RESUMEN
Jhanas are profound states of mind achieved through advanced meditation, offering valuable insights into the nature of consciousness and tools to enhance well-being. Yet, its neurophenomenology remains limited due to methodological difficulties and the rarity of advanced meditation practitioners. We conducted a highly exploratory study to investigate the neurophenomenology of jhanas in an intensively sampled adept meditator case study (4 hr 7T fMRI collected in 27 sessions) who performed jhana meditation and rated specific aspects of experience immediately thereafter. Linear mixed models and correlations were used to examine relations among brain activity and jhana phenomenology. We identified distinctive patterns of brain activity in specific cortical, subcortical, brainstem, and cerebellar regions associated with jhana. Furthermore, we observed correlations between brain activity and phenomenological qualities of attention, jhanic qualities, and narrative processing, highlighting the distinct nature of jhanas compared to non-meditative states. Our study presents the most rigorous evidence yet that jhana practice deconstructs consciousness, offering unique insights into consciousness and significant implications for mental health and well-being.
Asunto(s)
Meditación , Humanos , Meditación/psicología , Estado de Conciencia , Atención , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagenRESUMEN
Advanced meditation such as jhana meditation can produce various altered states of consciousness (jhanas) and cultivate rewarding psychological qualities including joy, peace, compassion, and attentional stability. Mapping the neurobiological substrates of jhana meditation can inform the development and application of advanced meditation to enhance well-being. Only two prior studies have attempted to investigate the neural correlates of jhana meditation, and the rarity of adept practitioners has largely restricted the size and extent of these studies. Therefore, examining the consistency and reliability of observed brain responses associated with jhana meditation can be valuable. In this study, we aimed to characterize functional magnetic resonance imaging (fMRI) reliability within a single subject over repeated runs in canonical brain networks during jhana meditation performed by an adept practitioner over 5 days (27 fMRI runs) inside an ultra-high field 7 Tesla MRI scanner. We found that thalamus and several cortical networks, that is, the somatomotor, limbic, default-mode, control, and temporo-parietal, demonstrated good within-subject reliability across all jhanas. Additionally, we found that several other relevant brain networks (e.g., attention, salience) showed noticeable increases in reliability when fMRI measurements were adjusted for variability in self-reported phenomenology related to jhana meditation. Overall, we present a preliminary template of reliable brain areas likely underpinning core neurocognitive elements of jhana meditation, and highlight the utility of neurophenomenological experimental designs for better characterizing neuronal variability associated with advanced meditative states.
Asunto(s)
Imagen por Resonancia Magnética , Meditación , Red Nerviosa , Humanos , Reproducibilidad de los Resultados , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Adulto , Masculino , Femenino , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Corteza Cerebral/fisiología , Corteza Cerebral/diagnóstico por imagenRESUMEN
Psychedelic-assisted therapy studies suggest that the induction of "mystical experiences" combined with psycho-therapy is a possible intervention for psychiatric illness. Advanced meditation may induce powerful experiences comparable to psychedelics. We investigated effects of an intensive meditation practice called Fire Kasina. Six individuals completed a retreat, and participated in an interview in which they described their experiences. They also completed the Revised Mystical Experience Questionnaire (MEQ), Hood Mystical Experience Scale (HME), and Cole's Spiritual Transformation Scale. Mean MEQ scores were 85â¯%, similar to prior observations of high-dose psilocybin and were stronger than moderate-dose psilocybin (t(5) = 4.41, p = 0.007, d = 1.80; W(5) = 21, p = 0.031). Mean HME scores were 93â¯%, exceeding levels reported for NDEs (mean 74â¯%) and high-dose psilocybin (mean 77â¯%). In qualitative analysis, experiences were described as the most intense of the individual's life, while subsequent transformational effects included substantial shifts in worldview.
RESUMEN
The neuroscience of meditation is providing insight into meditation's beneficial effects on well-being and informing understanding of consciousness. However, further research is needed to explicate mechanisms linking brain activity and meditation. Non-invasive brain stimulation (NIBS) presents a promising approach for causally investigating neural mechanisms of meditation. Prior NIBS-meditation research has predominantly targeted frontal and parietal cortices suggesting that it might be possible to boost the behavioral and neural effects of meditation with NIBS. Moreover, NIBS has revealed distinct neural signatures in long-term meditators. Nonetheless, methodological variations in NIBS-meditation research contributes to challenges for definitive interpretation of previous results. Future NIBS studies should further investigate core substrates of meditation, including specific brain networks and oscillations, and causal neural mechanisms of advanced meditation. Overall, NIBS-meditation research holds promise for enhancing meditation-based interventions in support of well-being and resilience in both non-clinical and clinical populations, and for uncovering the brain-mind mechanisms of meditation and consciousness.
Asunto(s)
Encéfalo , Estado de Conciencia , Meditación , Humanos , Estado de Conciencia/fisiología , Encéfalo/fisiología , Estimulación Magnética TranscranealRESUMEN
Meditation has been integral to human culture for millennia, deeply rooted in various spiritual and contemplative traditions. While the field of contemplative science has made significant steps toward understanding the effects of meditation on health and well-being, there has been little study of advanced meditative states, including those achieved through intense concentration and absorption. We refer to these types of states as advanced concentrative absorption meditation (ACAM), characterized by absorption with the meditation object leading to states of heightened attention, clarity, energy, effortlessness, and bliss. This review focuses on a type of ACAM known as jhana (ACAM-J) due to its well-documented history, systematic practice approach, recurring phenomenological themes, and growing popularity among contemplative scientists and more generally in media and society. ACAM-J encompasses eight layers of deep concentration, awareness, and internal experiences. Here, we describe the phenomenology of ACAM-J and present evidence from phenomenological and neuroscientific studies that highlight their potential applications in contemplative practices, psychological sciences, and therapeutics. We additionally propose theoretical ACAM-J frameworks grounded in current cognitive neuroscientific understanding of meditation and ancient contemplative traditions. We aim to stimulate further research on ACAM more broadly, encompassing advanced meditation including meditative development and meditative endpoints. Studying advanced meditation including ACAM, and specific practices such as ACAM-J, can potentially revolutionize our understanding of consciousness and applications for mental health.