Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sensors (Basel) ; 24(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38931764

RESUMEN

The quality of aerial remote sensing imaging is heavily impacted by the thermal distortions in optical cameras caused by temperature fluctuations. This paper introduces a lumped parameter thermal network (LPTN) model for the optical system of aerial cameras, aiming to serve as a guideline for their thermal design. By optimizing the thermal resistances associated with convection and radiation while considering the camera's unique internal architecture, this model endeavors to improve the accuracy of temperature predictions. Additionally, the proposed LPTN framework enables the establishment of a heat leakage network, which offers a detailed examination of heat leakage paths and rates. This analysis offers valuable insights into the thermal performance of the camera, thereby guiding the refinement of heating zones and the development of effective active control strategies. Operating at a total power consumption of 26 W, the thermal system adheres to the low-power limit. Experimental data from thermal tests indicate that the temperatures within the optical system are maintained consistently between 19 °C and 22 °C throughout the flight, with temperature gradients remaining below 3 °C, satisfying the temperature requirements. The proposed LPTN model exhibits swiftness and efficacy in determining thermal characteristics, significantly facilitating the thermal design process and ensuring optimal power allocation for aerial cameras.

2.
Sensors (Basel) ; 23(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36850352

RESUMEN

The remote sensing imaging requirements of aerial cameras require their optical system to have wide temperature adaptability. Based on the optical passive athermal technology, the expression of thermal power offset of a single lens in the catadioptric optical system is first derived, and then a mathematical model for efficient optimization of materials is established; finally, the mechanical material combination (mirror and housing material) is optimized according to the comprehensive weight of offset with temperature change and the position change of the equivalent single lens, and achieve optimization of the lens material on an athermal map. In order to verify the effectiveness of the method, an example of a catadioptric aerial optical system with a focal length of 350 mm is designed. The results show that in the temperature range of -40 °C to 60 °C, the diffraction-limited MTF of the designed optical system is 0.59 (at 68 lp/mm), the MTF of each field of view is greater than 0.39, and the thermal defocus is less than 0.004 mm, which is within one time of the focal depth, indicating that the imaging quality of the optical system basically does not change with temperature, meeting the stringent application requirements of the aerial camera.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda