Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 695
Filtrar
1.
Small ; 20(35): e2400919, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38639010

RESUMEN

Triple-negative breast cancer (TNBC) is a highly aggressive and uncommon subtype of breast cancer with a poor prognosis. It is crucial to prioritise the creation of a nanotherapeutic method that is highly selective and actively targeting TNBC. This study explores a new nanosystem, Cu9S8-SNAP@PM (C-S@P), composed of Cu9S8-SNAP coated with a platelet membrane (PM). The purpose of this nanosystem is to cure TNBC using multimodal therapy. The utilisation of PM-coated nanoparticles (NPs) enables active targeting, leading to the efficient accumulation of C-S@P within the tumour. The Cu9S8 component within these NPs serves the potential to exert photothermal therapy (PTT) and chemodynamic therapy (CDT). Simultaneously, the S-Nitroso-N-Acetylvanicillamine (SNAP) component enables nitric oxide (NO) gas therapy (GT). Furthermore, when exposed to NIR-II laser light, Cu9S8 not only increases the temperature of the tumour area for PTT, but also boosts CDT and stimulates the release of NO through thermal reactions to improve the effectiveness of GT. Both in vitro and in vivo experimental results validate that C-S@P exhibits minimal side effects and represents a multifunctional nano-drug targeted at tumors for efficient treatment. This approach promises significant potential for TNBC therapy and broader applications in oncology.


Asunto(s)
Plaquetas , Neoplasias de la Mama Triple Negativas , Animales , Femenino , Humanos , Ratones , Plaquetas/metabolismo , Línea Celular Tumoral , Cobre/química , Cobre/farmacología , Nanopartículas/química , Óxido Nítrico/metabolismo , Óxido Nítrico/química , Fototerapia , Terapia Fototérmica , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/terapia
2.
Small ; 20(4): e2305475, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37715267

RESUMEN

Sonodynamic therapy (SDT) is an anti-cancer therapeutic strategy based on the generation of reactive oxygen species (ROS) upon local ultrasound (US) irradiation of sono-responsive molecules or nanomaterials that accumulate in the tumor. In this work, the sonodynamic efficiency of sono-responsive hybrid nanomaterials composed of amorphous titanium dioxide and an amphiphilic poly(ethylene oxide)-b-poly(propylene oxide) block copolymer is synthesized, fully characterized, and investigated both in vitro and in vivo. The modular and versatile synthetic pathway enables the control of the nanoparticle size between 30 and 300 nm (dynamic light scattering) and glucosylation of the surface for active targeting of tumors overexpressing glucose transporters. Studies on 2D and 3D rhabdomyosarcoma cell cultures reveal a statistically significant increase in the sonodynamic efficiency of glucosylated hybrid nanoparticles with respect to unmodified ones. Using a xenograft rhabdomyosarcoma murine model, it is demonstrated that by tuning the nanoparticle size and surface features, the tumor accumulation is increased by ten times compared to main off-target clearance organs such as the liver. Finally, the SDT of rhabdomyosarcoma-bearing mice is investigated with 50-nm glucosylated nanoparticles. Findings evidence a dramatic prolongation of the animal survival and tumor volumes 100 times smaller than those treated only with ultrasound or nanoparticles.


Asunto(s)
Nanopartículas , Rabdomiosarcoma , Terapia por Ultrasonido , Humanos , Animales , Ratones , Ultrasonografía , Terapia por Ultrasonido/métodos , Nanopartículas/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Polímeros , Línea Celular Tumoral
3.
Mol Pharm ; 21(9): 4688-4699, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39105761

RESUMEN

Folate uptake is largely mediated by folate receptor (FR)ß, encoded by FOLR2 gene, in myeloid immune cells such as granulocytes, monocytes, and especially in macrophages that constitute the reticuloendothelial system (RES) and infiltrate the tumor microenvironment. Since the myeloid immune compartment dynamically changes during tumorigenesis, it is critical to assess the infiltration status of the tumors by FRß-expressing myeloid cells to better define the targeting efficacy of folate-functionalized drug delivery systems. On the other hand, clearance by RES is a major limitation for the targeting efficacy of nanoparticles decorated with folate. Therefore, the aims of this study are (i) to determine the amount and subtypes of FRß+ myeloid cells infiltrating the tumors at different stages, (ii) to compare the amount and subtype of FRß+ myeloid cells in distinct organs of tumor-bearing and healthy animals, (iii) to test if the cancer-targeting efficacy and biodistribution of a prototypic folate-functionalized nanoparticle associates with the density of FRß+ myeloid cells. Here, we report that myeloid cell infiltration was enhanced and FRß was upregulated at distinct stages of tumorigenesis in a mouse breast cancer model. The CD206+ subset of macrophages highly expressed FRß, prominently both in tumor-bearing and healthy mice. In tumor-bearing mice, the amount of all myeloid cells, but particularly granulocytes, was remarkably increased in the tumor, liver, lungs, spleen, kidneys, lymph nodes, peritoneal cavity, bone marrow, heart, and brain. Compared with macrophages, the level of FRß was moderate in granulocytes and monocytes. The density of FRß+ immune cells in the tumor microenvironment was not directly associated with the tumor-targeting efficacy of the folate-functionalized cyclodextrin nanoparticles. The lung was determined as a preferential site of accumulation for folate-functionalized nanoparticles, wherein FRß+CD206+ macrophages significantly engulfed cyclodextrin nanoparticles. In conclusion, our results demonstrate that the tumor formation augments the FR levels and alters the infiltration and distribution of myeloid immune cells in all organs which should be considered as a major factor influencing the targeting efficacy of nanoparticles for drug delivery.


Asunto(s)
Receptor 2 de Folato , Ácido Fólico , Sistema Mononuclear Fagocítico , Células Mieloides , Nanopartículas , Microambiente Tumoral , Animales , Ácido Fólico/química , Ácido Fólico/farmacocinética , Receptor 2 de Folato/metabolismo , Ratones , Nanopartículas/química , Células Mieloides/metabolismo , Células Mieloides/efectos de los fármacos , Distribución Tisular , Femenino , Sistema Mononuclear Fagocítico/metabolismo , Humanos , Microambiente Tumoral/efectos de los fármacos , Línea Celular Tumoral , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Ratones Endogámicos BALB C
4.
Nanotechnology ; 35(24)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38408368

RESUMEN

The crossing of the blood-brain barrier (BBB) for conventional anticancer drugs is still a big challenge in treating glioma. The biomimetic nanoparticle delivery system has attracted increasing attention and has a promising future for crossing the BBB. Herein, we construct a multifunctional biomimetic nanoplatform using the erythrocyte membrane (EM) with the tumor-penetrating peptide iRGD (CRGDK/RGPD/EC) as a delivery, and the inner core loaded with the chemotherapeutic drug temozolomide (TMZ). The resulting biomimetic nanoparticle has perfect biocompatibility and stealth ability, which will provide more chances to escape the reticuloendothelial system (RES) entrapment, and increase the opportunity to enter the tumor site. Moreover, the decorated iRGD has been extensively used to actively targeting and deliver therapeutic agents across the BBB into glioma tissue. We show that this biomimetic delivery of TMZ with a diameter of 22 nm efficiently slowed the growth of glioblastoma multiforme (GBM) and increased the survival rate of the 30 d from 0% to 100%.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Membrana Eritrocítica , Biomimética , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico
5.
J Nanobiotechnology ; 22(1): 547, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39238027

RESUMEN

Rheumatoid arthritis (RA) involves chronic inflammation, oxidative stress, and complex immune cell interactions, leading to joint destruction. Traditional treatments are often limited by off-target effects and systemic toxicity. This study introduces a novel therapeutic approach using hyaluronic acid (HA)-conjugated, redox-responsive polyamino acid nanogels (HA-NG) to deliver tacrolimus (TAC) specifically to inflamed joints. The nanogels' disulfide bonds enable controlled TAC release in response to high intracellular glutathione (GSH) levels in activated macrophages, prevalent in RA-affected tissues. In vitro results demonstrated that HA-NG/TAC significantly reduced TAC toxicity to normal macrophages and showed high biocompatibility. In vivo, HA-NG/TAC accumulated more in inflamed joints compared to non-targeted NG/TAC, enhancing therapeutic efficacy and minimizing side effects. Therapeutic evaluation in collagen-induced arthritis (CIA) mice revealed HA-NG/TAC substantially reduced paw swelling, arthritis scores, synovial inflammation, and bone erosion while suppressing pro-inflammatory cytokine levels. These findings suggest that HA-NG/TAC represents a promising targeted drug delivery system for RA, offering potential for more effective and safer clinical applications.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Ácido Hialurónico , Nanogeles , Péptidos , Tacrolimus , Animales , Ácido Hialurónico/química , Artritis Reumatoide/tratamiento farmacológico , Ratones , Tacrolimus/farmacología , Tacrolimus/uso terapéutico , Tacrolimus/química , Tacrolimus/farmacocinética , Artritis Experimental/tratamiento farmacológico , Péptidos/química , Péptidos/farmacología , Nanogeles/química , Masculino , Células RAW 264.7 , Sistemas de Liberación de Medicamentos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos DBA , Portadores de Fármacos/química , Humanos
6.
J Nanobiotechnology ; 22(1): 198, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649957

RESUMEN

Heat shock protein 90 (HSP90) is overexpressed in numerous cancers, promotes the maturation of numerous oncoproteins and facilitates cancer cell growth. Certain HSP90 inhibitors have entered clinical trials. Although less than satisfactory clinical effects or insurmountable toxicity have compelled these trials to be terminated or postponed, these results of preclinical and clinical studies demonstrated that the prospects of targeting therapeutic strategies involving HSP90 inhibitors deserve enough attention. Nanoparticulate-based drug delivery systems have been generally supposed as one of the most promising formulations especially for targeting strategies. However, so far, no active targeting nano-formulations have succeeded in clinical translation, mainly due to complicated preparation, complex formulations leading to difficult industrialization, incomplete biocompatibility or nontoxicity. In this study, HSP90 and CD44-targeted A6 peptide functionalized biomimetic nanoparticles (A6-NP) was designed and various degrees of A6-modification on nanoparticles were fabricated to evaluate targeting ability and anticancer efficiency. With no excipients, the hydrophobic HSP90 inhibitor G2111 and A6-conjugated human serum albumin could self-assemble into nanoparticles with a uniform particle size of approximately 200 nm, easy fabrication, well biocompatibility and avoidance of hepatotoxicity. Besides, G2111 encapsulated in A6-NP was only released less than 5% in 12 h, which may avoid off-target cell toxicity before entering into cancer cells. A6 peptide modification could significantly enhance uptake within a short time. Moreover, A6-NP continues to exert the broad anticancer spectrum of Hsp90 inhibitors and displays remarkable targeting ability and anticancer efficacy both in hematological malignancies and solid tumors (with colon tumors as the model cancer) both in vitro and in vivo. Overall, A6-NP, as a simple, biomimetic and active dual-targeting (CD44 and HSP90) nanomedicine, displays high potential for clinical translation.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Proteínas HSP90 de Choque Térmico , Receptores de Hialuranos , Leucemia Mieloide Aguda , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Receptores de Hialuranos/metabolismo , Animales , Línea Celular Tumoral , Ratones , Neoplasias del Colon/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/química , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Nanopartículas/química , Sistemas de Liberación de Medicamentos/métodos , Ratones Desnudos , Ratones Endogámicos BALB C , Péptidos/química , Péptidos/farmacología
7.
Handb Exp Pharmacol ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39254747

RESUMEN

mRNA and targeted delivery of mRNA carry the promise to enable targeted treatment of undruggable diseases with high unmet medical needs. The transient nature of mRNA opens options for safe influencing of protein biology, immune responses, and complex ailments without impacting DNA heritage. Technical challenges such as mRNA stability and targeted delivery require next generation solutions, which attracted substantial funding and research interests. To build an integrated mRNA value chain and enable the development of novel therapeutics, Merck KGaA Darmstadt, Germany has initiated an internally incubated program, "Targeted mRNA Delivery" (TMD). This collaborative approach brings together scientists, researchers, engineers, and commercial experts from diverse backgrounds to overcome the multidimensional challenges associated with mRNA technology. In this chapter, the multiple opportunities and challenges for the development of mRNA formulations and therapeutics are described comprehensively. Specifically, the TMD program is presented as a use case to show how intrapreneurs were gathered to establish internal mRNA capabilities and foster collaborations for technology development. In the realm of targeted mRNA delivery, partnerships, encompassing internal partnership and external private, public, and hybrid collaborations, play a crucial role in driving innovation and addressing these hurdles. Within multinational pharmaceutical companies, the establishment of "internal startups" is an effective solution to drive innovation to the next level with support from different business sectors, where existing capabilities and positioning are seamlessly blended with the agility and speed of a startup.

8.
Nanomedicine ; 58: 102751, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705222

RESUMEN

Active targeting can enhance precision and efficacy of drug delivery systems (DDS) against cancers. Riboflavin (RF) is a promising ligand for active targeting due to its biocompatibility and high riboflavin-receptor expression in cancers. In this study, RF-targeted 4-arm polyethylene glycol (PEG) stars conjugated with Paclitaxel (PTX), named PEG PTX RF, were evaluated as a targeted DDS. In vitro, PEG PTX RF exhibited higher toxicity against tumor cells compared to the non-targeted counterpart (PEG PTX), while free PTX displayed the highest acute toxicity. In vivo, all treatments were similarly effective, but PEG PTX RF-treated tumors showed fewer proliferating cells, pointing to sustained therapy effects. Moreover, PTX-treated animals' body and liver weights were significantly reduced, whereas both remained stable in PEG PTX and PEG PTX RF-treated animals. Overall, our targeted and non-targeted DDS reduced PTX's adverse effects, with RF targeting promoted drug uptake in cancer cells for sustained therapeutic effect.


Asunto(s)
Sistemas de Liberación de Medicamentos , Paclitaxel , Polietilenglicoles , Riboflavina , Paclitaxel/farmacología , Paclitaxel/química , Riboflavina/farmacología , Riboflavina/química , Animales , Humanos , Ratones , Polietilenglicoles/química , Línea Celular Tumoral , Ratones Endogámicos BALB C , Polímeros/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino
9.
J Liposome Res ; : 1-16, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38988127

RESUMEN

Liver disorders present a significant global health challenge, necessitating the exploration of innovative treatment modalities. Liposomal nanocarriers have emerged as promising candidates for targeted drug delivery to the liver. This review offers a comprehensive examination of the mechanisms and applications of liposomal nanocarriers in addressing various liver disorders. Firstly discussing the liver disorders and the conventional treatment approaches, the review delves into the liposomal structure and composition. Moreover, it tackles the different mechanisms of liposomal targeting including both passive and active strategies. After that, the review moves on to explore the therapeutic potentials of liposomal nanocarriers in treating liver cirrhosis, fibrosis, viral hepatitis, and hepatocellular carcinoma. Through discussing recent advancements and envisioning future perspectives, this review highlights the role of liposomal nanocarriers in enhancing the effectiveness and the safety of liver disorders and consequently improving patient outcomes and enhances life quality.

10.
J Microencapsul ; : 1-24, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320955

RESUMEN

Leflunomide (LEF) is a well-known disease-modifying anti-rheumatic agent (DMARDs) that was approved in 1998 for rheumatoid arthritis (RA) management. It is enzymatically converted into active metabolite teriflunomide (TER) inside the body. LEF and TER possess several pharmacological effects in a variety of diseases including multiple sclerosis, cancer, viral infections and neurobehavioral brain disorders. Despite the aforementioned pharmacological effects exploring these effects in nanomedicine applications has been focused mainly on RA and cancer treatment. This review summarises the main pharmacological, and pharmacokinetic effects of LEF along with highlighting the applications of nanoencapsulation of LEF and its metabolite in different diseases.

11.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125873

RESUMEN

The current focus of ovarian cancer (OC) research is the improvement of treatment options through maximising drug effectiveness. OC remains the fifth leading cause of cancer-induced mortality in women worldwide. In recent years, nanotechnology has revolutionised drug delivery systems. Nanoparticles may be utilised as carriers in gene therapy or to overcome the problem of drug resistance in tumours by limiting the number of free drugs in circulation and thereby minimising undesired adverse effects. Cell surface receptors, such as human epidermal growth factor 2 (HER2), folic acid (FA) receptors, CD44 (also referred to as homing cell adhesion molecule, HCAM), and vascular endothelial growth factor (VEGF) are highly expressed in ovarian cancer cells. Generation of active targeting nanoparticles involves modification with ligands that recognise cell surface receptors and thereby promote internalisation by cancer cells. Several poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are currently used for the treatment of high-grade serous ovarian carcinomas (HGSOC) or platinum-sensitive relapsed OC. However, PARP resistance and poor drug bioavailability are common challenges, highlighting the urgent need to develop novel, effective strategies for ovarian cancer treatment. This review evaluates the utility of nanoparticles in ovarian cancer therapy, with a specific focus on targeted approaches and the use of PARPi nanocarriers to optimise treatment outcomes.


Asunto(s)
Nanopartículas , Neoplasias Ováricas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/administración & dosificación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Nanopartículas/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Animales
12.
Small ; 19(50): e2303934, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37632323

RESUMEN

Treatment failure in breast cancers overexpressing human epidermal growth factor receptor 2 (HER2) is associated mainly to the upregulation of human epidermal growth factor receptor 3 (HER3) oncoprotein linked to chemoresitence. Therefore, to increase patient survival, here a multimodal theranostic nanoplatform targeting both HER2 and HER3 is developed. This consists of doxorubicin-loaded branched gold nanoshells functionalized with the near-infrared (NIR) fluorescent dye indocyanine green, a small interfering RNA (siRNA) against HER3, and the HER2-specific antibody Transtuzumab, able to provide a combined therapeutic outcome (chemo- and photothermal activities, RNA silencing, and immune response). In vitro assays in HER2+ /HER3+ SKBR-3 breast cancer cells have shown an effective silencing of HER3 by the released siRNA and an inhibition of HER2 oncoproteins provided by Trastuzumab, along with a decrease of the serine/threonine protein kinase Akt (p-AKT) typically associated with cell survival and proliferation, which helps to overcome doxorubicin chemoresistance. Conversely, adding the NIR light therapy, an increment in p-AKT concentration is observed, although HER2/HER3 inhibitions are maintained for 72 h. Finally, in vivo studies in a tumor-bearing mice model display a significant progressively decrease of the tumor volume after nanoparticle administration and subsequent NIR light irradiation, confirming the potential efficacy of the hybrid nanocarrier.


Asunto(s)
Neoplasias de la Mama , Nanocáscaras , Humanos , Animales , Ratones , Femenino , Neoplasias de la Mama/metabolismo , Proteínas Proto-Oncogénicas c-akt , Oro , Receptor ErbB-2/genética , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , ARN Interferente Pequeño , Línea Celular Tumoral
13.
Invest New Drugs ; 41(5): 664-676, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37542666

RESUMEN

Liposomal doxorubicin exhibits stronger drug accumulation at the tumor site due to the Enhanced Permeability and Retention (EPR) effect. However, the prognosis for the patient is poor due to this drug's lack of targeting and tumor metastasis during treatment. Vascular epidermal growth factor receptor (VEGFR2) plays an important role in angiogenesis and cancer metastasis. To enhance antitumor efficacy of PEGylated liposomal doxorubicin, we constructed a VEGFR2-targeted and doxorubicin-loaded immunoliposome (Lipo-DOX-C00) by conjugating a VEGFR2-specific, single chain antibody fragment to DSPE-PEG2000-MAL, and then we inserted the antibody-conjugated polymer into liposomal doxorubicin (Lipo-DOX). The immunoliposome was formed uniformly with high affinity for VEGFR2. In vitro, Lipo-DOX-C00 enhanced doxorubicin internalization into LLC and 4T1 cells compared with non-conjugated, liposomal doxorubicin. In vivo, Lipo-DOX-C00 delivered DOX to tumor tissues effectively, which exhibited an improved antitumor and anti-metastasis efficacy in both LLC subcutaneous tumor models and 4T1 tumor models. In addition, the combined therapy of a VEGFR2-MICA bispecific antibody (JZC01) and Lipo-DOX-C00 achieved enhanced inhibition of cancer growth and metastasis due to activation of the immune system. Our study provides a promising approach to clinical application of liposomal doxorubicin.

14.
Biotechnol Bioeng ; 120(4): 1038-1054, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36539373

RESUMEN

Nanoparticles are used as carriers for the delivery of drugs and imaging agents. Proteins are safer than synthetic nanocarriers due to their greater biocompatibility and the absence of toxic degradation products. In this context, ferritin has the additional benefit of inherently targeting the membrane receptor transferrin 1, which is overexpressed by most cancer cells. Furthermore, this self-assembling multimeric protein can be loaded with more than 2000 iron atoms, as well as drugs, contrast agents, and other cargos. However, recombinant ferritin currently costs ~3.5 million € g-1 , presumably because the limited number of producers cannot meet demand, making it generally unaffordable as a nanocarrier. Because plants can produce proteins at very-large-scale, we developed a simple, proof-of-concept process for the production of the human ferritin heavy chain by transient expression in Nicotiana benthamiana. We optimized the protein yields by screening different compartments and 5'-untranslated regions in PCPs, and selected the best-performing construct for production in differentiated plants. We then established a rapid and scalable purification protocol by combining pH and heat treatment before extraction, followed by an ultrafiltration/diafiltration size-based separation process. The optimized process achieved ferritin levels of ~40 mg kg-1 fresh biomass although depth filtration limited product recovery to ~7%. The purity of the recombinant product was >90% at costs ~3% of the current sales price. Our method therefore allows the production of affordable ferritin heavy chain as a carrier for therapeutic and diagnostic agents, which is suitable for further stability and functionality testing in vitro and in vivo.


Asunto(s)
Apoferritinas , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Ferritinas/genética , Hierro , Sistemas de Liberación de Medicamentos
15.
Mol Pharm ; 20(9): 4758-4769, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37585079

RESUMEN

Hepatocellular carcinoma (HCC) is the leading cause of cancer-related mortality worldwide. Telmisartan (TLM), a BSC class II drug, has been reported to have antiproliferative activity in HCC. However, its therapeutic activity is limited by poor bioavailability and unpredictable distribution. This work aimed to enhance TLM's liver uptake for HCC management through passive and active targeting pathways utilizing chitosan nanoparticles decorated with lactose (LCH NPs) as a delivery system. In vitro cell cytotoxicity and cellular uptake studies indicated that TLM-LCH NPs significantly (p < 0.05) enhanced the antiproliferative activity and cellular uptake percentage of TLM. In vivo bioavailability and liver biodistribution studies indicated that TLM-LCH NPs significantly (p < 0.05) enhanced TLM concentrations in plasma and the liver. The relative liver uptake of TLM from TLM-LCH NPs was 2-fold higher than that of unmodified NPs and 5-fold higher than that of plain TLM suspension. In vivo studies of a N-nitrosodiethylamine-induced HCC model revealed that administration of TLM through LCH NPs improved liver histology and resulted in lower serum alpha-fetoprotein (AFP), matrix metalloproteinase 2 (MMP-2), vascular endothelial growth factor (VEGF) levels, and liver weight index compared to plain TLM and TLM-loaded unmodified NPs. These results reflected the high potentiality of LCH NPs as a liver-targeted delivery system for TLM in the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Quitosano , Neoplasias Hepáticas , Nanopartículas , Animales , Ratones , Humanos , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Telmisartán/uso terapéutico , Quitosano/metabolismo , Dietilnitrosamina , Metaloproteinasa 2 de la Matriz/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Distribución Tisular , Células Hep G2
16.
Mol Pharm ; 20(2): 1156-1167, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36573995

RESUMEN

Astatine-211 (211At) is an alpha emitter applicable to radioimmunotherapy (RIT), a cancer treatment that utilizes radioactive antibodies to target tumors. In the preparation of 211At-labeled monoclonal antibodies (211At-mAbs), the possibility of radionuclide-induced antibody denaturation (radiolysis) is of concern. Our previous study showed that this 211At-induced radiochemical reaction disrupts the cellular binding activity of an astatinated mAb, resulting in attenuation of in vivo antitumor effects, whereas sodium ascorbate (SA), a free radical scavenger, prevents antibody denaturation, contributing to the maintenance of binding and antitumor activity. However, the influence of antibody denaturation on the pharmacokinetics of 211At-mAbs relating to tumor accumulation, blood circulation time, and distribution to normal organs remains unclear. In this study, we use a radioactive anti-human epidermal growth factor receptor 2 (anti-HER2) mAb to demonstrate that an 211At-induced radiochemical reaction disrupts active targeting via an antigen-antibody interaction, whereas SA helps to maintain targeting. In contrast, there was no difference in blood circulation time as well as distribution to normal organs between the stabilized and denatured immunoconjugates, indicating that antibody denaturation may not affect tumor accumulation via passive targeting based on the enhanced permeability and retention effect. In a high-HER2-expressing xenograft model treated with 1 MBq of 211At-anti-HER2 mAbs, SA-dependent maintenance of active targeting contributed to a significantly better response. In treatment with 0.5 or 0.2 MBq, the stabilized radioactive mAb significantly reduced tumor growth compared to the denatured immunoconjugate. Additionally, through a comparison between a stabilized 211At-anti-HER2 mAb and radioactive nontargeted control mAb, we demonstrate that active targeting significantly enhances tumor accumulation of radioactivity and in vivo antitumor effect. In RIT with 211At, active targeting contributes to efficient tumor accumulation of radioactivity, resulting in a potent antitumor effect. SA-dependent protection that successfully maintains tumor targeting will facilitate the clinical application of alpha-RIT.


Asunto(s)
Inmunoconjugados , Neoplasias , Humanos , Anticuerpos Monoclonales , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Radioisótopos , Radioinmunoterapia/métodos , Línea Celular Tumoral
17.
J Nanobiotechnology ; 21(1): 77, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869341

RESUMEN

Nanomedicine technology is a rapidly developing field of research and application that uses nanoparticles as a platform to facilitate the diagnosis and treatment of diseases. Nanoparticles loaded with drugs and imaging contrast agents have already been used in clinically, but they are essentially passive delivery carriers. To make nanoparticles smarter, an important function is the ability to actively locate target tissues. It enables nanoparticles to accumulate in target tissues at higher concentrations, thereby improving therapeutic efficacy and reducing side effects. Among the different ligands, the CREKA peptide (Cys-Arg-Glu-Lys-Ala) is a desirable targeting ligand and has a good targeting ability for overexpressed fibrin in different models, such as cancers, myocardial ischemia-reperfusion, and atherosclerosis. In this review, the characteristic of the CREKA peptide and the latest reports regarding the application of CREKA-based nanoplatforms in different biological tissues are described. In addition, the existing problems and future application perspectives of CREKA-based nanoplatforms are also addressed.


Asunto(s)
Aterosclerosis , Nanopartículas , Humanos , Medios de Contraste , Nanomedicina
18.
J Nanobiotechnology ; 21(1): 103, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36944946

RESUMEN

Osteosarcoma, the most common malignant tumor of the bone, seriously influences people's lives and increases their economic burden. Conventional chemotherapy drugs achieve limited therapeutic effects owing to poor targeting and severe systemic toxicity. Nanocarrier-based drug delivery systems can significantly enhance the utilization efficiency of chemotherapeutic drugs through targeting ligand modifications and reduce the occurrence of systemic adverse effects. A variety of ligand-modified nano-drug delivery systems have been developed for different targeting schemes. Here we review the biological characteristics and the main challenges of current drug therapy of OS, and further elaborate on different targeting schemes and ligand selection for nano-drug delivery systems of osteosarcoma, which may provide new horizons for the development of advanced targeted drug delivery systems in the future.


Asunto(s)
Antineoplásicos , Neoplasias Óseas , Nanopartículas , Osteosarcoma , Humanos , Sistema de Administración de Fármacos con Nanopartículas , Antineoplásicos/uso terapéutico , Ligandos , Osteosarcoma/tratamiento farmacológico , Neoplasias Óseas/tratamiento farmacológico , Portadores de Fármacos/uso terapéutico
19.
J Liposome Res ; : 1-19, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37814217

RESUMEN

Nano-drug delivery systems have opened new pathways for tumor treatment by overcoming some of the limitations of conventional drugs, such as physiological degradation, short half-life, and rapid release. Liposomes are promising nanocarrier systems due to their biocompatibility, low toxicity, and high inclusivity, as well as their enhanced drug bioavailability. Various strategies for active targeting of liposomal formulations have been investigated to achieve the highest drug efficacy. This review aims to summarize current developments in novel liposomal formulations, particularly ligand-targeted liposomes (such as folate, transferrin, hyaluronic acid, antibodies, aptamer, and peptide, etc.) used for the therapy of various cancers and provide an insight on the challenges and future of liposomes for scientists and pharmaceutical companies.

20.
J Liposome Res ; 33(2): 197-213, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36440599

RESUMEN

Treatment of epithelial ovarian cancer (EOC) is a challenge because it still leads to unsatisfactory clinical prognosis. This is due to the toxicity and poor targeting of chemotherapeutic agents, as well as metastasis of the tumor. In this study, we designed a targeted liposome with nanostructures to overcome these problems. In the liposomes, epirubicin and curcumin were encapsulated to achieve their synergistic antitumor efficacy, while Epi-1 was modified on the liposomal surface to target epithelial cell adhesion molecule (EpCAM). Epi-1, a macrocyclic peptide, exhibits active targeting for enhanced cellular uptake and potent cytotoxicity against tumor cells. The encapsulation of epirubicin and curcumin synergistically inhibited the formation of neovascularization and vasculogenic mimicry (VM) channels, thereby suppressing tumor metastasis on SKOV3 cells. The dual drug loaded Epi-1-liposomes also induced apoptosis and downregulated metastasis-related proteins for effective antitumor in vitro. In vivo studies showed that dual drug loaded Epi-1-liposomes prolonged circulation time in the blood and increased the selective accumulation of drug at the tumor site. H&E staining and immunohistochemistry with Ki-67 also showed that targeted liposomes elevated antitumor activity. Also, targeted liposomes downregulated angiogenesis-related proteins to inhibit angiogenesis and thus tumor metastasis. In conclusion, the production of dual drug loaded Epi-1-liposomes is an effective strategy for the treatment of EOC.


Asunto(s)
Curcumina , Neoplasias Ováricas , Humanos , Femenino , Epirrubicina/farmacología , Epirrubicina/química , Epirrubicina/uso terapéutico , Liposomas/química , Molécula de Adhesión Celular Epitelial , Curcumina/farmacología , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Línea Celular Tumoral , Neoplasias Ováricas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda