungal virulence and host specificity, we sequenced the genome of an isolate from Medicago sativa using long-read (PacBio) technology. The resulting genome assembly has a total length of 51.7 Mb and comprises ten core chromosomes and two accessory chromosomes, all of which were sequenced from telomere to telomere. A total of 15,â631 gene models were predicted, including genes encoding potentially pathogenicity-related proteins such as candidate-secreted effectors (484), secondary metabolism key enzymes (110) and carbohydrate-active enzymes (619). Synteny analysis revealed extensive structural rearrangements in the genome of Cd relative to the closely related Brassicaceae pathogen, Colletotrichum higginsianum. In addition, a 1.2 Mb species-specific region was detected within the largest core chromosome of Cd that has all the characteristics of fungal accessory chromosomes (transposon-rich, gene-poor, distinct codon usage), providing evidence for exchange between these two genomic compartments. This region was also unique in having undergone extensive intra-chromosomal segmental duplications. Our findings provide insights into the evolution of accessory regions and possible mechanisms for generating genetic diversity in this asexual fungal pathogen.
Asunto(s)
Cromosomas Fúngicos , Colletotrichum , Genoma Fúngico , Enfermedades de las Plantas , Colletotrichum/genética , Colletotrichum/patogenicidad , Cromosomas Fúngicos/genética , Enfermedades de las Plantas/microbiología , Sintenía , Filogenia , Medicago sativa/microbiologíaRESUMEN
Date palm (Phoenixdactylifera) is the most significant crop across North Africa and the Middle East. However, the crop faces a severe threat from Bayoud disease caused by the fungal pathogen Fusarium oxysporum f. sp. albedinis (FOA). FOA is a soil-borne fungus that infects the roots and vascular system of date palms, leading to widespread destruction of date palm plantations in North Africa over the last century. This is considered the most devastating pathogen of oasis agriculture in North Africa and responsible for loss of 13 million trees in Algeria and Morocco alone. In this study, we present a chromosome-scale high-quality genome assembly of the virulent isolate Foa 44, which provides valuable insights into understanding the genetic basis of Bayoud disease. The genome assembly consists of 11 chromosomes and 40 unplaced contigs, totalling 65,971,825 base pairs in size. It exhibits a GC ratio of 47.77% and a TE (transposable element) content of 17.30%. Through prediction and annotation, we identified 20,416 protein-coding genes. By combining gene and repeat densities analysis with alignment to Fusarium oxysporum f. sp. lycopersici (FOL) 4287 isolate genome sequence, we determined the core and lineage-specific compartments in Foa 44, shedding light on the genome structure of this pathogen. Furthermore, a phylogenomic analysis based on the 3,292 BUSCOs core genome revealed a distinct clade of FOA isolates within the Fusarium oxysporum species complex (FOSC). Notably, the genealogies of the five identified Secreted In Xylem (SIX) genes (1, 6, 9, 11 and 14) in FOA displayed a polyphyletic pattern, suggesting a horizontal inheritance of these effectors. These findings provide a valuable genomics toolbox for further research aimed at combatting the serious biotic constraints posed by FOA to date palm. This will pave the way for a deeper understanding of Bayoud disease and facilitate the development of effective diagnostic tools and control measures.
RESUMEN
The Fusarium oxysporum species complex (FOSC) includes both plant and human pathogens that cause devastating plant vascular wilt diseases and threaten public health. Each F. oxysporum genome comprises core chromosomes (CCs) for housekeeping functions and accessory chromosomes (ACs) that contribute to host-specific adaptation. This study inspects global transcription factor profiles (TFomes) and their potential roles in coordinating CC and AC functions to accomplish host-specific interactions. Remarkably, we found a clear positive correlation between the sizes of TFomes and the proteomes of an organism. With the acquisition of ACs, the FOSC TFomes were larger than the other fungal genomes included in this study. Among a total of 48 classified TF families, 14 families involved in transcription/translation regulations and cell cycle controls were highly conserved. Among the 30 FOSC expanded families, Zn2-C6 and Znf_C2H2 were most significantly expanded to 671 and 167 genes per family including well-characterized homologs of Ftf1 (Zn2-C6) and PacC (Znf_C2H2) that are involved in host-specific interactions. Manual curation of characterized TFs increased the TFome repertoires by 3% including a disordered protein Ren1. RNA-Seq revealed a steady pattern of expression for conserved TF families and specific activation for AC TFs. Functional characterization of these TFs could enhance our understanding of transcriptional regulation involved in FOSC cross-kingdom interactions, disentangle species-specific adaptation, and identify targets to combat diverse diseases caused by this group of fungal pathogens.
RESUMEN
Cladosporium fulvum is a fungal pathogen that causes leaf mould of tomato. The reference genome of this pathogen was released in 2012 but its high repetitive DNA content prevented a contiguous assembly and further prohibited the analysis of its genome architecture. In this study, we combined third generation sequencing technology with the Hi-C chromatin conformation capture technique, to produce a high-quality and near complete genome assembly and gene annotation of a Race 5 isolate of C. fulvum. The resulting genome assembly contained 67.17 Mb organized into 14 chromosomes (Chr1-to-Chr14), all of which were assembled telomere-to-telomere. The smallest of the chromosomes, Chr14, is only 460 kb in size and contains 25 genes that all encode hypothetical proteins. Notably, PCR assays revealed that Chr14 was absent in 19 out of 24 isolates of a world-wide collection of C. fulvum, indicating that Chr14 is dispensable. Thus, C. fulvum is currently the second species of Capnodiales shown to harbour dispensable chromosomes. The genome of C. fulvum Race 5 is 49.7â% repetitive and contains 14 690 predicted genes with an estimated completeness of 98.9%, currently one of the highest among the Capnodiales. Genome structure analysis revealed a compartmentalized architecture composed of gene-dense and repeat-poor regions interspersed with gene-sparse and repeat-rich regions. Nearly 39.2â% of the C. fulvum Race 5 genome is affected by Repeat-Induced Point (RIP) mutations and evidence of RIP leakage toward non-repetitive regions was observed in all chromosomes, indicating the RIP plays an important role in the evolution of this pathogen. Finally, 345 genes encoding candidate effectors were identified in C. fulvum Race 5, with a significant enrichment of their location in gene-sparse regions, in accordance with the 'two-speed genome' model of evolution. Overall, the new reference genome of C. fulvum presents several notable features and is a valuable resource for studies in plant pathogens.
Asunto(s)
Ascomicetos , Solanum lycopersicum , Ascomicetos/genética , Cromosomas , Cladosporium/genética , Cladosporium/metabolismo , Solanum lycopersicum/microbiologíaRESUMEN
In some eukaryotes, germline soma differentiation involves elimination of parts of the genome from somatic cells. The portions of the genome restricted to the germline often contain genes that play a role in development and function of the germline. Lineages with germline-restricted DNA are taxonomically diverse, and the size of the germline-restricted genome varies substantially. Unfortunately, few of these lineages have been studied in detail. As a result, we understand little about the general evolutionary forces that drive the origin and maintenance of germline-restricted DNA. One of the taxonomic groups where germline-restricted DNA has been poorly studied are the flies (Diptera). In three Dipteran families, Chironomidae, Cecidomyiidae, and Sciaridae, entire chromosomes are eliminated from somatic cells early in embryonic development. Germline-restricted chromosomes are thought to have evolved independently in the Dipteran families and their size, number, and transmission patterns vary between families. Although there is a wealth of cytological studies on these chromosomes in flies, almost no genomic studies have been undertaken. As a result, very little is known about how and why they evolved and what genes they encode. This review summarizes the literature on germline-restricted chromosomes in Diptera, discusses hypotheses for their origin and function, and compares germline-restricted DNA in Diptera to other eukaryotes. Finally, we discuss why Dipteran lineages represent a promising system for the study of germline-restricted chromosomes and propose future avenues of research on this topic.
Asunto(s)
Evolución Biológica , Cromosomas de Insectos , Dípteros/genética , Células Germinativas , Animales , Epigénesis Genética , Genoma de los Insectos , ReproducciónRESUMEN
The tangerine pathotype of the ascomycete fungus Alternaria alternata is the causal agent of citrus brown spot, which can result in significant losses of both yield and marketability for tangerines worldwide. A conditionally dispensable chromosome (CDC), which harbours the host-selective ACT toxin gene cluster, is required for tangerine pathogenicity of A. alternata. To understand the genetic makeup and evolution of the tangerine pathotype CDC, we isolated and sequenced the CDCs of the A. alternata Z7 strain and analysed the function and evolution of their genes. The A. alternata Z7 strain has two CDCs (~1.1 and ~0.8 Mb, respectively), and the longer Z7 CDC contains all but one contig of the shorter one. Z7 CDCs contain 254 predicted protein-coding genes, which are enriched in functional categories associated with 'metabolic process' (55 genes, P = 0.037). Relatively few of the CDC genes can be classified as carbohydrate-active enzymes (CAZymes) (4) and transporters (19) and none as kinases. Evolutionary analysis of the 254 CDC proteins showed that their evolutionary conservation tends to be restricted within the genus Alternaria and that the CDC genes evolve faster than genes in the essential chromosomes, likely due to fewer selective constraints. Interestingly, phylogenetic analysis suggested that four of the 25 genes responsible for the ACT toxin production were likely transferred from Colletotrichum (Sordariomycetes). Functional experiments showed that two of them are essential for the virulence of the tangerine pathotype of A. alternata. These results provide new insights into the function and evolution of CDC genes in Alternaria.
Asunto(s)
Alternaria/patogenicidad , Citrus/microbiología , Alternaria/genética , Alternaria/metabolismo , Cromosomas Fúngicos/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico/genética , Enfermedades de las Plantas/microbiologíaRESUMEN
The Fusarium oxysporum species complex (FOSC) is a group of soilborne pathogens causing severe disease in more than 100 plant hosts, while individual strains exhibit strong host specificity. Both chromosome transfer and comparative genomics experiments have demonstrated that lineage-specific (LS) chromosomes contribute to the host-specific pathogenicity. However, little is known about the functional importance of genes encoded in these LS chromosomes. Focusing on signaling transduction, this study compared the kinomes of 12 F. oxysporum isolates, including both plant and human pathogens and 1 nonpathogenic biocontrol strain, with 7 additional publicly available ascomycete genomes. Overall, F. oxysporum kinomes are the largest, facilitated in part by the acquisitions of the LS chromosomes. The comparative study identified 99 kinases that are present in almost all examined fungal genomes, forming the core signaling network of ascomycete fungi. Compared to the conserved ascomycete kinome, the expansion of the F. oxysporum kinome occurs in several kinase families such as histidine kinases that are involved in environmental signal sensing and target of rapamycin (TOR) kinase that mediates cellular responses. Comparative kinome analysis suggests a convergent evolution that shapes individual F. oxysporum isolates with an enhanced and unique capacity for environmental perception and associated downstream responses.IMPORTANCE Isolates of Fusarium oxysporum are adapted to survive a wide range of host and nonhost conditions. In addition, F. oxysporum was recently recognized as the top emerging opportunistic fungal pathogen infecting immunocompromised humans. The sensory and response networks of these fungi undoubtedly play a fundamental role in establishing the adaptability of this group. We have examined the kinomes of 12 F. oxysporum isolates and highlighted kinase families that distinguish F. oxysporum from other fungi, as well as different isolates from one another. The amplification of kinases involved in environmental signal relay and regulating downstream cellular responses clearly sets Fusarium apart from other Ascomycetes Although the functions of many of these kinases are still unclear, their specific proliferation highlights them as a result of the evolutionary forces that have shaped this species complex and clearly marks them as targets for exploitation in order to combat disease.
Asunto(s)
Cromosomas Fúngicos , Fusarium/enzimología , Fusarium/genética , Interacciones Huésped-Patógeno , Proteínas Quinasas/genética , Adaptación Biológica , Evolución Molecular , Fusariosis/microbiología , Especificidad del Huésped , Humanos , Fosforilación , Enfermedades de las Plantas/microbiología , Plantas , Procesamiento Proteico-Postraduccional , Transducción de SeñalRESUMEN
Meiosis is a key cellular process of sexual reproduction that includes pairing of homologous sequences. In many species however, meiosis can also involve the segregation of supernumerary chromosomes, which can lack a homolog. How these unpaired chromosomes undergo meiosis is largely unknown. In this study we investigated chromosome segregation during meiosis in the haploid fungus Zymoseptoria tritici that possesses a large complement of supernumerary chromosomes. We used isogenic whole chromosome deletion strains to compare meiotic transmission of chromosomes when paired and unpaired. Unpaired chromosomes inherited from the male parent as well as paired supernumerary chromosomes in general showed Mendelian inheritance. In contrast, unpaired chromosomes inherited from the female parent showed non-Mendelian inheritance but were amplified and transmitted to all meiotic products. We concluded that the supernumerary chromosomes of Z. tritici show a meiotic drive and propose an additional feedback mechanism during meiosis, which initiates amplification of unpaired female-inherited chromosomes.
Asunto(s)
Ascomicetos/citología , Ascomicetos/genética , Cromosomas Fúngicos/genética , Patrón de Herencia/genética , Meiosis , Segregación Cromosómica/genética , Marcadores Genéticos , Mitocondrias/genética , Polimorfismo de Nucleótido Simple/genética , Secuenciación Completa del GenomaRESUMEN
Zymoseptoria tritici is a host-specific, necrotrophic pathogen of wheat. Infection by Z. tritici is characterized by its extended latent period, which typically lasts 2 wks, and is followed by extensive host cell death, and rapid proliferation of fungal biomass. This work characterizes the level of genomic variation in 13 isolates, for which we have measured virulence on 11 wheat cultivars with differential resistance genes. Between the reference isolate, IPO323, and the 13 Australian isolates we identified over 800,000 single nucleotide polymorphisms, of which â¼10% had an effect on the coding regions of the genome. Furthermore, we identified over 1700 probable presence/absence polymorphisms in genes across the Australian isolates using de novo assembly. Finally, we developed a gene tree sorting method that quickly identifies groups of isolates within a single gene alignment whose sequence haplotypes correspond with virulence scores on a single wheat cultivar. Using this method, we have identified < 100 candidate effector genes whose gene sequence correlates with virulence toward a wheat cultivar carrying a major resistance gene.
Asunto(s)
Ascomicetos/genética , Genes Fúngicos , Genómica , Ascomicetos/clasificación , Ascomicetos/patogenicidad , Cromosomas Fúngicos , Estudios de Asociación Genética , Genoma Fúngico , Genómica/métodos , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Sistemas de Lectura Abierta , Fenotipo , Filogenia , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Triticum/microbiología , Virulencia/genéticaRESUMEN
Mitotic and meiotic analyses using conventional and fluorescent stains were employed in plants (accession ETBAZ 055 - origin: Capão do Leão, Rio Grande do Sul State, Brazil) from the Germplasm Active Bank of Ryegrass (Banco Ativo de Germoplasma de Azevém) of Embrapa, for observing the behaviour of B chromosomes. In several meiotic stages, there were observed up to two B chromosomes, which have presented an unstable behaviour regarding their precocious ascension to metaphase I or delays during anaphase I. At the end of the process, the Bs showed predominantly segregation for the nuclei under formation in order to guarantee their propagation. Concerning the cells that comprise the anther tapetum and the root meristems, the B chromosomes have presented a more stable behaviour.
Análises mitóticas e meióticas com coloração convencional e fluorescente foram realizadas em plantas (acesso ETBAZ 055 - procedência Capão do Leão, Rio Grande do Sul) provenientes do Banco Ativo de Germoplasma de Azevém da Embrapa para observar o comportamento dos cromossomos B. Em vários estágios da meiose, foram observados um a dois cromossomos B, os quais apresentaram um comportamento instável, com ascensão precoce na metáfase I ou atrasos na anáfase I. Ao final do processo, os Bs exibiram predominantemente segregação para os núcleos em formação, a fim de garantir a sua propagação. Nas células que constituem o tapete da antera e nos meristemas da raiz, os cromossomos B apresentaram um comportamento mais estável.