Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 2.316
Filtrar
1.
Cell ; 186(12): 2531-2543.e11, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37295401

RESUMEN

RNA editing is a widespread epigenetic process that can alter the amino acid sequence of proteins, termed "recoding." In cephalopods, most transcripts are recoded, and recoding is hypothesized to be an adaptive strategy to generate phenotypic plasticity. However, how animals use RNA recoding dynamically is largely unexplored. We investigated the function of cephalopod RNA recoding in the microtubule motor proteins kinesin and dynein. We found that squid rapidly employ RNA recoding in response to changes in ocean temperature, and kinesin variants generated in cold seawater displayed enhanced motile properties in single-molecule experiments conducted in the cold. We also identified tissue-specific recoded squid kinesin variants that displayed distinct motile properties. Finally, we showed that cephalopod recoding sites can guide the discovery of functional substitutions in non-cephalopod kinesin and dynein. Thus, RNA recoding is a dynamic mechanism that generates phenotypic plasticity in cephalopods and can inform the characterization of conserved non-cephalopod proteins.


Asunto(s)
Cefalópodos , Dineínas , Animales , Dineínas/genética , Dineínas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , ARN/metabolismo , Cefalópodos/genética , Cefalópodos/metabolismo , Proteínas/metabolismo , Microtúbulos/metabolismo , Proteínas de Microtúbulos , Miosinas/metabolismo
2.
Cell ; 186(12): 2544-2555.e13, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37295402

RESUMEN

In poikilotherms, temperature changes challenge the integration of physiological function. Within the complex nervous systems of the behaviorally sophisticated coleoid cephalopods, these problems are substantial. RNA editing by adenosine deamination is a well-positioned mechanism for environmental acclimation. We report that the neural proteome of Octopus bimaculoides undergoes massive reconfigurations via RNA editing following a temperature challenge. Over 13,000 codons are affected, and many alter proteins that are vital for neural processes. For two highly temperature-sensitive examples, recoding tunes protein function. For synaptotagmin, a key component of Ca2+-dependent neurotransmitter release, crystal structures and supporting experiments show that editing alters Ca2+ binding. For kinesin-1, a motor protein driving axonal transport, editing regulates transport velocity down microtubules. Seasonal sampling of wild-caught specimens indicates that temperature-dependent editing occurs in the field as well. These data show that A-to-I editing tunes neurophysiological function in response to temperature in octopus and most likely other coleoids.


Asunto(s)
Octopodiformes , Proteoma , Animales , Proteoma/metabolismo , Octopodiformes/genética , Edición de ARN , Temperatura , Sistema Nervioso/metabolismo , Adenosina Desaminasa/metabolismo , ARN/metabolismo
3.
Mol Cell ; 81(16): 3294-3309.e12, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34293321

RESUMEN

Temperature is a variable component of the environment, and all organisms must deal with or adapt to temperature change. Acute temperature change activates cellular stress responses, resulting in refolding or removal of damaged proteins. However, how organisms adapt to long-term temperature change remains largely unexplored. Here we report that budding yeast responds to long-term high temperature challenge by switching from chaperone induction to reduction of temperature-sensitive proteins and re-localizing a portion of its proteome. Surprisingly, we also find that many proteins adopt an alternative conformation. Using Fet3p as an example, we find that the temperature-dependent conformational difference is accompanied by distinct thermostability, subcellular localization, and, importantly, cellular functions. We postulate that, in addition to the known mechanisms of adaptation, conformational plasticity allows some polypeptides to acquire new biophysical properties and functions when environmental change endures.


Asunto(s)
Adaptación Fisiológica/genética , Proteoma/genética , Estrés Fisiológico/genética , Transcriptoma/genética , Aclimatación/genética , Animales , Exposición a Riesgos Ambientales/efectos adversos , Regulación Fúngica de la Expresión Génica/genética , Calor/efectos adversos , Saccharomycetales/genética
4.
Physiol Rev ; 101(4): 1873-1979, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33829868

RESUMEN

A rise in body core temperature and loss of body water via sweating are natural consequences of prolonged exercise in the heat. This review provides a comprehensive and integrative overview of how the human body responds to exercise under heat stress and the countermeasures that can be adopted to enhance aerobic performance under such environmental conditions. The fundamental concepts and physiological processes associated with thermoregulation and fluid balance are initially described, followed by a summary of methods to determine thermal strain and hydration status. An outline is provided on how exercise-heat stress disrupts these homeostatic processes, leading to hyperthermia, hypohydration, sodium disturbances, and in some cases exertional heat illness. The impact of heat stress on human performance is also examined, including the underlying physiological mechanisms that mediate the impairment of exercise performance. Similarly, the influence of hydration status on performance in the heat and how systemic and peripheral hemodynamic adjustments contribute to fatigue development is elucidated. This review also discusses strategies to mitigate the effects of hyperthermia and hypohydration on exercise performance in the heat by examining the benefits of heat acclimation, cooling strategies, and hyperhydration. Finally, contemporary controversies are summarized and future research directions are provided.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Ejercicio Físico/fisiología , Trastornos de Estrés por Calor/fisiopatología , Respuesta al Choque Térmico , Agua/metabolismo , Aclimatación/fisiología , Animales , Calor , Humanos , Desempeño Psicomotor , Sudoración , Pérdida Insensible de Agua
5.
Proc Natl Acad Sci U S A ; 121(6): e2317461121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38289961

RESUMEN

Identifying the genetic basis of local adaptation and fitness trade-offs across environments is a central goal of evolutionary biology. Cold acclimation is an adaptive plastic response for surviving seasonal freezing, and costs of acclimation may be a general mechanism for fitness trade-offs across environments in temperate zone species. Starting with locally adapted ecotypes of Arabidopsis thaliana from Italy and Sweden, we examined the fitness consequences of a naturally occurring functional polymorphism in CBF2. This gene encodes a transcription factor that is a major regulator of cold-acclimated freezing tolerance and resides within a locus responsible for a genetic trade-off for long-term mean fitness. We estimated the consequences of alternate genotypes of CBF2 on 5-y mean fitness and fitness components at the native field sites by comparing near-isogenic lines with alternate genotypes of CBF2 to their genetic background ecotypes. The effects of CBF2 were validated at the nucleotide level using gene-edited lines in the native genetic backgrounds grown in simulated parental environments. The foreign CBF2 genotype in the local genetic background reduced long-term mean fitness in Sweden by more than 10%, primarily via effects on survival. In Italy, fitness was reduced by more than 20%, primarily via effects on fecundity. At both sites, the effects were temporally variable and much stronger in some years. The gene-edited lines confirmed that CBF2 encodes the causal variant underlying this genetic trade-off. Additionally, we demonstrated a substantial fitness cost of cold acclimation, which has broad implications for potential maladaptive responses to climate change.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Mutación , Aclimatación/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción/genética , Frío , Aptitud Genética
6.
Proc Natl Acad Sci U S A ; 120(33): e2306338120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549282

RESUMEN

NADPH-dependent thioredoxin reductase C (NTRC) is a chloroplast redox regulator in algae and plants. Here, we used site-specific mutation analyses of the thioredoxin domain active site of NTRC in the green alga Chlamydomonas reinhardtii to show that NTRC mediates cold tolerance in a redox-dependent manner. By means of coimmunoprecipitation and mass spectrometry, a redox- and cold-dependent binding of the Calvin-Benson Cycle Protein 12 (CP12) to NTRC was identified. NTRC was subsequently demonstrated to directly reduce CP12 of C. reinhardtii as well as that of the vascular plant Arabidopsis thaliana in vitro. As a scaffold protein, CP12 joins the Calvin-Benson cycle enzymes phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to form an autoinhibitory supracomplex. Using size-exclusion chromatography, NTRC from both organisms was shown to control the integrity of this complex in vitro and thereby PRK and GAPDH activities in the cold. Thus, NTRC apparently reduces CP12, hence triggering the dissociation of the PRK/CP12/GAPDH complex in the cold. Like the ntrc::aphVIII mutant, CRISPR-based cp12::emx1 mutants also exhibited a redox-dependent cold phenotype. In addition, CP12 deletion resulted in robust decreases in both PRK and GAPDH protein levels implying a protein protection effect of CP12. Both CP12 functions are critical for preparing a repertoire of enzymes for rapid activation in response to environmental changes. This provides a crucial mechanism for cold acclimation.


Asunto(s)
Chlamydomonas reinhardtii , Fotosíntesis , Reductasa de Tiorredoxina-Disulfuro , Aclimatación , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Oxidación-Reducción , Fotosíntesis/fisiología , Reductasa de Tiorredoxina-Disulfuro/metabolismo
7.
Plant J ; 119(1): 300-331, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38613336

RESUMEN

Much progress has been made in understanding the molecular mechanisms of plant adaptation to heat stress. However, the great diversity of models and stress conditions, and the fact that analyses are often limited to a small number of approaches, complicate the picture. We took advantage of a liquid culture system in which Arabidopsis seedlings are arrested in their development, thus avoiding interference with development and drought stress responses, to investigate through an integrative approach seedlings' global response to heat stress and acclimation. Seedlings perfectly tolerate a noxious heat shock (43°C) when subjected to a heat priming treatment at a lower temperature (38°C) the day before, displaying a thermotolerance comparable to that previously observed for Arabidopsis. A major effect of the pre-treatment was to partially protect energy metabolism under heat shock and favor its subsequent rapid recovery, which was correlated with the survival of seedlings. Rapid recovery of actin cytoskeleton and mitochondrial dynamics were another landmark of heat shock tolerance. The omics confirmed the role of the ubiquitous heat shock response actors but also revealed specific or overlapping responses to priming, heat shock, and their combination. Since only a few components or functions of chloroplast and mitochondria were highlighted in these analyses, the preservation and rapid recovery of their bioenergetic roles upon acute heat stress do not require extensive remodeling of the organelles. Protection of these organelles is rather integrated into the overall heat shock response, thus allowing them to provide the energy required to elaborate other cellular responses toward acclimation.


Asunto(s)
Aclimatación , Arabidopsis , Respuesta al Choque Térmico , Plantones , Arabidopsis/fisiología , Arabidopsis/genética , Plantones/fisiología , Plantones/genética , Respuesta al Choque Térmico/fisiología , Metabolismo Energético , Termotolerancia/fisiología , Cloroplastos/metabolismo , Cloroplastos/fisiología , Mitocondrias/metabolismo , Regulación de la Expresión Génica de las Plantas , Orgánulos/fisiología , Orgánulos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calor , Dinámicas Mitocondriales/fisiología
8.
Plant J ; 118(1): 141-158, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38128030

RESUMEN

The development of photosynthetically competent seedlings requires both light and retrograde biogenic signaling pathways. The transcription factor GLK1 functions at the interface between these pathways and receives input from the biogenic signal integrator GUN1. BBX14 was previously identified, together with GLK1, in a core module that mediates the response to high light (HL) levels and biogenic signals, which was studied by using inhibitors of chloroplast development. Our chromatin immunoprecipitation-Seq experiments revealed that BBX14 is a direct target of GLK1, and RNA-Seq analysis suggests that BBX14 may function as a regulator of the circadian clock. In addition, BBX14 plays a role in chlorophyll biosynthesis during early onset of light. Knockout of BBX14 results in a long hypocotyl phenotype dependent on a retrograde signal. Furthermore, the expression of BBX14 and BBX15 during biogenic signaling requires GUN1. Investigation of the role of BBX14 and BBX15 in GUN-type biogenic (gun) signaling showed that the overexpression of BBX14 or BBX15 caused de-repression of CA1 mRNA levels, when seedlings were grown on norflurazon. Notably, transcripts of the LHCB1.2 marker are not de-repressed. Furthermore, BBX14 is required to acclimate plants to HL stress. We propose that BBX14 is an integrator of biogenic signals and that BBX14 is a nuclear target of retrograde signals downstream of the GUN1/GLK1 module. However, we do not classify BBX14 or BBX15 overexpressors as gun mutants based on a critical evaluation of our results and those reported in the literature. Finally, we discuss a classification system necessary for the declaration of new gun mutants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Plantones/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Plant J ; 119(1): 153-175, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38593295

RESUMEN

Plant acclimation to an ever-changing environment is decisive for growth, reproduction, and survival. Light availability limits biomass production on both ends of the intensity spectrum. Therefore, the adjustment of plant metabolism is central to high-light (HL) acclimation, and the accumulation of photoprotective anthocyanins is commonly observed. However, mechanisms and factors regulating the HL acclimation response are less clear. Two Arabidopsis mutants of spliceosome components exhibiting a pronounced anthocyanin overaccumulation in HL were isolated from a forward genetic screen for new factors crucial for plant acclimation. Time-resolved physiological, transcriptome, and metabolome analysis revealed a vital function of the spliceosome components for rapidly adjusting gene expression and metabolism. Deficiency of INCREASED LEVEL OF POLYPLOIDY1 (ILP1), NTC-RELATED PROTEIN1 (NTR1), and PLEIOTROPIC REGULATORY LOCUS1 (PRL1) resulted in a marked overaccumulation of carbohydrates and strongly diminished amino acid biosynthesis in HL. While not generally limited in N-assimilation, ilp1, ntr1, and prl1 showed higher glutamate levels and reduced amino acid biosynthesis in HL. The comprehensive analysis reveals a function of the spliceosome components in the conditional regulation of the carbon:nitrogen balance and the accumulation of anthocyanins during HL acclimation. The importance of gene expression, metabolic regulation, and re-direction of carbon towards anthocyanin biosynthesis for HL acclimation are discussed.


Asunto(s)
Aclimatación , Proteínas de Arabidopsis , Arabidopsis , Carbono , Regulación de la Expresión Génica de las Plantas , Luz , Nitrógeno , Empalmosomas , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Empalmosomas/metabolismo , Empalmosomas/genética , Carbono/metabolismo , Nitrógeno/metabolismo , Antocianinas/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(32): e2203121119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914124

RESUMEN

Animals maintain the ability to survive and reproduce by acclimating to environmental temperatures. We showed here that Caenorhabditis elegans exhibited temperature acclimation plasticity, which was regulated by a head-tail-head neural circuitry coupled with gut fat storage. After experiencing cold, C. elegans individuals memorized the experience and were prepared against subsequent cold stimuli. The cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) regulated temperature acclimation in the ASJ thermosensory neurons and RMG head interneurons, where it modulated ASJ thermosensitivity in response to past cultivation temperature. The PVQ tail interneurons mediated the communication between ASJ and RMG via glutamatergic signaling. Temperature acclimation occurred via gut fat storage regulation by the triglyceride lipase ATGL-1, which was activated by a neuropeptide, FLP-7, downstream of CREB. Thus, a head-tail-head neural circuit coordinated with gut fat influenced experience-dependent temperature acclimation.


Asunto(s)
Aclimatación , Tejido Adiposo , Caenorhabditis elegans , Frío , Sistema Digestivo , Cabeza , Vías Nerviosas , Cola (estructura animal) , Aclimatación/fisiología , Tejido Adiposo/metabolismo , Animales , Caenorhabditis elegans/anatomía & histología , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Sistema Digestivo/metabolismo , Ácido Glutámico/metabolismo , Cabeza/inervación , Interneuronas/metabolismo , Lipasa/metabolismo , Neuropéptidos/metabolismo , Cola (estructura animal)/inervación , Sensación Térmica
11.
J Biol Chem ; 299(1): 102740, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36435196

RESUMEN

Boric acid is a vital micronutrient in animals; however, excess amounts are toxic to them. Little is known about whole-body boric acid homeostasis in animals. Seawater (SW) contains 0.4 mM boric acid, and since marine fish drink SW, their urinary system was used here as a model of the boric acid excretion system. We determined that the bladder urine of a euryhaline pufferfish (river pufferfish, Takifugu obscurus) acclimated to fresh water and SW contained 0.020 and 19 mM of boric acid, respectively (a 950-fold difference), indicating the presence of a powerful excretory renal system for boric acid. Slc4a11 is a potential animal homolog of the plant boron transporter BOR1; however, mammalian Slc4a11 mediates H+ (OH-) conductance but does not transport boric acid. We found that renal expression of the pufferfish paralog of Slc4a11, Slc4a11A, was markedly induced after transfer from fresh water to SW, and Slc4a11A was localized to the apical membrane of kidney tubules. When pufferfish Slc4a11A was expressed in Xenopus oocytes, exposure to media containing boric acid and a voltage clamp elicited whole-cell outward currents, a marked increase in pHi, and increased boron content. In addition, the activity of Slc4a11A was independent of extracellular Na+. These results indicate that pufferfish Slc4a11A is an electrogenic boric acid transporter that functions as a B(OH)4- uniporter, B(OH)3-OH- cotransporter, or B(OH)3/H+ exchanger. These observations suggest that Slc4a11A is involved in the kidney tubular secretion of boric acid in SW fish, probably induced by the negative membrane potential and low pH of urine.


Asunto(s)
Boro , Riñón , Proteínas de Transporte de Membrana , Animales , Boro/metabolismo , Riñón/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Agua de Mar , Peces , Takifugu
12.
Plant J ; 114(6): 1458-1474, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36960687

RESUMEN

Plants respond to changing light intensity in the short term through regulation of light harvesting, electron transfer, and metabolism to mitigate redox stress. A sustained shift in light intensity leads to a long-term acclimation response (LTR). This involves adjustment in the stoichiometry of photosynthetic complexes through de novo synthesis and degradation of specific proteins associated with the thylakoid membrane. The light-harvesting complex II (LHCII) serine/threonine kinase STN7 plays a key role in short-term light harvesting regulation and was also suggested to be crucial to the LTR. Arabidopsis plants lacking STN7 (stn7) shifted to low light experience higher photosystem II (PSII) redox pressure than the wild type or those lacking the cognate phosphatase TAP38 (tap38), while the reverse is true at high light, where tap38 suffers more. In principle, the LTR should allow optimisation of the stoichiometry of photosynthetic complexes to mitigate these effects. We used quantitative label-free proteomics to assess how the relative abundance of photosynthetic proteins varied with growth light intensity in wild-type, stn7, and tap38 plants. All plants were able to adjust photosystem I, LHCII, cytochrome b6 f, and ATP synthase abundance with changing white light intensity, demonstrating neither STN7 nor TAP38 is crucial to the LTR per se. However, stn7 plants grown for several weeks at low light (LL) or moderate light (ML) still showed high PSII redox pressure and correspondingly lower PSII efficiency, CO2 assimilation, and leaf area compared to wild-type and tap38 plants, hence the LTR is unable to fully ameliorate these symptoms. In contrast, under high light growth conditions the mutants and wild type behaved similarly. These data are consistent with the paramount role of STN7-dependent LHCII phosphorylation in tuning PSII redox state for optimal growth in LL and ML conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fosforilación/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Fotosíntesis/fisiología , Complejos de Proteína Captadores de Luz/metabolismo , Aclimatación , Proteínas Serina-Treonina Quinasas/metabolismo
13.
BMC Genomics ; 25(1): 99, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38262957

RESUMEN

BACKGROUND: Heat stress (HS) is an increasing threat for pig production with a wide range of impacts. When submitted to high temperatures, pigs will use a variety of strategies to alleviate the effect of HS. While systemic adaptations are well known, tissue-specific changes remain poorly understood. In this study, thirty-two pigs were submitted to a 5-day HS at 32 °C. RESULTS: Transcriptomic and metabolomic analyses were performed on several tissues. The results revealed differentially expressed genes and metabolites in different tissues. Specifically, 481, 1774, 71, 1572, 17, 164, and 169 genes were differentially expressed in muscle, adipose tissue, liver, blood, thyroid, pituitary, and adrenal glands, respectively. Regulatory glands (pituitary, thyroid, and adrenal) had a lower number of regulated genes, perhaps indicating an earlier sensitivity to HS. In addition, 7, 8, 2, and 8 metabolites were differentially produced in muscle, liver, plasma, and urine, respectively. The study also focused on the oxidative stress pathway in muscle and liver by performing a correlation analysis between genes and metabolites. CONCLUSIONS: This study has identified various adaptation mechanisms in swine that enable them to cope with heat stress (HS). These mechanisms include a global decrease in energetic metabolism, as well as changes in metabolic precursors that are linked with protein and lipid catabolism and anabolism. Notably, the adaptation mechanisms differ significantly between regulatory (pituitary, thyroid and adrenal glands) and effector tissues (muscle, adipose tissue, liver and blood). Our findings provide new insights into the comprehension of HS adaptation mechanisms in swine.


Asunto(s)
Trastornos de Estrés por Calor , Termotolerancia , Animales , Porcinos , Perfilación de la Expresión Génica , Transcriptoma , Hígado , Metabolómica
14.
BMC Genomics ; 25(1): 547, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824590

RESUMEN

BACKGROUND: Environmental temperature is critical in regulating biological functions in fish. S. prenanti is a kind of cold-water fish, but of which we have little knowledge about the metabolic adaptation and physiological responses to long-term cold acclimation. RESULTS: In this study, we determined the physiological responses of S. prenanti serum after 30 days of exposure to 6℃. Compared with the control group, the levels of TC, TG, and LDL-C in the serum were significantly (P < 0.05) increased, and the level of glucose was significantly (P < 0.05) decreased under cold acclimation. Cold acclimation had no effect on the gene expression of pro-inflammatory factors and anti-inflammatory factors of S. prenanti. Metabolomics analysis by LC-MS showed that a total of 60 differential expressed metabolites were identified after cold acclimation, which involved in biosynthesis of amino acids, biosynthesis of unsaturated fatty acids, steroid degradation, purine metabolism, and citrate cycle pathways. CONCLUSION: The results indicate that cold acclimation can alter serum metabolites and metabolic pathways to alter energy metabolism and provide insights for the physiological regulation of cold-water fish in response to cold acclimation.


Asunto(s)
Aclimatación , Frío , Cyprinidae , Metaboloma , Metabolómica , Animales , Cyprinidae/metabolismo , Cyprinidae/fisiología , Cyprinidae/sangre , Cyprinidae/genética
15.
Chromosoma ; 132(1): 31-53, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36746786

RESUMEN

A change in ambient temperature is predicted to disrupt cellular homeostasis by affecting all cellular processes in an albeit non-uniform manner. Diffusion is generally less temperature-sensitive than enzymes, for example, and each enzyme has a characteristic individual temperature profile. The actual effects of temperature variation on cells are still poorly understood at the molecular level. Towards an improved understanding, we have performed a genome-wide RNA interference screen with S2R + cells. This Drosophila cell line proliferates over a temperature range comparable to that tolerated by the parental ectothermic organism. Based on effects on cell counts and cell cycle profile after knockdown at 27 and 17 °C, respectively, genes were identified with an apparent greater physiological significance at one or the other temperature. While 27 °C is close to the temperature optimum, the substantially lower 17 °C was chosen to identify genes important at low temperatures, which have received less attention compared to the heat shock response. Among a substantial number of screen hits, we validated a set successfully in cell culture and selected ballchen for further evaluation in the organism. This gene encodes the conserved metazoan VRK protein kinase that is crucial for the release of chromosomes from the nuclear envelope during mitosis. Our analyses in early embryos and larval wing imaginal discs confirmed a higher requirement for ballchen function at temperatures below the optimum. Overall, our experiments validate the genome-wide screen as a basis for future characterizations of genes with increased physiological significance at the lower end of the readily tolerated temperature range.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Proliferación Celular , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Interferencia de ARN , Temperatura
16.
BMC Plant Biol ; 24(1): 87, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38311744

RESUMEN

BACKGROUND: GOLDEN-like (GLK) transcription factors are central regulators of chloroplast biogenesis in Arabidopsis and other species. Findings from Arabidopsis show that these factors also contribute to photosynthetic acclimation, e.g. to variation in light intensity, and are controlled by retrograde signals emanating from the chloroplast. However, the natural variation of GLK1-centered gene-regulatory networks in Arabidopsis is largely unexplored. RESULTS: By evaluating the activities of GLK1 target genes and GLK1 itself in vegetative leaves of natural Arabidopsis accessions grown under standard conditions, we uncovered variation in the activity of GLK1 centered regulatory networks. This is linked with the ecogeographic origin of the accessions, and can be associated with a complex genetic variation across loci acting in different functional pathways, including photosynthesis, ROS and brassinosteroid pathways. Our results identify candidate upstream regulators that contribute to a basal level of GLK1 activity in rosette leaves, which can then impact the capacity to acclimate to different environmental conditions. Indeed, accessions with higher GLK1 activity, arising from habitats with a high monthly variation in solar radiation levels, may show lower levels of photoinhibition at higher light intensities. CONCLUSIONS: Our results provide evidence for natural variation in GLK1 regulatory activities in vegetative leaves. This variation is associated with ecogeographic origin and can contribute to acclimation to high light conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción , Aclimatación/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Variación Genética , Luz , Fotosíntesis/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
BMC Plant Biol ; 24(1): 591, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38902617

RESUMEN

BACKGROUND: Light deficit in shaded environment critically impacts the growth and development of turf plants. Despite this fact, past research has predominantly concentrated on shade avoidance rather than shade tolerance. To address this, our study examined the photosynthetic adjustments of Bermudagrass when exposed to varying intensities of shade to gain an integrative understanding of the shade response of C4 turfgrass. RESULTS: We observed alterations in photosynthetic pigment-proteins, electron transport and its associated carbon and nitrogen assimilation, along with ROS-scavenging enzyme activity in shaded conditions. Mild shade enriched Chl b and LHC transcripts, while severe shade promoted Chl a, carotenoids and photosynthetic electron transfer beyond QA- (ET0/RC, φE0, Ψ0). The study also highlighted differential effects of shade on leaf and root components. For example, Soluble sugar content varied between leaves and roots as shade diminished SPS, SUT1 but upregulated BAM. Furthermore, we observed that shading decreased the transcriptional level of genes involving in nitrogen assimilation (e.g. NR) and SOD, POD, CAT enzyme activities in leaves, even though it increased in roots. CONCLUSIONS: As shade intensity increased, considerable changes were noted in light energy conversion and photosynthetic metabolism processes along the electron transport chain axis. Our study thus provides valuable theoretical groundwork for understanding how C4 grass acclimates to shade tolerance.


Asunto(s)
Aclimatación , Cynodon , Fotosíntesis , Hojas de la Planta , Cynodon/fisiología , Cynodon/genética , Cynodon/metabolismo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Transporte de Electrón , Regulación de la Expresión Génica de las Plantas , Nitrógeno/metabolismo , Raíces de Plantas/fisiología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Clorofila/metabolismo
18.
BMC Plant Biol ; 24(1): 467, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807057

RESUMEN

BACKGROUND: There is a lack of knowledge on the combined effects of different stresses on plants, in particular different stresses that occur during winter in temperate climates. Perennial herbaceous plants in temperate regions are exposed to many different stresses during winter, but except for the fact that cold temperatures induce resistance to a number of them, very little is known about their interaction effects. Knowledge about stress interactions is needed in order to predict effects of climate change on both agricultural production and natural ecosystems, and to develop adaptation strategies, e.g., through plant breeding. Here, we conducted a series of experiments under controlled conditions to study the interactions between cold (low positive temperature), clover rot infection (caused by Sclerotinia trifoliorum) and freezing, in red clover (Trifolium pratense) accessions. We also compared our results with winter survival in field experiments and studied associations between stress and shoot growth. RESULTS: Exposure to low positive temperatures (cold acclimation) induced resistance to clover rot. There was a clear negative interaction effect between freezing stress and clover rot infection, resulting in up to 37% lower survival rate compared to what would have been expected from the additive effect of freezing and infection alone. Freezing tolerance could continue to improve during incubation under artificial snow cover at 3 °C in spite of darkness, and we observed compensatory shoot growth following freezing after prolonged incubation. At the accession level, resistance to clover rot was negatively correlated with growth in the field during the previous year at a Norwegian location. It was also negatively correlated with the shoot regrowth of control plants after incubation. Clover rot resistance tests under controlled conditions showed limited correlation with clover rot resistance observed in the field, suggesting that they may reveal variation in more specific resistance mechanisms. CONCLUSIONS: We here demonstrate, for the first time, a strong negative interaction between freezing and infection with a winter pathogen. We also characterize the effects of cold acclimation and incubation in darkness at different temperatures on winter stress tolerance, and present data that support the notion that annual cycles of growth and stress resistance are associated at the genetic level.


Asunto(s)
Congelación , Estaciones del Año , Trifolium , Trifolium/fisiología , Trifolium/microbiología , Trifolium/crecimiento & desarrollo , Estrés Fisiológico , Frío , Enfermedades de las Plantas/microbiología , Aclimatación , Ascomicetos/fisiología
19.
Proc Biol Sci ; 291(2016): 20232700, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38320612

RESUMEN

Mounting evidence suggests that ectotherms are already living close to their upper physiological thermal limits. Phenotypic plasticity has been proposed to reduce the impact of climate change in the short-term providing time for adaptation, but the tolerance-plasticity trade-off hypothesis predicts organisms with higher tolerance have lower plasticity. Empirical evidence is mixed, which may be driven by methodological issues such as statistical artefacts, nonlinear reaction norms, threshold shifts or selection. Here, we examine whether threshold shifts (organisms with higher tolerance require stronger treatments to induce maximum plastic responses) influence tolerance-plasticity trade-offs in hardening capacity for desiccation tolerance and critical thermal maximum (CTMAX) across Drosophila species with varying distributions/sensitivity to desiccation/heat stress. We found evidence for threshold shifts in both traits; species with higher heat/desiccation tolerance required longer hardening treatments to induce maximum hardening responses. Species with higher heat tolerance also showed reductions in hardening capacity at higher developmental acclimation temperatures. Trade-off patterns differed depending on the hardening treatment used and the developmental temperature flies were exposed to. Based on these findings, studies that do not consider threshold shifts, or that estimate plasticity under a narrow set of environments, will have a limited ability to assess trade-off patterns and differences in plasticity across species/populations more broadly.


Asunto(s)
Adaptación Fisiológica , Termotolerancia , Animales , Temperatura , Adaptación Fisiológica/fisiología , Calor , Drosophila/fisiología , Aclimatación/fisiología
20.
Proc Biol Sci ; 291(2025): 20240256, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38889786

RESUMEN

Classical theories predict that relatively constant environments should generally favour specialists, while fluctuating environments should be selected for generalists. However, theoretical and empirical results have pointed out that generalist organisms might, on the contrary, perform poorly under fluctuations. In particular, if generalism is underlaid by phenotypic plasticity, performance of generalists should be modulated by the temporal characteristics of environmental fluctuations. Here, we used experiments in microcosms of Tetrahymena thermophila ciliates and a mathematical model to test whether the period or autocorrelation of thermal fluctuations mediate links between the level of generalism and the performance of organisms under fluctuations. In the experiment, thermal fluctuations consistently impeded performance compared with constant conditions. However, the intensity of this effect depended on the level of generalism: while the more specialist strains performed better under fast or negatively autocorrelated fluctuations, plastic generalists performed better under slow or positively autocorrelated fluctuations. Our model suggests that these effects of fluctuations on organisms' performance may result from a time delay in the expression of plasticity, restricting its benefits to slow enough fluctuations. This study points out the need to further investigate the temporal dynamics of phenotypic plasticity to better predict its fitness consequences under environmental fluctuations.


Asunto(s)
Fenotipo , Tetrahymena thermophila , Tetrahymena thermophila/fisiología , Temperatura , Adaptación Fisiológica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda