Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Environ Sci Technol ; 56(16): 11578-11588, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35877959

RESUMEN

Acidic nitrification is attracting wide attention because it can enable robust suppression of nitrite-oxidizing bacteria (NOB) in wastewater treatment. This study reports a comprehensive assessment of the novel acidic nitrification process to identify the key factors that govern stable nitrite accumulation. A laboratory-scale moving-bed biofilm reactor receiving low-alkalinity wastewater was continuously operated under acidic conditions (pH < 6) for around two years, including nine stages varying influent and operational conditions. The results revealed that nitrite accumulation was related to three factors, i.e., influent ammonium concentration, operating pH, and ammonia-oxidizing microbial community. These three factors impact nitrite accumulation by altering the in situ concentration of free nitrous acid (FNA), which is a potent inhibitor of NOB. The critical FNA concentration is approximately one part per million (ppm, ∼1 mg HNO2-N/L), above which nitrite accumulation is stably maintained in an acidic nitrifying system. The findings of this study suggest that stable nitrite accumulation via acidic ammonia oxidation can be maintained under a range of influent and operational conditions, as long as a ppm-level of FNA is established. Taking low-strength mainstream wastewater (40-50 mg NH4+-N/L) with limited alkalinity as an example, stable nitrite accumulation was experimentally demonstrated at a pH of 4.35, under which an in situ FNA of 2.3 ± 0.6 mg HNO2-N/L was attained. Under these conditions, Candidatus Nitrosoglobus became the only ammonia oxidizer detectable by 16S rRNA gene sequencing. The results of this study deepen our understanding of acidic nitrifying systems, informing further development of novel wastewater treatment technologies.


Asunto(s)
Amoníaco , Compuestos de Amonio , Atención , Bacterias/genética , Reactores Biológicos/microbiología , Concentración de Iones de Hidrógeno , Nitrificación , Nitritos , Ácido Nitroso , Oxidación-Reducción , ARN Ribosómico 16S/genética , Aguas Residuales
2.
Water Res ; 261: 122042, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38986284

RESUMEN

Minimizing sludge generation in activated sludge systems is critical to reducing the operational cost of wastewater treatment plants (WWTPs), particularly for small plants where bioenergy is not recovered. This study introduces a novel acidic activated sludge technology for in situ sludge yield reduction, leveraging acid-tolerant ammonia-oxidizing bacteria (Candidatus Nitrosoglobus). The observed sludge yield (Yobs) was calculated based on the cumulative sludge generation and COD removal during 400 d long-term operation. The acidic process achieved a low Yobs of 0.106 ± 0.004 gMLSS/gCOD at pH 4.6 to 4.8 and in situ free nitrous acid (FNA) of 1 to 3 mg/L, reducing sludge production by 58 % compared to the conventional neutral-pH system (Yobs of 0.250 ± 0.003 gMLSS/gCOD). The acidic system also maintained effective sludge settling and organic matter removal over long-term operation. Mechanism studies revealed that the acidic sludge displayed higher endogenous respiration, sludge hydrolysis rates, and higher soluble microbial products and loosely-bounded extracellular polymer substances, compared to the neutral sludge. It also selectively enriched several hydrolytic genera (e.g., Chryseobacterium, Acidovorax, and Ottowia). Those results indicate that the acidic pH and in situ FNA enhanced sludge disintegration, hydrolysis, and cryptic growth. Besides, a lower intracellular ATP content was observed for acidic sludge than neutral sludge, suggesting potential decoupling of catabolism and anabolism in the acidic sludge. These findings collectively demonstrate that the acidic activated sludge technology could significantly reduce sludge yield, contributing to more cost- and space-effective wastewater management.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Concentración de Iones de Hidrógeno , Reactores Biológicos , Amoníaco/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda