Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Small ; 20(25): e2308421, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38221693

RESUMEN

High-entropy alloys nanoparticles (HEAs NPs) have gained considerable attention due to their extensive compositional tunability and intriguing catalytic properties. However, the synthesis of highly dispersed ultrasmall HEAs NPs remains a formidable challenge due to their inherent thermodynamic instability. In this study, highly dispersed ultrasmall (ca. 2 nm) PtCuGaFeCo HEAs NPs are synthesized using a one-pot solution-based method at 160 °C and atmospheric pressure. The PtCuGaFeCo NPs exhibit good catalytic activity for the oxygen reduction reaction (ORR). The half-wave potential relative to the reversible hydrogen electrode (RHE) reaches 0.88 V, and the mass activity and specific activity are approximately six times and four times higher than that of the commercial Pt/C catalyst. Based on X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) analyses, the surface strain and optimized coordination environments of PtCuGaFeCo have led to high ORR activities in acidic media. Moreover, the ultrasmall size also plays an important role in enhancing catalytic performance. The work presents a facile and viable synthesis strategy for preparing the ultrasmall HEAs NPs, offering great potential in energy and electrocatalysis applications through entropy engineering.

2.
J Esthet Restor Dent ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39165048

RESUMEN

OBJECTIVE: To analyze and compare the impact of acidic media on the surface characteristics of highly filled flowable resin-based composites. MATERIALS AND METHODS: Two hundred fifty-six specimens were divided into four groups: GUF (G-aenial Universal Flo), GUI (G-aenial Universal Injectable), TEF (Tetric EvoFlow), and FSF (Filtek Supreme Flowable Restorative). Surface characteristics were analyzed before (T0) and after specimens immersion in different media, such as gastric juice (GJ), fizzy drink (FD), citric juice (CJ), or artificial saliva (AS), for 9 h (T1) and 18 h (T2). The analyses included surface roughness (SR) measurements, where average roughness (Ra) was obtained, scanning electron microscopy (SEM) analysis, and surface hardness (SH) evaluation, with Vickers numbers (HV) reported. The differences in values among groups/subgroups within the same stage were assessed using two-way ANOVA and Tukey's post hoc test, whereas repeated measures ANOVA with Bonferroni post hoc test was performed to compare the changes in values through the stages. Data were presented as mean ± standard deviation (SD). RESULTS: At T0, GUI and GUF revealed lower Ra values (p < 0.05), more evenness in SEM micrographs, and higher HV values (p < 0.05) than FSF and TEF. At T1 and T2, specimens of all groups/subgroups demonstrated an increase in Ra and a decrease in HV compared with T0 (p < 0.05), as well as the changes in surface morphology on SEM micrographs. The lowest Ra and highest HV values were observed in GUI group, in contrast to FSF group, and in specimens immersed in GJ. CONCLUSIONS: GUI revealed lower SR and higher SH compared to GUF and FSF both before and after exposure to acidic media. The presence of acidic media, especially GJ, significantly increases SR and decreases SH of tested materials. CLINICAL SIGNIFICANCE: Information on the changes in the surface characteristics of highly filled resin-based composites after exposure to acidic media may be essential for the longevity of restorations like composite veneers fabricated from these materials.

3.
Molecules ; 29(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38276614

RESUMEN

Proton Exchange Membrane Water Electrolysis (PEMWE) under acidic conditions outperforms alkaline water electrolysis in terms of less resistance loss, higher current density, and higher produced hydrogen purity, which make it more economical in long-term applications. However, the efficiency of PEMWE is severely limited by the slow kinetics of anodic oxygen evolution reaction (OER), poor catalyst stability, and high cost. Therefore, researchers in the past decade have made great efforts to explore cheap, efficient, and stable electrode materials. Among them, the RuO2 electrocatalyst has been proved to be a major promising alternative to Ir-based catalysts and the most promising OER catalyst owing to its excellent electrocatalytic activity and high pH adaptability. In this review, we elaborate two reaction mechanisms of OER (lattice oxygen mechanism and adsorbate evolution mechanism), comprehensively summarize and discuss the recently reported RuO2-based OER electrocatalysts under acidic conditions, and propose many advanced modification strategies to further improve the activity and stability of RuO2-based electrocatalytic OER. Finally, we provide suggestions for overcoming the challenges faced by RuO2 electrocatalysts in practical applications and make prospects for future research. This review provides perspectives and guidance for the rational design of highly active and stable acidic OER electrocatalysts based on PEMWE.

4.
Angew Chem Int Ed Engl ; 63(26): e202404574, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38638104

RESUMEN

The electrocatalytic CO2 reduction reaction (CO2RR) is a sustainable route for converting CO2 into value-added fuels and feedstocks, advancing a carbon-neutral economy. The electrolyte critically influences CO2 utilization, reaction rate and product selectivity. While typically conducted in neutral/alkaline aqueous electrolytes, the CO2RR faces challenges due to (bi)carbonate formation and its crossover to the anolyte, reducing efficiency and stability. Acidic media offer promise by suppressing these processes, but the low Faradaic efficiency, especially for multicarbon (C2+) products, and poor electrocatalyst stability persist. The effective regulation of the reaction environment at the cathode is essential to favor the CO2RR over the competitive hydrogen evolution reaction (HER) and improve long-term stability. This review examines progress in the acidic CO2RR, focusing on reaction environment regulation strategies such as electrocatalyst design, electrode modification and electrolyte engineering to promote the CO2RR. Insights into the reaction mechanisms via in situ/operando techniques and theoretical calculations are discussed, along with critical challenges and future directions in acidic CO2RR technology, offering guidance for developing practical systems for the carbon-neutral community.

5.
Angew Chem Int Ed Engl ; : e202413653, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133139

RESUMEN

In proton exchange membrane water electrolysis (PEMWE), the anode oxygen evolution reaction (OER) catalysts rely heavily on the expensive and scarce iridium-based materials. Ruthenium dioxide (RuO2) with lower price and higher OER activity, has been explored for the similar task, but has been restricted by the poor stability. Herein, we developed an anion modification strategy to improve the OER performance of RuO2 in acidic media. The designed multicomponent catalyst based on sulfate anchored on RuO2/MoO3 displays a low overpotential of 190 mV at 10 mA cm-2 and stably operates for 500 hours with a very low degradation rate of 20 µV h-1. When assembled in a PEMWE cell, this catalyst as an anode shows an excellent stability at 500 mA cm-2 for 150 h. Experimental and theoretical results revealed that MoO3 could stabilize sulfate anion on RuO2 surface to suppress its leaching during OER. Such MoO3-anchored sulfate not only reduces the formation energy of *OOH intermediate on RuO2, but also impedes both the surface Ru and lattice oxygen loss, thereby achieving the high OER activity and exceptional durability.

6.
Small ; 19(48): e2304307, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37534380

RESUMEN

Electrochemical water splitting in acidic media is one of the most promising hydrogen production technologies, yet its practical applications in proton exchange membrane (PEM) water electrolyzers are limited by the anodic oxygen evolution reaction (OER). Iridium (Ir)-based materials are considered as the state-of-the-art catalysts for acidic OER due to their good stability under harsh acidic conditions. However, their activities still have much room for improvement. Two-dimensional (2D) materials are full of the advantages of high-surface area, unique electrical properties, facile surface modification, and good stability, making the development of 2D Ir-based catalysts more attractive for achieving high catalytic performance. In this review, first, the unique advantages of 2D catalysts for electrocatalysis are reviewed. Thereafter, the classification, synthesis methods, and recent OER achievements of 2D Ir-based materials, including pure metals, alloys, oxides, and perovskites are introduced. Finally, the prospects and challenges of developing 2D Ir-based catalysts for future acidic OER are discussed.

7.
Small ; 19(27): e2300136, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36970814

RESUMEN

Transition metal catalysts are regarded as one of promising alternatives to replace traditional Pt-based catalysts for oxygen reduction reaction (ORR). In this work, an efficient ORR catalyst is synthesized by confining Fe3 C nanoparticles into N, S co-doped porous carbon nanosheets (Fe3 C/N,S-CNS) via high-temperature pyrolysis, in which 5-sulfosalicylic acid (SSA) demonstrates as an ideal complexing agent for iron (ΙΙΙ) acetylacetonate while g-C3 N4 behaves as a nitrogen source. The influence of the pyrolysis temperature on the ORR performance is strictly examined in the controlled experiments. The obtained catalyst exhibits excellent ORR performance (E1/2  = 0.86 V; Eonset  = 0.98 V) in alkaline electrolyte, coupled by exhibiting the superior catalytic activity and stability (E1/2  = 0.83 V, Eonset  = 0.95 V) to Pt/C in acidic media. In parallel, its ORR mechanism is carefully illustrated by the density functional theory (DFT) calculations, especially the role of the incorporated Fe3 C played in the catalytic process. The catalyst-assembled Zn-air battery also exhibits a much higher power density (163 mW cm-2 ) and ultralong cyclic stability in the charge-discharge test for 750 h with a gap increase down to 20 mV. This study provides some constructive insights for preparation of advanced ORR catalysts in green energy conversion units correlated systems.

8.
Angew Chem Int Ed Engl ; 62(14): e202218269, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36645824

RESUMEN

Oxygen reduction reaction (ORR) is vital for clean and renewable energy technologies, which require no fossil fuel but catalysts. Platinum (Pt) is the best-known catalyst for ORR. However, its high cost and scarcity have severely hindered renewable energy devices (e.g., fuel cells) for large-scale applications. Recent breakthroughs in carbon-based metal-free electrochemical catalysts (C-MFECs) show great potential for earth-abundant carbon materials as low-cost metal-free electrocatalysts towards ORR in acidic media. This article provides a focused, but critical review on C-MFECs for ORR in acidic media with an emphasis on advances in the structure design and synthesis, fundamental understanding of the structure-property relationship and electrocatalytic mechanisms, and their applications in proton exchange membrane fuel cells. Current challenges and future perspectives in this emerging field are also discussed.

9.
Angew Chem Int Ed Engl ; 59(44): 19576-19581, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-32558118

RESUMEN

Aluminosilicate zeolites are synthesized under hydrothermal conditions in a basic/alkaline medium in the pH range between 9 and 14. The synthesis of MFI-type zeolite in an acidic medium is presented. The critical parameter determining the zeolite formation in an acidic medium was found to be the isoelectric point (IEP) of gel particles. MFI-type zeolite was synthesized above the isoelectric point of the employed silica source, where the silica species exhibit a negative charge and the paradigm of zeolite formation based on the electrostatic interaction with the positively charged template is retained. No zeolite formation is observed below the isoelectric point of silica. The impact of aluminum on the zeolite formation is also studied. The results of this study will serve to extend the synthesis field of high silica zeolites to the acidic medium and thus open new opportunities to control the zeolite properties.

10.
Angew Chem Int Ed Engl ; 58(22): 7244-7248, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-30848853

RESUMEN

We report a highly active and durable water oxidation electrocatalyst based on cubic nanocages with a composition of Ir44 Pd10 , together with well-defined {100} facets and porous walls of roughly 1.1 nm in thickness. Such nanocages substantially outperform all the water oxidation electrocatalysts reported in literature, with an overpotential of only 226 mV for reaching 10 mA cm-2 geo at a loading of Ir as low as 12.5 µgIr cm-2 on the electrode in acidic media. When benchmarked against a commercial Ir/C electrocatalyst at 250 mV of overpotential, such a nanocage-based catalyst not only shows enhancements (18.1- and 26.2-fold, respectively) in terms of mass (1.99 A mg-1 Ir ) and specific (3.93 mA cm-2 Ir ) activities, but also greatly enhanced durability. The enhancements can be attributed to a combination of multiple merits, including a high utilization efficiency of Ir atoms and an open structure beneficial to the electrochemical oxidation of Ir to the active form of IrOx .

11.
Adv Sci (Weinh) ; 11(24): e2309750, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38564772

RESUMEN

The pursuit of efficient and durable bifunctional electrocatalysts for overall water splitting in acidic media is highly desirable, albeit challenging. SrIrO3 based perovskites are electrochemically active for oxygen evolution reaction (OER), however, their inert activities toward hydrogen evolution reaction (HER) severely restrict the practical implementation in overall water splitting. Herein, an Ir@SrIrO3 heterojunction is newly developed by a partial exsolution approach, ensuring strong metal-support interaction for OER and HER. Notably, the Ir@SrIrO3-175 electrocatalyst, prepared by annealing SrIrO3 in 5% H2 atmosphere at 175 °C, delivers ultralow overpotentials of 229 mV at 10 mA cm-2 for OER and 28 mV at 10 mA cm-2 for HER, surpassing most recently reported bifunctional electrocatalysts. Moreover, the water electrolyzer using the Ir@SrIrO3-175 bifunctional electrocatalyst demonstrates the potential application prospect with high electrochemical performance and excellent durability in acidic environment. Theoretical calculations unveil that constructing Ir@SrIrO3 heterojunction regulates interfacial electronic redistribution, ultimately enabling low energy barriers for both OER and HER.

12.
ChemSusChem ; 17(15): e202400239, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38481084

RESUMEN

Water electrolysis driven by "green electricity" is an ideal technology to realize energy conversion and store renewable energy into hydrogen. With the development of proton exchange membrane (PEM), water electrolysis in acidic media suitable for many situations with an outstanding advantage of high gas purity has attracted significant attention. Compared with hydrogen evolution reaction (HER) in water electrolysis, oxygen evolution reaction (OER) is a kinetic sluggish process that needs a higher overpotential. Especially in acidic media, OER process poses higher requirements for the electrocatalysts, such as high efficiency, high stability and low costs. This review focuses on the acidic OER electrocatalysis, reaction mechanisms, and critical parameters used to evaluate performance. Especially the modification strategies applied in the design and construction of new-type electrocatalysts are also summarized. The characteristics of traditional noble metal-based electrocatalysts and the noble metal-free electrocatalysts developed in recent decades are compared and discussed. Finally, the current challenges for the most promising acidic OER electrocatalysts are presented, together with a perspective for future water electrolysis.

13.
Sci Rep ; 14(1): 11484, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769355

RESUMEN

The challenge of corrosion posed as a result of acidic sittings is considered as a major industrial concern, wherein ionic liquids serve as crucial in addressing the corrosive impacts on metals. In this study, five selected cyclic ammonium based ionic liquids were synthesized; IL-1MPyrBr, IL-1MPipBr, IL-2PyBr, IL-3MPyBr and IL-4MPyBr and their chemical structures were characterized using a variety of spectroscopic techniques (FT-IR, IH-NMR, 13C-NMR, Elemental analysis and thermal gravimetric analysis (TGA). Their corrosion inhibition efficiency was studied on carbon steel in 1 M HCl via different concentrations at 298 K using chemical and electrochemical parameters (PDP and EIS). DFT quantum parameters were computed, and the noted results were in complete compatible with the experimental. The synthesized ILs recorded excellent inhibition on the carbon steel corrosion in acidic media with increasing efficiency by increasing the inhibitor concentrations from 20 to 100 ppm. Different cations in the synthesized ILs affect the anti-corrosion effect and IL-3MPyBr showed the highest inhibition (ηR); 96.12% using the lowest concentration. Kinetic and thermodynamic considerations were studied and illustrated.

14.
Adv Mater ; 36(26): e2312369, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581648

RESUMEN

Traditional noble metal oxide, such as RuO2, is considered a benchmark catalyst for acidic oxygen evolution reaction (OER). However, its practical application is limited due to sluggish activity and severe electrochemical corrosion. In this study, Ru-Fe nanoparticles loading on carbon felt (RuFe@CF) is synthesized via an ultrafast Joule heating method as an active and durable OER catalyst in acidic conditions. Remarkably low overpotentials of 188 and 269 mV are achieved at 10 and 100 mA cm-2, respectively, with a robust stability up to 620 h at 10 mA cm-2. When used as an anode in a proton exchange membrane water electrolyzer, the catalyst shows more than 250 h of stability at a water-splitting current of 200 mA cm-2. Experimental characterizations reveal the presence of a Ru-based oxide nanosheath on the surface of the catalyst during OER tests, suggesting a surface reconstruction process that enhances the intrinsic activity and inhibits continuous metal dissolution. Moreover, density functional theory calculations demonstrate that the introduction of Fe into the RuFe@CF catalyst reduces the energy barrier and boosts its activities. This work offers an effective and universal strategy for the development of highly efficient and stable catalysts for acidic water splitting.

15.
Adv Mater ; 36(27): e2401163, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38639567

RESUMEN

Single-atom catalysts (SACs) are considered prominent materials in the field of catalysis due to their high metal atom utilization and selectivity. However, the wide-ranging applications of SACs remain a significant challenge due to their complex preparation processes. Here, a universal strategy is reported to prepare a series of noble metal single atoms on different non-noble metal oxides through a facile one-step thermal decomposition of molten salts. By using a mixture of non-noble metal nitrate and a small-amount noble metal chloride as the precursor, noble metal single atoms can be easily introduced into the non-noble metal oxide lattice owing to the cation exchange in the in situ formed molten salt, followed by the thermal decomposition of nitrate anions during the heating process. Analyses using aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and extended X-ray absorption fine structure spectroscopy confirm the formation of the finely dispersed single atoms. Specially, the as-synthesized Ir single atoms (10.97 wt%) and Pt single atoms (4.60 wt%) on the Co3O4 support demonstrate outstanding electrocatalytic activities for oxygen evolution reaction and hydrogen evolution reaction, respectively.

16.
Nanomaterials (Basel) ; 14(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38786791

RESUMEN

Electrochemical oxygen reduction reaction (ORR) via the 2e- pathway in an acidic media shows great techno-economic potential for the production of hydrogen peroxide. Currently, carbon-based single-atom catalysts (C-SACs) have attracted extensive attention due to their tunable electronic structures, low cost, and sufficient stability in acidic media. This review summarizes recent advances in metal centers and their coordination environment in C-SACs for 2e--ORR. Firstly, the reaction mechanism of 2e--ORR on the active sites of C-SACs is systematically presented. Secondly, the structural regulation strategies for the active sites of 2e--ORR are further summarized, including the metal active center, its species and configurations of nitrogen coordination or heteroatom coordination, and their near functional groups or substitute groups, which would provide available and proper ideas for developing superior acidic 2e--ORR electrocatalysts of C-SACs. Finally, we propose the current challenges and future opportunities regarding the acidic 2e--ORR pathway on C-SACs, which will eventually accelerate the development of the distributed H2O2 electrosynthesis process.

17.
ChemSusChem ; : e202400623, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997233

RESUMEN

The abundant, active, and acidic-stable catalysts for the oxygen evolution reaction (OER) are rare to the proton exchange membrane-based water electrolysis. Mn-based materials show promise as electrocatalysts for OER in acid electrolytes. However, the relationship between the stability, activity and structure of Mn-based catalysts in acidic environments remains unclear. In this study, phase-pure MnSb2O6 was successfully prepared and investigated as a catalyst for OER in a sulfuric acid solution (pH of 2.0). A comprehensive mechanistic comparison between MnSb2O6 and Mn3O4 revealed that the rate-determining step for OER on MnSb2O6 is the direct formation of MnIV=O from MnII-H2O by the 2H+/2e- process. This process avoids the rearrangement of adjacent MnIII intermediates, leading to outstanding stability and activity.

18.
Artículo en Inglés | MEDLINE | ID: mdl-37195616

RESUMEN

1,10-Phenanthroline (PHN) is a nitrogen-containing heterocyclic organic compound that is widely used in a variety of applications, including chemosensors, biological studies, and pharmaceuticals, which promotes its use as an organic inhibitor to reduce corrosion of steel in acidic solution. In this regard, the inhibition ability of PHN was examined for carbon steel (C48) in a 1.0 M HCl environment by performing electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), mass loss, and thermometric/kinetic. Additionally, scanning electron microscopy (SEM) was used to examine the surface morphology of C48 immersed in 1.0 M HCl protected with our inhibitor. According to the PDP tests, increasing the PHN concentration resulted in an improvement in corrosion inhibition efficiency. Besides, the maximum corrosion inhibition efficiency is about 90% at 328 K. Furthermore, the PDP assessments demonstrated that PHN functions as a mixed-type inhibitor. The adsorption analysis reveals that our title molecule mechanism is due to physical-chemical adsorption, as predicted by the Frumkin, Temkin, Freundlich, and Langmuir isotherms. The SEM technique exhibited that the corrosion barrier occurs due to the adsorption of the PHN compound through the metal/1.0 M HCl interface. In addition, the computational investigations based on a quantum calculation using density functional theory (DFT), reactivity (QTAIM, ELF, and LOL), and molecular-scale by Monte Carlo (MC) simulations confirmed the experimental results by providing further insight into the mode of adsorption of PHN on the metal surface, thus forming a protective film against corrosion on the C48 surface.

19.
Environ Technol ; : 1-14, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37102406

RESUMEN

Tequila production occurs in Mexico's designated area of origin, principally in the Jalisco State. Its residues are a challenge in treatment and tracking due to a lack of technology, non-economic treatments available, low environmental consciousness and incipient control from authorities. In 2021, average production was close to 1.5 million tequila litres per day with an estimated residue yield of 10-12 litres of stillage (tequila vinasses) per tequila litre produced, including volatile fractions. This research aims to reduce organic matter by electrooxidation (EO) from 5 distillation volatile residual effluents (two-stage still distillation) from three tequila distilleries, first and second-stage heads and heads and tails and second-stage non-evaporated fraction. Round 3 mm titanium (grade-1) electrodes (one anode and one cathode) were used, with fixed voltage to a value of 30 VDC at 0, 3, 6, 9 and 12 h with 75 experiments. Gas chromatography was used to analyse methanol, ethanol, acetaldehyde, ethyl acetate, n-propanol, sec-butanol, iso-butanol, n-butanol, iso-amyl, n-amyl, and ethyl lactate content. Treatment shows positive results, reducing organic matter content in all effluents in a Chemical Oxygen Demand COD range of 580-1880 mg/L.h, particularly useful in the second-stage non-evaporated fraction for water recovery.HIGHLIGHTSResidual effluent treatment is beneficial to environmental and resource sustainability.Process without adding materials achieving cleaner treated effluents.Process aimed as the final step to recover water.This process could help the Tequila industry to reach a higher sustainability level by reducing water usage and untreated residues.

20.
Dent Mater ; 39(1): 57-69, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36496258

RESUMEN

OBJECTIVE: To investigate the effect of acidic media, including beverages and gastric fluids on flexural strength and fatigue of CAD-CAM materials. METHODS: Four CAD-CAM materials (high-translucency zirconia (Ceramill Zolid HT+), lithium disilicate (IPS e-max CAD), hybrid ceramic (Vita Enamic), and nanohybrid resin composite (Grandio Blocs) were prepared and immersed in one of five media (gastric HCl, white wine, Coca-Cola, orange juice, and artificial saliva) in an incubator (37 â„ƒ, 24 h). Surface topography and roughness were obtained using a scanning electron microscope (SEM) and a stylus contact profilometer, respectively. Initial 3-point flexural strength was measured for half of the bars (n = 20/gp) using a universal testing machine (0.5 mm/min). The other bars underwent 106 cyclic fatigue loadings before measurement of residual 3-point flexural strength. Data were statistically analyzed (two-way and three-way ANOVA, Tukey's post-hoc, p < 0.05). Weibull distributions were plotted for reliability analysis. RESULTS: Zirconia bars has the highest initial flexural strengths followed by lithium disilicate, while resin composite and hybrid ceramic groups had the lowest strength regardless of the erosive medium. Cyclic fatigue significantly reduced initial flexural strengths for all materials except for hybrid ceramic and resin composite. Weibull moduli were the highest for zirconia, lithium disilicate and resin composite and lowest for hybrid ceramic. SIGNIFICANCE: Erosive media significantly changed surface roughness of CAD-CAM materials except for zirconia and resin composite without jeopardizing the flexural strength of the CAD-CAM materials. Despite the higher flexural strengths for zirconia and lithium disilicate, resin composite and hybrid ceramic were more resistant to cyclic fatigue.


Asunto(s)
Materiales Dentales , Resistencia Flexional , Reproducibilidad de los Resultados , Ensayo de Materiales , Propiedades de Superficie , Porcelana Dental , Cerámica , Diseño Asistido por Computadora
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda