Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
1.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(4): 509-518, 2024 Aug 25.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-39183056

RESUMEN

OBJECTIVES: To synthesize new bakuchiol aminoguanidine derivatives and test their effect on viability and apoptosis of human triple-negative breast cancer (TNBC) cells. METHODS: Two bakuchiol derivatives 1 and 2 were obtained by formylation and Shiff base reaction of bakuchol. The structures of derivatives 1 and 2 were identified by 1H-NMR, 13C-NMR, and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) analysis. Human TNBC MDA-MB-231 cells were treated with bakuchiol and its derivatives and cell viability was measured by MTT assay. Apoptosis was detected by fluorescence microscopy and flow cytometry with Annexin V-FITC/PI staining. The expressions of apoptosis-related proteins were analyzed with Western blotting. The JC-1 and reactive oxygen species (ROS) assay kits were used to determine the effect of new bakuchiol derivatives on mitochondrial function. RESULTS: Based on spectroscopic analysis, a new bakuchiol schiff base derivative was elucidated as 2-{(E)-5-[(S, E)-3, 7-dimethyl-3-vinylocta-1, 6-dien-1-yl]-2-hydroxylbenzylidene} hydrazine-1-carboximidamide (derivative 2). Bakuchiol and its derivatives 1 and 2 all showed cytotoxic activity against the MDA-MB-231 cells. Derivative 2 exhibited the most potent cytotoxic activity to MDA-MB-231 cell with IC50 of (13.11±1.09), (6.91±1.78), and (2.23±1.32) µmol/L after 24, 48, and 72 h. It had low toxicity to normal mouse liver (AML-12) cells with IC50 of (31.23±1.58) µmol/L at 72 h. Fluorescence microscopy and flow cytometry demonstrated apoptosis in breast cancer cells after treating with derivative 2 in a concentration dependent manner. Western blotting showed that after derivative 2 treatment, the expression of apoptosis-related proteins cytochrome C, cleaving caspase-3 and Bax/Bcl-2 radio in MDA-MB-231 cells increased; in addition, apoptosis was associated with the decreased mitochondrial membrane potential and increased reactive oxygen species accumulation. CONCLUSIONS: The novel bakuchiol aminoguanidine derivative (derivative 2) is capable of inducing apoptosis in MDA-MB-231 cells, but has low toxicity to normal liver cells, suggesting that it may be used as a lead compound for an anti-TNBC agent.


Asunto(s)
Apoptosis , Guanidinas , Fenoles , Especies Reactivas de Oxígeno , Neoplasias de la Mama Triple Negativas , Humanos , Apoptosis/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Fenoles/farmacología , Guanidinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos
2.
J Fluoresc ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37971607

RESUMEN

Carnosine is beta-alanyl histidine, a dipeptide, endogenously produced in our body by the carnosine synthase enzyme. It is an antioxidant, thus protecting from the deleterious effect of advanced glycation end products (AGEs). Similarly, aminoguanidine (AG) also prevents AGEs formation by scavenging free radicals such as reactive oxygen species (ROS)/reactive carbonyl species (RCS). This study used experimental and computational techniques to perform a comparative analysis of carnosine and AG and their inhibiting properties against glycated human serum albumin (HSA). Fructose-mediated glycation of albumin produced fluorescent structures, such as pentosidine and malondialdehyde. These AGEs were significantly reduced by carnosine and AG. At 20 mM, carnosine and AG quenches pentosidine fluorescence by 66% and 83%, respectively. A similar inhibitory effect was observed for malondialdehyde. Protein hydrophobicity and tryptophan fluorescence were restored in the presence of carnosine and AG. Aminoguanidine decreased fibrillation in HSA, while carnosine did not significantly affect aggregation/fibrillation. In addition, molecular docking study observed binding scores of -5.90 kcal/mol and -2.59 kcal/mol by HSA-aminoguanidine and HSA-carnosine complex, respectively. Aminoguanidine forms one conventional hydrogen bond with ARG A:10 and a salt bridge with ASP A:13, ASP A:259, ASP A:255, and ASP A:256 from the amine group. Similarly, carnosine forms only hydrogen bonds with GLU A:501 and GLN A:508 from the amine and hydroxy group. The root mean square deviation (RMSD) calculated from simulation studies was 1 nm upto 70 ns for the HSA-aminoguanidine complex and the spectrum of HSA-carnosine was significantly deviated and not stabilized. The superior inhibitory activity of aminoguanidine could be due to additional salt bridge bonding with albumin. Conclusively, aminoguanidine can be the better treatment choice for diabetes-associated neurological diseases.

3.
Appl Microbiol Biotechnol ; 107(5-6): 1765-1784, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36808279

RESUMEN

The ADP-ribosyl transferase activity of P. aeruginosa PE24 moiety expressed by E. coli BL21 (DE3) was assessed on nitrobenzylidene aminoguanidine (NBAG) and in vitro cultured cancer cell lines. Gene encoding PE24 was isolated from P. aeruginosa isolates, cloned into pET22b( +) plasmid, and expressed in E. coli BL21 (DE3) under IPTG induction. Genetic recombination was confirmed by colony PCR, the appearance of insert post digestion of engineered construct, and protein electrophoresis using sodium dodecyl-sulfate polyacrylamide gel (SDS-PAGE). The chemical compound NBAG has been used to confirm PE24 extract ADP-ribosyl transferase action through UV spectroscopy, FTIR, c13-NMR, and HPLC before and after low-dose gamma irradiation (5, 10, 15, 24 Gy). The cytotoxicity of PE24 extract alone and in combination with paclitaxel and low-dose gamma radiation (both 5 Gy and one shot 24 Gy) was assessed on adherent cell lines HEPG2, MCF-7, A375, OEC, and Kasumi-1 cell suspension. Expressed PE24 moiety ADP-ribosylated NBAG as revealed by structural changes depicted by FTIR and NMR, and the surge of new peaks at different retention times from NBAG in HPLC chromatograms. Irradiating recombinant PE24 moiety was associated with a reduction in ADP-ribosylating activity. The PE24 extract IC50 values were < 10 µg/ml with an acceptable R2 value on cancer cell lines and acceptable cell viability at 10 µg/ml on normal OEC. Overall, the synergistic effects were observed upon combining PE24 extract with low-dose paclitaxel demonstrated by the reduction in IC50 whereas antagonistic effects and a rise in IC50 values were recorded after irradiation by low-dose gamma rays. KEY POINTS: • Recombinant PE24 moiety was successfully expressed and biochemically analyzed. • Low-dose gamma radiation and metal ions decreased the recombinant PE24 cytotoxic activity. • Synergism was observed upon combining recombinant PE24 with low-dose paclitaxel.


Asunto(s)
ADP Ribosa Transferasas , Pseudomonas aeruginosa , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Pseudomonas aeruginosa/genética , Rayos gamma , Escherichia coli/genética
4.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37834192

RESUMEN

Pyridoxylidene-aminoguanidine (PLAG) and its transition metal complexes are biologically active compounds with interesting properties. In this contribution, three new metal-PLAG complexes, Zn(PLAG)(SO4)(H2O)].∙H2O (Zn-PLAG), [Co(PLAG)2]SO4∙2H2O (Co-PLAG), and [Fe(PLAG)2]SO4∙2H2O) (Fe-PLAG), were synthetized and characterized by the X-ray crystallography. The intermolecular interactions governing the stability of crystal structure were compared to those of Cu(PLAG)(NCS)2 (Cu-PLAG) within Hirshfeld surface analysis. The structures were optimized at B3LYP/6-31+G(d,p)(H,C,N,O,S)/LanL2DZ (Fe,Co,Zn,Cu), and stability was assessed through Natural Bond Orbital Theory and Quantum Theory of Atoms in Molecules. Special emphasis was put on investigating the ligand's stability and reactivity. The binding of these compounds to Bovine and Human serum albumin was investigated by spectrofluorometric titration. The importance of complex geometry and various ligands for protein binding was shown. These results were complemented by the molecular docking study to elucidate the most important interactions. The thermodynamic parameters of the binding process were determined. The binding to DNA, as one of the main pathways in the cell death cycle, was analyzed by molecular docking. The cytotoxicity was determined towards HCT116, A375, MCF-7, and A2780 cell lines. The most active compound was Cu-PLAG due to the presence of PLAG and two thiocyanate ligands.


Asunto(s)
Complejos de Coordinación , Neoplasias Ováricas , Femenino , Animales , Bovinos , Humanos , Unión Proteica , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Metales , ADN/química , Complejos de Coordinación/química , Zinc/química , Ligandos , Cobre/química
5.
Drug Chem Toxicol ; 45(5): 2255-2261, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34006163

RESUMEN

Arsenic exposure causes immense health distress by increasing risk of cardiovascular abnormalities, diabetes mellitus, neurotoxicity, and nephrotoxicity. The present study explored the role of inducible nitric oxide synthase (iNOS) inhibitors against sodium arsenite-induced renal and hepatic dysfunction in rats. Female Sprague Dawley rats were subjected to arsenic toxicity by administering sodium arsenite (5 mg/kg/day, oral) for 4 weeks. The iNOS inhibitors, S-methylisothiourea (10 mg/kg, i.p.) and aminoguanidine (100 mg/kg, i.p.) were given one hour before sodium arsenite administration in rats for 4 weeks. Sodium arsenite led rise in serum creatinine, urea, uric acid, electrolytes (potassium, fractional excretion of sodium), microproteinuria, and decreased creatinine clearance (p < 0.001) indicated renal dysfunction in rats. Arsenic-intoxication resulted in significant oxidative stress in rat kidneys, which was measured in terms of increase in lipid peroxides, superoxide anion generation and decrease in reduced glutathione (p < 0.001) levels. A threefold increase in renal hydroxyproline level in arsenic intoxicated rats indicated fibrosis. Hematoxylin-eosin staining indicated tubular damage, whereas picrosirius red staining highlighted collagen deposition in rat kidneys. S-methylisothiourea and aminoguanidine improved renal function and attenuated arsenic led renal oxidative stress, fibrosis, and decreased the kidney injury score. Additionally, arsenite-intoxication resulted in significant rise in hepatic parameters (serum aspartate aminotransferase, alanine transferase, alkaline phosphatase, and bilirubin (p < 0.001) along with multi-fold increase in oxidative stress, fibrosis and liver injury score in rats, which was significantly (p < 0.001) attenuated by concurrent administration of iNOS inhibitors). Hence, it is concluded that iNOS inhibitors attenuate sodium arsenite-induced renal and hepatic dysfunction in rats.


Asunto(s)
Arsénico , Arsenitos , Animales , Arsénico/metabolismo , Arsenitos/metabolismo , Arsenitos/toxicidad , Femenino , Fibrosis , Riñón/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II , Estrés Oxidativo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Compuestos de Sodio
6.
Arch Pharm (Weinheim) ; 355(10): e2200172, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35674486

RESUMEN

A recent study identified quinolone-based thiosemicarbazone with an MIC90 value of 2 µM against Mycobacterium tuberculosis (Mtb). Herein, we report further optimization of the previous hit, which led to the discovery of quinolone-tethered aminoguanidine molecules with generally good antitubercular activity. Compounds 7f and 8e emerged as the hits of the series with submicromolar antitubercular activity, exhibiting MIC90 values of 0.49/0.90 and 0.49/0.60 µM, respectively, in the 7H9 CAS GLU Tx medium. This shows a fivefold increase in antitubercular activity compared to the previous study. Target compounds were also screened against ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. However, the series generally exhibited poor antibacterial activities, with only compounds 8d and 8e demonstrating >50% growth inhibition of Staphylococcus aureus and Pseudomonas aeruginosa at 32 µg/ml. The compounds displayed selective antitubercular activity as they showed no cytotoxicity effects against two noncancerous human cell lines. In silico studies predict 7f to have good solubility, no inhibitory effect on cytochrome P450 isoenzymes, and to be a non-pan-assay interfering compound.


Asunto(s)
Quinolonas , Infecciones Estafilocócicas , Tiosemicarbazonas , Antibacterianos/farmacología , Guanidinas , Humanos , Isoenzimas , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Quinolonas/farmacología , Staphylococcus aureus , Relación Estructura-Actividad , Tiosemicarbazonas/farmacología
7.
Molecules ; 27(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35408443

RESUMEN

The proton dissociation processes of two tridentate salicylidene aminoguanidine Schiff bases (SISC, Pro-SISC-Me), the solution stability and electrochemical properties of their Cu(II), Fe(II) and Fe(III) complexes were characterized using pH-potentiometry, cyclic voltammetry and UV-visible, 1H NMR and electron paramagnetic resonance spectroscopic methods. The structure of the proline derivative (Pro-SISC-Me) was determined by X-ray crystallography. The conjugation of L-proline to the simplest salicylidene aminoguanidine Schiff base (SISC) increased the water solubility due to its zwitterionic structure in a wide pH range. The formation of mono complexes with both ligands was found in the case of Cu(II) and Fe(II), while bis complexes were also formed with Fe(III). In the complexes these tridentate ligands coordinate via the phenolato O, azomethine N and the amidine N, except the complex [Fe(III)L2]+ of Pro-SISC-Me in which the (O,N) donor atoms of the proline moiety are coordinated beside the phenolato O, confirmed by single crystal X-ray crystallographic analysis. This binding mode yielded a stronger Fe(III) preference for Pro-SISC-Me over Fe(II) in comparison to SISC. This finding is also reflected in the lower redox potential value of the iron-Pro-SISC-Me complexes. The ligands alone were not cytotoxic against human colon cancer cell lines, while complexation of SISC with Cu(II) resulted in moderate activity, unlike the case of its more hydrophilic counterpart.


Asunto(s)
Complejos de Coordinación , Bases de Schiff , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cristalografía por Rayos X , Compuestos Férricos , Compuestos Ferrosos , Guanidinas , Humanos , Ligandos , Oxidación-Reducción , Prolina , Bases de Schiff/química , Bases de Schiff/farmacología
8.
Molecules ; 28(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36615201

RESUMEN

A series of benzyl, phenyl guanidine, and aminoguandine hydrazone derivatives was designed and in vitro antibacterial activities against two different bacterial strains (Staphylococcus aureus and Escherichia coli) were determined. Several compounds showed potent inhibitory activity against the bacterial strains evaluated, with minimal inhibitory concentration (MIC) values in the low µg/mL range. Of all guanidine derivatives, 3-[2-chloro-3-(trifluoromethyl)]-benzyloxy derivative 9m showed the best potency with MICs of 0.5 µg/mL (S. aureus) and 1 µg/mL (E. coli), respectively. Several aminoguanidine hydrazone derivatives also showed good overall activity. Compounds 10a, 10j, and 10r-s displayed MICs of 4 µg/mL against both S. aureus and E. coli. In the aminoguanidine hydrazone series, 3-(4-trifluoromethyl)-benzyloxy derivative 10d showed the best potency against S. aureus (MIC 1 µg/mL) but was far less active against E. coli (MIC 16 µg/mL). Compound 9m and the para-substituted derivative 9v also showed promising results against two strains of methicillin-resistant Staphylococcus aureus (MRSA). These results provide new and potent structural leads for further antibiotic optimisation strategies.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus , Escherichia coli , Guanidina/farmacología , Hidrazonas/farmacología , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Guanidinas/farmacología , Pruebas de Sensibilidad Microbiana
9.
Bull Exp Biol Med ; 173(1): 21-23, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35622246

RESUMEN

We studied the effect of inducible nitric oxide synthase inhibitor aminoguanidine on learning and spatial memory in rats exposed to long-term administration to caffeine during the prenatal and early postnatal periods. The rats perinatally receiving caffeine demonstrated high learning ability in the Morris water maze. At the same time, the ability to remember the location of the hidden platform in the trial probe in these rats was reduced in comparison with that of the control group rats perinatally receiving water. Administration of aminoguanidine to rats under conditions of perinatal exposure to caffeine significantly improved the parameters of spatial learning and memory. Thus, inhibition of inducible nitric oxide synthase has a beneficial effect on the cognitive functions in offspring perinatally receiving caffeine.


Asunto(s)
Cafeína , Memoria Espacial , Animales , Cafeína/farmacología , Inhibidores Enzimáticos/farmacología , Femenino , Aprendizaje por Laberinto , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Embarazo , Ratas , Ratas Wistar
10.
Can J Physiol Pharmacol ; 99(3): 332-347, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32721224

RESUMEN

Hepatic encephalopathy depicts the cluster of neurological alterations that occur during acute or chronic hepatic injury. Hyperammonemia, inflammatory injury, and oxidative stress are the main predisposing factors for the direct and indirect changes in cerebral metabolism causing encephalopathy. The aim of this study was to evaluate the possible synergistic effect between aminoguanidine (AG; 100 mg/kg, p.o.) and l-carnosine (CAR; 200 mg/kg, p.o.) on hepatic encephalopathy that was induced by thioacetamide (TAA; 100 mg/kg, i.p.) administered three times weekly for six weeks. Behavioral changes, biochemical parameters, histopathological analysis, and immunohistochemical and ultrastructural studies were conducted 24 h after the last treatment. Combining AG with CAR improved TAA-induced locomotor impairment and motor incoordination evidenced by reduced locomotor activity and decline in motor skill performance, as well as ameliorated cognitive deficits. Moreover, both drugs restored the levels of serum hepatic enzymes and serum and brain levels of ammonia. In addition, the combination significantly modulated hepatic and brain oxidative stress biomarkers, inflammatory cytokines, and cleaved caspase-3 expression. Furthermore, they succeeded in activating nuclear erythroid 2-related factor 2 (Nrf2) expression and heme oxygenase-1 (HO-1) activity and ameliorating markers of hepatic encephalopathy, including hepatic necrosis and brain astrocyte swelling. This study shows that combining AG with CAR exerted a new intervention for hepatic and brain damage in hepatic encephalopathy due to their complementary antioxidant, anti-inflammatory effects and hypoammonemic effects via Nrf2/HO-1 activation and NO inhibition.


Asunto(s)
Carnosina/uso terapéutico , Guanidinas/uso terapéutico , Encefalopatía Hepática/prevención & control , Tioacetamida , Amoníaco/metabolismo , Animales , Conducta Animal , Encéfalo/patología , Química Encefálica/efectos de los fármacos , Sinergismo Farmacológico , Encefalopatía Hepática/inducido químicamente , Encefalopatía Hepática/psicología , Hígado/patología , Pruebas de Función Hepática , Masculino , Actividad Motora/efectos de los fármacos , Destreza Motora/efectos de los fármacos , Ratas , Ratas Wistar
11.
J Nanobiotechnology ; 19(1): 95, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33789675

RESUMEN

BACKGROUND: There is a great interest in the efficient intracellular delivery of Cas9-sgRNA ribonucleoprotein complex (RNP) and its possible applications for in vivo CRISPR-based gene editing. In this study, a nanoporous mediated gene-editing approach has been successfully performed using a bi-functionalized aminoguanidine-PEGylated periodic mesoporous organosilica (PMO) nanoparticles (RNP@AGu@PEG1500-PMO) as a potent and biocompatible nanocarrier for RNP delivery. RESULTS: The bi-functionalized MSN-based nanomaterials have been fully characterized using electron microscopy (TEM and SEM), nitrogen adsorption measurements, thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), and dynamic light scattering (DLS). The results confirm that AGu@PEG1500-PMO can be applied for gene-editing with an efficiency of about 40% as measured by GFP gene knockdown of HT1080-GFP cells with no notable change in the morphology of the cells. CONCLUSIONS: Due to the high stability and biocompatibility, simple synthesis, and cost-effectiveness, the developed bi-functionalized PMO-based nano-network introduces a tailored nanocarrier that has remarkable potential as a promising trajectory for biomedical and RNP delivery applications.


Asunto(s)
Guanidinas/química , Nanopartículas/química , Polietilenglicoles/química , Ribonucleoproteínas/química , Adsorción , Sistemas CRISPR-Cas , Supervivencia Celular , Clonación Molecular , Liberación de Fármacos , Dispersión Dinámica de Luz , Edición Génica/métodos , Polímeros/química , ARN Guía de Kinetoplastida/genética , Silanos , Streptococcus pyogenes/genética
12.
Drug Chem Toxicol ; 44(2): 215-221, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30691306

RESUMEN

Lipopolysaccharide (LPS) as the major component of the outer membrane of Gram-negative bacteria activates macrophages to produce a high level of pro-inflammatory cytokines which is considered as a cause of liver dysfunction. Overproduction of nitric oxide (NO) has been suggested to have a role in hepatic injury. The aim of the present study was to explore the protective effects of aminoguanidine (AG) as inducible nitric oxide synthase (iNOS) inhibitor against LPS -induced liver dysfunction in rat. The animals were divided into five groups: (1) control (2) LPS (3) LPS-AG50, (4) LPS-AG100 and (5) LPS-AG150. LPS (1 mg/kg) was injected for 5 weeks and AG (50, 100 and 150 mg/kg) was administered 30 min before LPS. Drugs were injected intraperitoneally. LPS induced liver dysfunction presented by increasing the serum level of alkaline phosphatase (ALK-P), alanine aminotransferase (ALT), aspartate aminotransferase (AST). Pretreatment with AG restored harmful effects of LPS on liver function. In addition, LPS resulted in hepatotoxicity, accompanied by enhancing the level of interleukin (IL)-6, malondialdehyde (MDA) and nitric oxide (NO) metabolites and decreasing the content of total thiol groups and superoxide dismutase (SOD) and catalase (CAT) activity. Injection of AG before LPS attenuated LPS-induced hepatotoxicity through decreasing the level of IL-6, MDA and NO metabolites and increasing total thiols and SOD and CAT activity. Considering the protective effect of AG which was seen in the present study, it seems that increased levels of NO due to activation of iNOS has a role in LPS-induced hepatic injury.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Guanidinas/farmacología , Hepatopatías/prevención & control , Óxido Nítrico/metabolismo , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/administración & dosificación , Guanidinas/administración & dosificación , Lipopolisacáridos/toxicidad , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Ratas , Ratas Wistar
13.
Mikrochim Acta ; 188(5): 152, 2021 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-33813615

RESUMEN

The analysis of compounds of the nitroguanidine family at trace level poses an analytical challenge. Nitroguanidine, 1-methyl-3-nitroguanidine, and 1-methyl-3-nitro-1-nitrosoguanidine, which are addressed in this article, have low lipophilicity, with log(Kow) equal to -0.89, - 0.84, and 0.68, respectively, and as such are not amenable for preconcentration from water. Liquid-liquid extraction and SPE fail to concentrate them from water and it is also not possible to extract them by ion exchange resin even after a pH change. Nitroguanidine and 1-methyl-3-nitroguanidine nitramines are explosives of growing use and thereby growing environmental concern due to lower detonation sensitivity compared to RDX. A sensitive method for the determination of nitroguanidine, 1-methyl-3-nitroguanidine, and 1-methyl-3-nitroso-1-nitroguanidine by reduction to the respective amines and subsequent hydrophobization by derivatization with 4-nitrobenzaldehyde followed by LC-ESI-MS analysis is described. Reduction by sodium borohydride using palladium modified graphitic carbon nitride (Pd/g-C3N4) provided improved sensitivity compared to the traditional palladium modified activated carbon due to the lower adsorption of the reduction products on the carbon nitride substrate. The limit of detection of the method was 10 ng L-1 for nitroguanidine, and repeated analyses of spiked effluents and contaminated spring water gave relative standard deviations of 8.8% and 6.5%, respectively. The findings illuminate the great promise of Pd/g-C3N4 as a reduction catalyst for the determination of challenging hydrophilic organic contaminants.

14.
Arch Pharm (Weinheim) ; 354(2): e2000165, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33047391

RESUMEN

A series of 3-phenyl-1-phenylsulfonyl pyrazoles containing an aminoguanidine moiety was designed, synthesized, and evaluated for their antimicrobial and anticancer activities. The majority of the target compounds showed broad-spectrum antimicrobial activity against the tested strains, with minimum inhibitory concentration (MIC) values ranging from 2 to 64 µg/ml. Compound 5k, showing the most potent antimicrobial activity against Bacillus subtilis CMCC 63501 and multidrug-resistant Staphylococcus aureus ATCC 43300 with an MIC value of 2 µg/ml, was the most promising one in this series. It was also effective for S. aureus ATCC 33591 and multidrug-resistant Escherichia coli ATCC BAA-196 at higher concentrations. The bactericidal time-kill kinetics test illustrated that compound 5k had rapid bactericidal potential. Docking results exhibited that compound 5k showed various kinds of binding to the FabH receptor, reflecting that 5k could bind with the active site well. All compounds showed excellent activity against the investigated cancer cells, with IC50 values ranging from 1.90 to 54.53 µM. Among them, compound 5f showed prominent cytotoxicity with IC50 = 1.90 µM against A549 cells, while exhibiting lower inhibitory activity against 293T cells (IC50 = 41.72 µM), indicating that it has the potential for a good therapeutic index as an anticancer drug.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Guanidinas/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Bacillus subtilis/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Escherichia coli/efectos de los fármacos , Guanidinas/química , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad
15.
Bioorg Chem ; 99: 103781, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32222620

RESUMEN

A series of novel 2-Amino-4-Methylthiazole analogs were developed via three-step reaction encompassing hydrazine-1-carboximidamide motif to combat Gram-positive and Gram-negative bacterial and fungal infections. Noticeably, the thiazole-carboximidamide derivatives 4a-d displayed excellent antimicrobial activity and the most efficacious analogue 4d with MIC/MBC values of 0.5 and 4 µg/mL, compared to reference drugs with very low toxicity to mammalian cells, resulting in a prominent selectivity more than 100 folds. Microscopic investigation of 4d biphenyl analogue showed cell wall lysis and promote rapid bactericidal activity though disrupting the bacterial membrane. In addition, an interesting in vitro investigation against GlcN-6-P Synthase Inhibition was done which showed potency in the nanomolar range. Meanwhile, this is the first study deploying a biomimicking strategy to design potent thiazole-carboximidamides that targeting GlcN-6-P Synthase as antimicrobial agents. Importantly, Molecular modeling simulation was done for the most active 4d analogue to study the interaction of this analogue which showed good binding propensity to glucosamine binding site which support the in vitro data.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/antagonistas & inhibidores , Tiazoles/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Aspergillus niger/efectos de los fármacos , Aspergillus oryzae/efectos de los fármacos , Bacillus subtilis/efectos de los fármacos , Candida albicans/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Escherichia coli/efectos de los fármacos , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/metabolismo , Pruebas de Sensibilidad Microbiana , Micrococcus luteus/efectos de los fármacos , Estructura Molecular , Pseudomonas/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química
16.
J Enzyme Inhib Med Chem ; 35(1): 354-364, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31851531

RESUMEN

Two series of aminoguanidines containing an alkynyl moiety were designed, synthesised, and screened for antibacterial and anticancer activities. Generally, the series 3a-3j with a 1,2-diphenylethyne exhibited better antibacterial activity than the other series (6a-6k) holding 1,4-diphenylbuta-1,3-diyne moiety antibacterial activity. Most compounds in series 3a-3j showed potent growth inhibition against the tested bacterial strains, with minimum inhibitory concentration (MIC) values in the range 0.25-8 µg/mL. Compound 3g demonstrated rapid and persistent bactericidal activity at 2 × MIC. The resistance study revealed that resistance of the tested bacteria towards 3g is not easily developed. Molecular docking studies revealed that compounds 3g and 6e bind strongly to the LpxC and FabH enzymes. Moreover, excellent activity of selected compounds against the growth of cancer cell lines A549 and SGC7901 was also observed, with IC50 values in the range 0.30-4.57 µg/mL. These findings indicate that compounds containing the aminoguanidine moiety are promising candidates for the development of new antibacterial and anticancer agents.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Escherichia coli/efectos de los fármacos , Guanidinas/farmacología , Staphylococcus aureus/efectos de los fármacos , Células A549 , Antibacterianos/síntesis química , Antibacterianos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Guanidinas/síntesis química , Guanidinas/química , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
17.
Cytokine ; 113: 347-355, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30327173

RESUMEN

INTRODUCTION: In the present study, the effects of aminoguanidine (AMG) on hippocampal cytokines, amyloid beta (Aß), brain-derived neurotrophic factor, oxidative stress status and memory in chronically lipopolysaccharide (LPS) treated rats were investigated. METHODS: The rats were divided into five groups and were treated: (1) Control (Saline), (2) LPS (1 mg/kg), (3-5) LPS- AMG50, LPS-AMG100, and LPS-AMG150 (AMG 50, 100 and 150 mg/kg 30 min before LPS injection). The treatment started five weeks prior to the behavioral experiments and continued during the behavioral tests (LPS injection two hours before each behavioral evaluation). Finally, the tissue was removed for biochemical measurements. RESULTS: The escape latency in Morris water maze test and the latency to enter the dark compartment in passive avoidance test in LPS group were significantly greater than the control group (P < 0.001), while, in LPS-AMG 100 and LPS-AMG150 groups they were less than LPS group (P < 0.001). Malondialdehyde (MDA), NO metabolites of hippocampal and cortical tissues and interleukin-6 (IL-6), Aß and tumor necrosis factor-α (TNFα) concentration in the hippocampus of LPS group were higher than control group (P < 0.001-P < 0.05). However, in LPS-AMG 100 and LPS-AMG150 group they were lower than LPS group (P < 0.001-P < 0.05). The thiol content and the activities of catalase (CAT) and superoxide dismutase (SOD) in both cortical and hippocampal tissues of LPS group were reduced compared to the control group (P < 0.001-P < 0.05). These factors enhanced in LPS-AMG 100 and LPS-AMG150 groups compared to LPS (P < 0.001-P < 0.05). The hippocampal content of brain-derived neurotrophic factor (BDNF) in LPS group was significantly lower compared to the control group (P < 0.001). All treated groups had higher BDNF content in comparison to LPS group (P < 0.01-P < 0.001). CONCLUSION: The findings indicated that the protective effects of AMG against LPS-induced memory were accompanied by decreasing of inflammatory cytokines, Aß, oxidative stress and increasing of anti-inflammatory mediators and BDNF.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Citocinas/metabolismo , Guanidinas/farmacología , Hipocampo/metabolismo , Lipopolisacáridos/toxicidad , Memoria/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Hipocampo/patología , Masculino , Ratas , Ratas Wistar
18.
Respir Res ; 20(1): 96, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31113409

RESUMEN

BACKGROUND: Nitric oxide is a mediator of potential importance in numerous physiological and inflammatory processes in the lung. Aminoguanidine (AG) has been shown to have anti-inflammation and radical scavenging properties. This study aimed to investigate the effects of AG, an iNOS inhibitor, on lipopolysaccharide (LPS)-induced systemic and lung inflammation in rats. METHODS: Male Wistar rats were divided into control, LPS (1 mg/kg/day i.p.), and LPS groups treated with AG 50, 100 or 150 mg/kg/day i.p. for five weeks. Total nitrite concentration, total and differential white blood cells (WBC) count, oxidative stress markers, and the levels of IL-4, IFN-γ, TGF-ß1, and PGE2 were assessed in the serum or bronchoalveolar lavage fluid (BALF). RESULTS: Administration of LPS decreased IL-4 level (p < 0.01) in BALF, total thiol content, superoxide dismutase (SOD) and catalase (CAT) activities (p < 0.001) in BALF and serum, and increased total nitrite, malondialdehyde (MDA), IFN-γ, TGF-ß1 and PGE2 (p < 0.001) concentrations in BALF. Pre-treatment with AG increased BALF level of IL-4 and total thiol as well as SOD and CAT activities (p < 0.05 to p < 0.001), but decreased BALF levels of total nitrite, MDA, IFN-γ, TGF-ß1, and PGE2 (p < 0.01 to p < 0.001). AG treatment decreased total WBC count, lymphocytes and macrophages in BALF (p < 0.01 to p < 0.001) and improved lung pathological changes including interstitial inflammation and lymphoid infiltration (p < 0.05 to p < 0.001). CONCLUSIONS: AG treatment reduced oxidant markers, inflammatory cytokines and lung pathological changes but increased antioxidants and anti-inflammatory cytokines. Therefore, AG may play a significant protective role against inflammation and oxidative stress that cause lung injury.


Asunto(s)
Guanidinas/uso terapéutico , Mediadores de Inflamación/antagonistas & inhibidores , Lipopolisacáridos/toxicidad , Neumonía/inducido químicamente , Neumonía/tratamiento farmacológico , Animales , Líquido del Lavado Bronquioalveolar , Relación Dosis-Respuesta a Droga , Guanidinas/farmacología , Mediadores de Inflamación/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Neumonía/metabolismo , Distribución Aleatoria , Ratas , Ratas Wistar
19.
Mol Cell Biochem ; 459(1-2): 61-71, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31102033

RESUMEN

Hyperglycemia in diabetes causes protein glycation that leads to oxidative stress, release of cytokines, and establishment of secondary complications such as neuropathy, retinopathy, and nephropathy. Several other metabolic disorders, stress, and inflammation generate free radicals and oxidative stress. It is essential to study whether oxidative stress independently enhances protein glycation leading to rapid establishment of secondary complications. Oxidative stress was experimentally induced using rotenone and Fenton reagent for in vivo and in vitro studies, respectively. Results showed significant increase in the rate of modification of BSA in the form of fructosamine and protein-bound carbonyls in the presence of fenton reagent. Circular dichroism studies revealed gross structural changes in the reduction of alpha helix structure and decreased protein surface charge was confirmed by zeta potential studies. Use of rotenone demonstrated enhanced AGE formation, ROS generation, and liver and kidney tissue glycation through fluorescence measurement. Similar findings were also observed in cell culture studies. Use of aminoguanidine, a protein glycation inhibitor, demonstrated reduction in these changes; however, a combination of aminoguanidine along with vitamin E demonstrated better amelioration. Thus, oxidative stress accelerates the process of protein glycation causing gross structural changes and tissue glycation in insulin-independent tissues. Use of antioxidants and protein glycation inhibitors in combination are more effective in preventing such changes and could be an effective therapeutic option for preventing establishment of secondary complications of diabetes.


Asunto(s)
Antioxidantes/farmacología , Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Guanidinas/farmacología , Estrés Oxidativo/efectos de los fármacos , Rotenona/farmacología , Animales , Complicaciones de la Diabetes/metabolismo , Complicaciones de la Diabetes/patología , Complicaciones de la Diabetes/prevención & control , Productos Finales de Glicación Avanzada/metabolismo , Masculino , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
20.
Bioorg Med Chem Lett ; 29(6): 853-858, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30728113

RESUMEN

The transcription factor hypoxia-inducible factor-1α (HIF-1α) plays an important role in tumor angiogenesis, growth, and metastasis and is recognized as an important potential therapeutic target for cancer. Here, we designed and synthesized three novel series of ursolic acid derivatives containing an aminoguanidine moiety and evaluated them as HIF-1α inhibitors and anti-cancer agents using human cancer cell lines. Most of the compounds exhibited significant inhibition of HIF-1α transcriptional activity, as measured using a Hep3B cell-based luciferase reporter assay. Among these compounds, 7b was the most potent inhibitor of HIF-1α expression under hypoxic conditions (IC50 4.0 µM) and did not display significant cytotoxicity against any cell lines tested. The mechanism of action of 7b was investigated, we found that 7b downregulated HIF-1α protein expression, possibly by suppressing its synthesis, reduced production of vascular endothelial growth factor, and inhibited the proliferation of cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Transducción de Señal/efectos de los fármacos , Triterpenos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Diseño de Fármacos , Humanos , Estructura Molecular , ARN Mensajero/metabolismo , Relación Estructura-Actividad , Triterpenos/síntesis química , Triterpenos/química , Factor A de Crecimiento Endotelial Vascular/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda