Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.035
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(42): e2209819119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215466

RESUMEN

Grasping, in both biological and engineered mechanisms, can be highly sensitive to the gripper and object morphology, as well as perception and motion planning. Here, we circumvent the need for feedback or precise planning by using an array of fluidically actuated slender hollow elastomeric filaments to actively entangle with objects that vary in geometric and topological complexity. The resulting stochastic interactions enable a unique soft and conformable grasping strategy across a range of target objects that vary in size, weight, and shape. We experimentally evaluate the grasping performance of our strategy and use a computational framework for the collective mechanics of flexible filaments in contact with complex objects to explain our findings. Overall, our study highlights how active collective entanglement of a filament array via an uncontrolled, spatially distributed scheme provides options for soft, adaptable grasping.


Asunto(s)
Robótica , Fuerza de la Mano , Robótica/métodos
2.
Proc Natl Acad Sci U S A ; 119(49): e2215028119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442122

RESUMEN

The climbing microrobots have attracted growing attention due to their promising applications in exploration and monitoring of complex, unstructured environments. Soft climbing microrobots based on muscle-like actuators could offer excellent flexibility, adaptability, and mechanical robustness. Despite the remarkable progress in this area, the development of soft microrobots capable of climbing on flat/curved surfaces and transitioning between two different surfaces remains elusive, especially in open spaces. In this study, we address these challenges by developing voltage-driven soft small-scale actuators with customized 3D configurations and active stiffness adjusting. Combination of programmed strain distributions in liquid crystal elastomers (LCEs) and buckling-driven 3D assembly, guided by mechanics modeling, allows for voltage-driven, complex 3D-to-3D shape morphing (bending angle > 200°) at millimeter scales (from 1 to 10 mm), which is unachievable previously. These soft actuators enable development of morphable electroadhesive footpads that can conform to different curved surfaces and stiffness-variable smart joints that allow different locomotion gaits in a single microrobot. By integrating such morphable footpads and smart joints with a deformable body, we report a multigait, soft microrobot (length from 6 to 90 mm, and mass from 0.2 to 3 g) capable of climbing on surfaces with diverse shapes (e.g., flat plane, cylinder, wavy surface, wedge-shaped groove, and sphere) and transitioning between two distinct surfaces. We demonstrate that the microrobot could navigate from one surface to another, recording two corresponding ceilings when carrying an integrated microcamera. The developed soft microrobot can also flip over a barrier, survive extreme compression, and climb bamboo and leaf.


Asunto(s)
Elastómeros , Cristales Líquidos , Membrana Celular , Extremidades , Marcha
3.
Nano Lett ; 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39387646

RESUMEN

Optically and magnetically responsive soft actuators are gaining attention for their noncontact actuation, flexibility, and remote control capabilities. However, they face challenges in rapidly switching motion postures and modes, which limits their performance in complex environments. We developed bilayer hydrogel actuators based on poly(N-isopropylacrylamide) (PNIPAm) using an ice-templating method combined with free radical polymerization. This approach results in the formation of large, interconnected pores within the hydrogel. Under near-infrared light (27 W/cm2), the actuation speed of the actuator reached 38.5°/s, with complete recovery to the original shape 8 s after light cessation. In addition, the reversible changes in stiffness and volume enable the actuators to lock and dynamically adjust their magnetization curve, allowing for the decoupling of deformation and movement as well as the regulation of motion postures and modes. This work opens new pathways for multigait robots and shows promising applications in environmental monitoring and underwater exploration.

4.
Nano Lett ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592087

RESUMEN

Electroactive artificial muscles with deformability have attracted widespread interest in the field of soft robotics. However, the design of artificial muscles with low-driven voltage and operational durability remains challenging. Herein, novel biomass porous carbon (BPC) electrodes are proposed. The nanoporous BPC enables the electrode to provide exposed active surfaces for charge transfer and unimpeded channels for ion migration, thus decreasing the driving voltage, enhancing time durability, and maintaining the actuation performances simultaneously. The proposed actuator exhibits a high displacement of 13.6 mm (bending strain of 0.54%) under 0.5 V and long-term durability of 99.3% retention after 550,000 cycles (∼13 days) without breaks. Further, the actuators are integrated to perform soft touch on a smartphone and demonstrated as bioinspired robots, including a bionic butterfly and a crawling robot (moving speed = 0.08 BL s-1). This strategy provides new insight into the design and fabrication of high-performance electroactive soft actuators with great application potential.

5.
Nano Lett ; 24(4): 1423-1430, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38251923

RESUMEN

Nanopillar/tube arrays have emerged as encouraging platforms, possessing remarkable advantages, including large specific areas and highly aligned orientations. Despite the progress of nano/microfabrication technologies, facile and controllable fabrication of conductive polymer nanopillar/tube arrays remains challenging. In this study, we demonstrate that the air-liquid interfacial self-assembly can be extended to obtain three-dimensional nanostructured arrays. A smart and novel method is proposed for preparing uniform conductive polymer nanopillar/tube arrays by a template-mediated interfacial synthesis approach. By utilizing capillary force, precise control processes of the nanostructure and patterned structure can be easily realized. Furthermore, a transfer strategy is devised, allowing for scalable fabrication and expansion of the applicability. Applications, including antibacterial surfaces and actuators, have been demonstrated. We extend the air-liquid interfacial synthesis technique as a powerful and universal strategy for producing ordered nanopillar/tube arrays and show the great potential of soft nanostructured arrays as advanced platforms in diverse applications.

6.
Small ; 20(26): e2309429, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38553811

RESUMEN

Thermally driven fiber actuators are emerging as promising tools for a range of robotic applications, encompassing soft and wearable robots, muscle function restoration, assistive systems, and physical augmentation. Yet, to realize their full potential in practical applications, several challenges, such as a high operational temperature, incorporation of intrinsic self-sensing capabilities for closed-loop feedback control, and reliance on bulky, intricate actuation systems, must be addressed. Here, an Ag nanoparticles-based twisted and coiled fiber actuator that achieves a high contractile actuation of ≈36% is reported at a considerably low operational temperature of ≈83 °C based on a synergistic effect of constituent fiber elements with low glass transition temperatures. The fiber actuator can monitor its contractile actuation in real-time based on the piezoresistive properties inherent to its Ag-based conductive region, demonstrating its proprioceptive sensing capability. By exploiting this capability, the proprioceptive fiber actuator adeptly maintains its intended contractile behavior, even when faced with unplanned external disturbances. To demonstrate the capabilities of the fiber actuator, this study integrates it into a closed-loop feedback-controlled bionic arm as an artificial muscle, offering fresh perspectives on the future development of intelligent wearable devices and soft robotic systems.

7.
Small ; 20(9): e2305067, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37858925

RESUMEN

Soft actuators generate motion in response to external stimuli and are indispensable for soft robots, particularly future miniature robots with complex structure and motion. Similarly to conventional hard robots, electricity is suitable for the stimulation. However, previous electrochemical soft actuators require a tethered connection to a power supply, limiting their size, structure, and motion. Here, wireless electrochemical soft actuators composed of hydrogels and driven by bipolar electrochemistry are reported. Viologen, which dimerizes by one-electron reduction and dissociates by one-electron oxidation, is incorporated in the side chains of the gel networks and works as a reversible cross-link. Wireless and reversible electrochemical actuation of the hydrogels, i.e., muscle-like shrinking and swelling, is demonstrated at microscopic and even macroscopic scales.

8.
Small ; 20(33): e2400482, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38534165

RESUMEN

Humidity-responsive materials hold broad application prospects in sensing, energy production, and other fields. Particularly, humidity-sensitive, flexibility, and water resistance are pivotal factors in the development of optimized humidity-responsive materials. In this study, hydrophobic linear polyurethane and hydrophilic 4-vinylphenylboronic acid (4-VPBA) form a semi-intercross cross-linking network. This copolymer of polyurethane exhibits excellent humidity-sensitive, mechanical properties, and water resistance. Its maximum tensile strength and maximum elongation can reach 40.56 MPa and 543.47%, respectively. After being immersed in water at various temperatures for 15 days, it exhibited a swelling ratio of only 3.28% in water at 5 °C and 9.58% in water at 70 °C. While the presence of 4-VPBA network imparts humidity-sensitive, reversible, and multidirectional bending abilities, under the stimulus of water vapor, it can bend 43° within 1.4 s. The demonstrated material surpasses current bidirectional humidity actuators in actuating ability. Based on these characteristics, automatically opening waterproof umbrellas and windows, as well as bionic-arms, crawling robots, and self-propelled boats, are successfully developed.

9.
Small ; 20(28): e2310009, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38295155

RESUMEN

Magnetic soft actuators and robots have attracted considerable attention in biomedical applications due to their speedy response, programmability, and biocompatibility. Despite recent advancements, the fabrication process of magnetic actuators and the reprogramming approach of their magnetization profiles continue to pose challenges. Here, a facile fabrication strategy is reported based on arrangements and distributions of reusable magnetic pixels on silicone substrates, allowing for various magnetic actuators with customizable architectures, arbitrary magnetization profiles, and integration of microfluidic technology. This approach enables intricate configurations with decent deformability and programmability, as well as biomimetic movements involving grasping, swimming, and wriggling in response to magnetic actuation. Moreover, microfluidic functional modules are integrated for various purposes, such as on/off valve control, curvature adjustment, fluid mixing, dynamic microfluidic architecture, and liquid delivery robot. The proposed method fulfills the requirements of low-cost, rapid, and simplified preparation of magnetic actuators, since it eliminates the need to sustain pre-defined deformations during the magnetization process or to employ laser heating or other stimulation for reprogramming the magnetization profile. Consequently, it is envisioned that magnetic actuators fabricated via pixel-assembly will have broad prospects in microfluidics and biomedical applications.

10.
Small ; 20(30): e2308352, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38433397

RESUMEN

Magnetic hydrogel actuators are developed by incorporating magnetic fillers into the hydrogel matrix. Regulating the distribution of these fillers is key to the exhibited functionalities but is still challenging. Here a facile way to spatially synthesize ferrosoferric oxide (Fe3O4) microparticles in situ in a thermal-responsive hydrogel is reported. This method involves the photo-reduction of Fe3+ ions coordinated with carboxylate groups in polymer chains, and the hydrolytic reaction of the reduced Fe2+ ions with residual Fe3+ ions. By controlling the irradiation time and position, the concentration of Fe3O4 microparticles can be spatially controlled, and the resulting Fe3O4 pattern enables the hydrogel to exhibit complex locomotion driven by magnet, temperature, and NIR light. This method is convenient and extendable to other hydrogel systems to realize more complicated magneto-responsive functionalities.

11.
Small ; 20(24): e2309572, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38155584

RESUMEN

Exploring combinatorial materials, as well as rational device configuration design, are assumed to be the key strategies for deploying versatile electrochemical devices. MXene sheets have revealed a high hydrophilic surface with proper mechanical and electrical characteristics, rendering them supreme additive candidates to integrate in electrospun electrochemical power tools. The synergetic effects of MXene 2D layers with the nanofibrous networks can boost actuator responsive ability, battery capacity retention, fuel cell stability, sensor sensitivity, and supercapacitor areal capacitance. Their superior mechanical features can be endowed to the electrospun layers through the embedding of the MXene additive. In this review, the preparation and inherent features of the MXene configurations are briefly evaluated. The fabrication and overall performance of the MXene-loaded nanofibers applicable in electrochemical actuators, batteries, fuel cells, sensors, and supercapacitors are comprehensively figured out. Eventually, an outlook on the future development of MXene-based electrospun composites is presented. A substantial focus has been devoted to date to engineering conjugated MXene and electrospun fibrous frames. The potential performance of the MXene-decorated nanofibers presents a bright future of nanoengineering toward technological growth. Meanwhile, a balance between the pros and cons of the synthesized MXene composite layers is worthwhile to consider in the future.

12.
Small ; 20(12): e2307565, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946670

RESUMEN

Liquid crystal elastomers (LCEs) with promising applications in the field of actuators and soft robotics are reported. However, most of them are activated by external heating or light illumination. The examples of electroactive LCEs are still limited; moreover, they are monofunctional with one type of deformation (bending or contraction). Here, the study reports on trilayer electroactive LCE (eLCE) by intimate combination of LCE and ionic electroactive polymer device (i-EAD). This eLCE is bi-functional and can perform either bending or contractile deformations by the control of the low-voltage stimulation. By applying a voltage of ±2 V at 0.1 Hz, the redox behavior and associated ionic motion provide a bending strain difference of 0.80%. Besides, by applying a voltage of ±6 V at 10 Hz, the ionic current-induced Joule heating triggers the muscle-like linear contraction with 20% strain for eLCE without load. With load, eLCE can lift a weight of 270 times of eLCE-actuator weight, while keeping 20% strain and affording 5.38 kJ·m-3 work capacity. This approach of combining two smart polymer technologies (LCE and i-EAD) in a single device is promising for the development of smart materials with multiple degrees of freedom in soft robotics, electronic devices, and sensors.

13.
Small ; 20(37): e2400520, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38733234

RESUMEN

Recently, researchers have been exploring the use of dynamic covalent bonds (DCBs) in the construction of exchangeable liquid crystal elastomers (LCEs) for biomimetic actuators and devices. However, a significant challenge remains in achieving LCEs with both excellent dynamic properties and superior mechanical strength and stability. In this study, a diacrylate-functionalized monomer containing dynamic hindered urea bonds (DA-HUB) is employed to prepare exchangeable LCEs through a self-catalytic Michael addition reaction. By incorporating DA-HUB, the LCE system benefits from DCBs and hydrogen bonding, leading to materials with high mechanical strength and a range of dynamic properties such as programmability, self-healing, and recyclability. Leveraging these characteristics, bilayer LCE actuators with controlled reversible thermal deformation and outstanding dimensional stability are successfully fabricated using a simple welding method. Moreover, a biomimetic triangular plum, inspired by the blooming of flowers, is created to showcase reversible color and shape changes triggered by light and heat. This innovative approach opens new possibilities for the development of biomimetic and smart actuators and devices with multiple functionalities.

14.
Small ; 20(36): e2401580, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38708893

RESUMEN

The construction of flexible actuators with ultra-fast actuation and robust mechanical properties is crucial for soft robotics and smart devices, but still remains a challenge. Inspired by the unique mechanism of pinecones dispersing seeds in nature, a hygroscopic actuator with interlayer network-bonding connected gradient structure is fabricated. Unlike most conventional bilayer actuator designs, the strategy leverages biobased polyphenols to construct strong interfacial H-bonding networks between 1D cellulose nanofibers and 2D graphene oxide, endowing the materials with high tensile strength (172 MPa) and excellent toughness (6.64 MJ m-3). Furthermore, the significant difference in hydrophilicity between GO and rGO, along with the dense interlayer H-bonding, enables ultra-fast water exchange during water absorption and desorption processes. The resulted actuator exhibits ultra-fast driving speed (154° s-1), excellent pressure-resistant and cyclic stability. Taking advantages of these benefits, the actuator can be fabricated into smart devices (such as smart grippers, humidity control switches) with significant potential for practical applications. The presented approach to constructing interlayer H-bonding in gradient structures is instructive for achieving high performance and functionalization of biomass nanomaterials and the complex of 1D/2D nanomaterials.

15.
Small ; 20(27): e2311656, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38308144

RESUMEN

Flexible actuators with excellent adaptability and interaction safety have a wide range of application prospects in many fields. However, current flexible actuators have problems such as fragility and poor actuating ability. Here, inspired by the features of nacre structure, a gradient structured flexible actuator is proposed with mechanical robustness and self-healing ability. By introducing dynamic boronic ester bonds at the interface between MXene nanosheets and epoxy natural rubber matrix, the resulting nanocomposites with ordered micro-nano structures exhibit excellent tensile strength (25.03 MPa) and satisfactory repair efficiency (81.2%). In addition, the gradient distribution structure of MXene nanosheets endows the actuator with stable photothermal conversion capability, which can quickly respond to near-infrared light stimulation. The interlayer dynamic covalent bond crosslinking enables good response speed after multiple bending and is capable of functional self-healing after damage. This work introduces gradient structure and dynamic covalent bonding into flexible actuators, which provides a reference for the fabrication of self-healing soft robots, wearable, and other healable functional materials.

16.
Small ; 20(28): e2311164, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38295083

RESUMEN

Smart hydrogels are a promising candidate for the development of next-generation soft materials due to their stimuli-responsiveness, deformability, and biocompatibility. However, it remains challenging to enable hydrogels to actively adapt to various environmental conditions like living organisms. In this work, supramolecular additives are introduced to the hydrogel matrix to confer environmental adaptiveness. Specifically, their microstructures, swelling behaviors, mechanical properties, and transparency can adapt to external environmental conditions. Moreover, the presence of hydrogen bonding provides the hydrogel with applicable rheological properties for 3D extrusion printing, thus allowing for the facile preparation of thickness-dependent camouflage and multistimuli responsive complex. The environmentally adaptive hydrogel developed in this study offers new approaches for manipulating supramolecular interactions and broadens the capability of smart hydrogels in information security and multifunctional integrated actuation.

17.
Nanotechnology ; 35(18)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38176071

RESUMEN

Microfabrication procedure of piezoelectric micro electro-mechanical systems based on 5µm thick LiNbO3films on SiO2/Si substrate at wafer scale including deep dry etching of thick LiNbO3films by implementing pulsed mode of Ar/SF6gas was developed. In particular, two (YXlt)/128°/90°LiNbO3-Si cantilevers with tip mass were fabricated and characterized in terms of resonance frequency (511 and 817 Hz), actuation and acceleration sensing capabilities. The quality factor of 89.5 and the electromechanical coupling of 4.8% were estimated from measured frequency dependency of electrical impedance, fitted by using Butterworth-Van Dyke model. The fabricated piezoelectric micro-electro-mechanical systems have demonstrated highly linear displacement with good sensitivity (5.28 ± 0.02µm V-1) as a function of applied voltage and high sensitivity to vibrations of 667 mV g-1indicating a suitability of the structure for actuation purposes and for acceleration or frequency sensing with high precision, respectively.

18.
Macromol Rapid Commun ; 45(3): e2300539, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37985952

RESUMEN

Non-monotonous actuation, that is, different kinds of motion in response to a single stimulus, is observed in some natural materials but difficult to implement in synthetic systems. Herein, polymer hydrogel sheets made from polyacrylamide (PAAm) or poly(dimethylacrylamide) (PDMAA) with a cross-linking gradient along the sheet thickness are reported. These are obtained by thermally initiated free radical polymerization using a specially designed Teflon mold with a glass lid. The resulting PAAm hydrogels undergo non-monotonous actuation (rolling into a tube and re-opening) when exposed to aqueous media as a single external stimulus. Their actuation kinetics is tuned with anions that have specific ion effects in their interaction with the surrounding solvent and the polymer itself: structure-breaking chloride enhances the hydration of the polymer backbone, structure-making sulfate decreases it, and is thus slowing down the actuation kinetics of the PAAm hydrogels. The PDMAA gel rolls up instantaneously in aqueous NaCl and only re-opens after 24 h. PDMAA actuation in aqueous Na2 SO4 is only moderate as the gel did not swell in that solvent. Bilayer hydrogels made from PAAm and PDMAA (without gradient) show monotonic actuation, closing in NaCl solution and re-opening in Na2 SO4 .


Asunto(s)
Hidrogeles , Polímeros , Cloruro de Sodio , Cinética , Agua , Solventes
19.
Macromol Rapid Commun ; : e2400518, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101702

RESUMEN

Hydrogel devices with mechanical toughness and tunable functionalities are highly desirable for practical long-term applications such as sensing and actuation elements for soft robotics. However, existing hydrogels have poor mechanical properties, slow rates of response, and low functionality. In this work, two-dimensional hydrogel actuators are proposed and formed on the self-assembly of graphene oxide (GO) and deoxynucleic acid (DNA). The self-assembly process is driven by the GO-induced transition of double stranded DNA (dsDNA) into single stranded DNA (ssDNA). Thus, the hydrogel's structural unit consists of two layers of GO covered by ssDNA and a layer of dsDNA in between. Such heterogeneous architectures stabilized by multiple hydrogen bondings have Young's modulus of up to 10 GPa and rapid swelling rates of 4.0 × 10-3 to 1.1 × 10-2 s-1, which surpasses most types of conventional hydrogels. It is demonstrated that the GO/DNA hydrogel actuators leverage the unique properties of these two materials, making them excellent candidates for various applications requiring sensing and actuation functions, such as artificial skin, wearable electronics, bioelectronics, and drug delivery systems.

20.
Macromol Rapid Commun ; 45(13): e2400038, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38684191

RESUMEN

Self-oscillating gel systems exhibiting an expanded operating temperature and accompanying functional adaptability are showcased. The developed system contains nonthermoresponsive main-monomers, such as N,N-dimethylacrylamide (DMAAm) or 2-acrylamido-2-methylpropane sulfonic acid (AMPS) or acrylamide (AAm) or 3-(methacryloylamino)propyl trimethylammonium chloride (MAPTAC). The gels volumetrically self-oscillate within the range of the conventional (20.0 °C) and extended (27.0 and 36.5 °C) temperatures. Moreover, the gels successfully adapt to the environmental changes; they beat faster and smaller as the temperature increases. The period and amplitude are also controlled by tuning the amount of main-monomers and N-(3-aminopropyl) acrylamide. Furthermore, the record amplitude in the bulk gel system consisting of polymer strand and cross-linker at 36.5 °C is achieved (≈10.8%). The study shows new self-oscillation systems composed of unprecedented combinations of materials, giving the community a robust material-based insight for developing more life-like autonomous biomimetic soft robots with various operating temperatures and beyond.


Asunto(s)
Geles , Temperatura , Geles/química , Acrilamidas/química , Polímeros/química , Materiales Biomiméticos/química , Biomimética/métodos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda