Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
Eur J Clin Microbiol Infect Dis ; 43(8): 1597-1607, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38833104

RESUMEN

PURPOSE: To comprehensively investigate the diagnostic performance of routinely used assays in MPXV testing, the National Center of Clinical Laboratories in China conducted a nationwide external quality assessment (EQA) scheme and an evaluated nine assays used by ≥ 5 laboratories in the EQA. METHODS: MPXV virus-like particles with 2700, 900 and 300 copies/mL were distributed to 195 EQA laboratories. For extended analysis, triple-diluted samples from 9000 to 4.12 copies/mL were repeated 20 times using the assays employed by ≥ 5 laboratories. The diagnostic performance was assessed by analyzing EQA data and calculating the limits of detection (LODs). RESULTS: The performance was competent in 87.69% (171/195) of the participants and 87.94% (175/199) of the datasets. The positive percentage agreements (PPAs) were greater than 99% for samples at 2700 and 900 copies/mL, and 95.60% (761/796) for samples at 300 copies/mL. The calculated LODs for the two clades ranged from 228.44 to 924.31 copies/mL and were greater than the LODs specified by the respective kits. EasyDiagnosis had the lowest calculated LODs and showed superior performance in EQA, whereas BioGerm and Sansure, with higher calculated LODs, did not perform well in EQA. CONCLUSION: This study provides valuable information from the EQA data and evaluation of the diagnostic performance of MPXV detection assays. It also provided insights into reagent optimization and enabled prompt public health interventions for the outbreak.


Asunto(s)
Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , China/epidemiología , Límite de Detección , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Monkeypox virus/genética , Monkeypox virus/aislamiento & purificación
2.
Clin Chem Lab Med ; 62(8): 1470-1473, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38411177

RESUMEN

OBJECTIVES: Even if the topic of the analytical quality required to provide laboratory results "fit for purpose" exists since the beginning of the modern medical laboratory, there is the suspect that the expression "Analytical Performance Specifications" (APS) is not well-known. To investigate this aspect a survey was conducted. METHODS: A questionnaire with seven questions related to the knowledge about the topic, the sources of information and the criteria used by the laboratories to set the APS and their applications was prepared. It was distributed to all the clinical pathology laboratories of Lombardy Region (143) and to the members of SIBioC Laboratory Medicine (excluding Lombardy). RESULTS: We received 201 replies: 127 from Lombardy and 74 from the rest of Italy. Fifteen percent declared to ignore the meaning of APS and only 64 % of those knowing the meaning of the term declared to use them in the daily practice. The state-of-the-art was the principle used more frequently to set APS (about 48 %) followed by biological variation (41 %), and APS were typically applied to set goals for Internal Quality Control for selected measurands. Usually imprecision or total error APS were used, much less frequently uncertainty APS. In fact only 27 % of the laboratories declared to have calculated the measurement uncertainty for part or the majority of their measurands. CONCLUSIONS: Even considering the limits of a survey that relies upon self-declarations, it appears clearly that, at list in Italy, there is some work to be done to promote the concept and the use of APS.


Asunto(s)
Laboratorios Clínicos , Control de Calidad , Italia , Encuestas y Cuestionarios , Humanos , Laboratorios Clínicos/normas , Técnicas de Laboratorio Clínico/normas
3.
Clin Chem Lab Med ; 62(8): 1497-1504, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38311825

RESUMEN

In addition to the correct implementation of calibration traceability, the definition and fulfillment of maximum allowable measurement uncertainty (MAU) are essential in assuring that laboratory measurements are clinically usable. Across the entire calibration hierarchy, three major contributors to the measurement uncertainty (MU) budget are identified, starting with the higher-order reference providers, extending through the in vitro diagnostic (IVD) manufacturers and their processes for assigning calibrator values, and ending with medical laboratories generating the random variability of results reported to clinicians. To understand if it is possible to achieve MAU and, consequently, to fix the possible drawbacks, the definition of combined MU budget limits across the entire calibration hierarchy has a central role. In particular, quality specifications for MU of reference and commercial calibrator materials should be defined according to the MAU on clinical samples. All involved stakeholders (i.e., higher-order reference providers, IVD manufacturers, medical laboratories) should be prepared to improve their performance whenever the clinical application of the test is made questionable by the failure to achieve MAU.


Asunto(s)
Control de Calidad , Incertidumbre , Calibración , Humanos , Estándares de Referencia , Técnicas de Laboratorio Clínico/normas , Técnicas de Laboratorio Clínico/economía , Presupuestos
4.
Clin Chem Lab Med ; 62(8): 1505-1511, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38353157

RESUMEN

ISO 15189 requires laboratories to estimate the uncertainty of their quantitative measurements and to maintain them within relevant performance specifications. Furthermore, it refers to ISO TS 20914 for instructions on how to estimate the uncertainty and what to take into consideration when communicating uncertainty of measurement with requesting clinicians. These instructions include the responsibility of laboratories to verify that bias is not larger than medically significant. If estimated to be larger than acceptable, such bias first needs to be eliminated or (temporarily) corrected for. In the latter case, the uncertainty of such correction becomes part of the estimation of the total measurement uncertainty. If small enough to be acceptable, bias becomes part of the long term within laboratory random variation. Sources of possible bias are (not limited to) changes in reagent or calibrator lot variation or calibration itself. In this paper we clarify how the rationale and mathematics from an EFLM WG ISO/A position paper on allowable between reagent lot variation can be applied to calculate whether bias can be accepted to become part of long-term imprecision. The central point of this rationale is to prevent the risk that requesting clinicians confuse changes in bias with changes in the steady state of their patients.


Asunto(s)
Sesgo , Humanos , Incertidumbre , Calibración , Técnicas de Laboratorio Clínico/normas
5.
Clin Chem Lab Med ; 62(8): 1490-1496, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38353168

RESUMEN

To be accurate and equivalent among assays, laboratory results should be traceable to higher-order references and their quality should fulfill maximum allowable measurement uncertainty (MU) as defined to fit the intended clinical use. Accordingly, laboratory professionals should estimate and validate MU of performed tests using appropriate analytical performance specifications (APS). Current consensus supports the derivation of APS by using one of the three models established by the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Strategic Conference held in Milan in 2014. It is recognized that some models are better suited for certain measurands than for others and the attention should be primarily directed towards their biological and clinical characteristics. Among others, model 3 should reflect the state of the art of the measurements that can be defined as the best analytical performance that is technically achievable. Taking serum C-reactive protein and ferritin as examples, here we describe the theoretical premises and the experimental protocol to be used to derive APS for MU when a measurand is allocated to this model. Although the model lacks a direct relationship with clinical outcomes, useful information about the in vitro diagnostic medical device performance and the average quality of provided results may be obtained.


Asunto(s)
Ferritinas , Humanos , Ferritinas/sangre , Ferritinas/análisis , Proteína C-Reactiva/análisis , Proteína C-Reactiva/normas , Incertidumbre , Modelos Teóricos , Técnicas de Laboratorio Clínico/normas
6.
Clin Chem Lab Med ; 62(8): 1474-1482, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38836433

RESUMEN

Analytical performance specifications (APS) based on outcomes refer to how 'good' the analytical performance of a test needs to be to do more good than harm to the patient. Analytical performance of a measurand affects its clinical performance. Without first setting clinical performance requirements, it is difficult to define how good analytically the test needs to be to meet medical needs. As testing is indirectly linked to health outcomes through clinical decisions on patient management, often simulation-based studies are used to assess the impact of analytical performance on the probability of clinical outcomes which is then translated to Model 1b APS according to the Milan consensus. This paper discusses the related key definitions, concepts and considerations that should assist in finding the most appropriate methods for deriving Model 1b APS. We review the advantages and limitations of published methods and discuss the criteria for transferability of Model 1b APS to different settings. We consider that the definition of the clinically acceptable misclassification rate is central to Model 1b APS. We provide some examples and guidance on a more systematic approach for first defining the clinical performance requirements for tests and we also highlight a few ideas to tackle the future challenges associated with providing outcome-based APS for laboratory testing.


Asunto(s)
Técnicas de Laboratorio Clínico , Humanos , Técnicas de Laboratorio Clínico/normas
7.
Clin Chem Lab Med ; 62(8): 1462-1469, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38579121

RESUMEN

The goal of metrological traceability is to have equivalent results for a measurand in clinical samples (CSs) irrespective of the in-vitro diagnostic medical device (IVD-MD) used for measurements. The International Standards Organization standard 17511 defines requirements for establishing metrological traceability of values assigned to calibrators, trueness control materials and human samples used with IVD-MDs. Each step in metrological traceability has an uncertainty associated with the value assigned to a material. The uncertainty at each step adds to the uncertainty from preceding steps such that the combined uncertainty gets larger at each step. The combined uncertainty for a CS result must fulfil an analytical performance specification (APS) for the maximum allowable uncertainty (umax CS). The umax CS can be partitioned among the steps in a metrological traceability calibration hierarachy to derive the APS for maximum allowable uncertainty at each step. Similarly, the criterion for maximum acceptable noncommutability bias can be derived from the umax CS. One of the challenges in determining if umax CS is fulfilled is determining the repeatability uncertainty (u Rw) from operating an IVD-MD within a clinical laboratory. Most of the current recommendations for estimating u Rw from internal quality control data do not use a sufficiently representative time interval to capture all relevant sources of variability in measurement results. Consequently, underestimation of u Rw is common and may compromise assessment of how well current IVD-MDs and their supporting calibration hierarchies meet the needs of clinical care providers.


Asunto(s)
Estándares de Referencia , Humanos , Calibración , Incertidumbre , Guías como Asunto , Laboratorios Clínicos/normas , Técnicas de Laboratorio Clínico/normas , Control de Calidad
8.
Clin Chem Lab Med ; 62(2): 353-360, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-37746851

RESUMEN

OBJECTIVES: Cardiac troponin (cTn) is the key biomarker for diagnosis of acute coronary syndrome (ACS). We performed a complete assessment of the high-sensitivity cardiac troponin I (hs-cTnI) (CLIA) assay on the analytical performance and clinical diagnostic performance, which was compared with Abbott ARCHITECT hs-cTnI assay. METHODS: Sex-specific 99th percentile upper reference limits (URLs) were determined from a healthy population of 424 males and 408 females. High-sensitivity performance was assessed by examining the imprecision at sex-specific URLs and the detectable results above LoD in a cohort of healthy population. The diagnostic performance of the hs-cTnI (CLIA) assay was validated in a population of 934 patients with suspected ACS. RESULTS: The 99th percentile URLs were 15.3 ng/L for female, 31.3 ng/L for male and 24.2 ng/L for overall population. The total imprecision near the sex-specific 99th percentile URLs were <5 %. 76.74 % of females, 97.12 % of males and 86.69 % of overall population had cTnI values exceeding the LoD, which met the criteria of high-sensitivity troponin assay. No cross-reactivity or interference was identified. The diagnostic sensitivity, specificity, PPV, NPV, and AUC of hs-cTnI (CLIA) assay were 97.97 , 90.70, 79.02, 99.21 % and 0.9885, respectively, which were comparable to ARCHITECT hs-cTnI assay. CONCLUSIONS: hs-cTnI (CLIA) assay is a high-sensitivity troponin I method with high precision, sensitivity and specificity. The clinical diagnostic performance of hs-cTnI (CLIA) is comparable to the established ARCHITECT hs-cTnI assay. Mindray's hs-cTnI (CLIA) assay is an attractive alternative for diagnosis of myocardial infarction with a high level of accuracy and safety.


Asunto(s)
Síndrome Coronario Agudo , Infarto del Miocardio , Humanos , Masculino , Femenino , Troponina I , Sensibilidad y Especificidad , Infarto del Miocardio/diagnóstico , Síndrome Coronario Agudo/diagnóstico , Bioensayo , Biomarcadores , Troponina T
9.
Clin Chem Lab Med ; 62(4): 597-607, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37978287

RESUMEN

OBJECTIVES: According to ISO 15189:2022, analytical performance specifications (APS) should relate to intended clinical use and impact on patient care. Therefore, we aimed to develop a web application for laboratory professionals to calculate APS based on a simulation of the impact of measurement uncertainty (MU) on the outcome using the chosen decision limits, agreement thresholds, and data of the population of interest. METHODS: We developed the "APS Calculator" allowing users to upload and select data of concern, specify decision limits and agreement thresholds, and conduct simulations to determine APS for MU. The simulation involved categorizing original measurand concentrations, generating measured (simulated) results by introducing different degrees of MU, and recategorizing measured concentrations based on clinical decision limits and acceptable clinical misclassification rates. The agreements between original and simulated result categories were assessed, and values that met or exceeded user-specified agreement thresholds that set goals for the between-category agreement were considered acceptable. The application generates contour plots of agreement rates and corresponding MU values. We tested the application using National Health and Nutrition Examination Survey data, with decision limits from relevant guidelines. RESULTS: We determined APS for MU of six measurands (blood total hemoglobin, plasma fasting glucose, serum total and high-density lipoprotein cholesterol, triglycerides, and total folate) to demonstrate the potential of the application to generate APS. CONCLUSIONS: The developed data-driven web application offers a flexible tool for laboratory professionals to calculate APS for MU using their chosen decision limits and agreement thresholds, and the data of the population of interest.


Asunto(s)
Técnicas de Laboratorio Clínico , Laboratorios , Humanos , Incertidumbre , Técnicas de Laboratorio Clínico/métodos , Encuestas Nutricionales , Ayuno
10.
Clin Chem Lab Med ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38874995

RESUMEN

OBJECTIVES: Glycated albumin (GA) has potential value in the management of people with diabetes; however, to draw meaningful conclusions between clinical studies it is important that the GA values are comparable. This study investigates the standardization of the Norudia Glycated Albumin and Lucica Glycated Albumin-L methods. METHODS: The manufacturer reported imprecision was verified by performing CLSI-EP15-A3 protocol using manufacturer produced controls. The Japanese Clinical Chemistry Reference Material (JCCRM)611-1 was measured 20 times to evaluate the accuracy of both methods. GA was also measured in 1,167 patient samples and results were compared between the methods in mmol/mol and %. RESULTS: Maximum CV for Lucica was ≤0.6 % and for Norudia ≤1.8 % for control material. Results in mmol/mol and % of the JCCRM611-1 were within the uncertainty of the assigned values for both methods. In patient samples the relative difference in mmol/mol between the two methods ranged from -10.4 % at a GA value of 183 mmol/mol to +8.7 % at a GA value of 538 mmol/mol. However, the relative difference expressed in percentage units ranged from of 0 % at a GA value of 9.9 % to +1.7 % at a GA value of 30 %. CONCLUSIONS: The results in mmol/mol between the two methods for the patient samples were significantly different compared to the results in %. It is not clear why patient samples behave differently compared to JCCRM611-1 material. Valuable lessons can be learnt from comparing the standardization process of GA with that of HbA1c.

11.
Clin Chem Lab Med ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38987271

RESUMEN

OBJECTIVES: An insulin resistant state is characteristic of patients with type 2 diabetes, polycystic ovary syndrome, and metabolic syndrome. Identification of insulin resistance (IR) is most readily achievable using formulae combining plasma insulin and glucose results. In this study, we have used data from the European Biological Variation Study (EuBIVAS) to examine the biological variability (BV) of IR using the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) and the Quantitative Insulin sensitivity Check Index (QUICKI). METHODS: Ninety EuBIVAS non-diabetic subjects (52F, 38M) from five countries had fasting HOMA-IR and QUICKI calculated from plasma glucose and insulin samples collected concurrently on 10 weekly occasions. The within-subject (CVI) and between-subject (CVG) BV estimates with 95 % CIs were obtained by CV-ANOVA after analysis of trends, variance homogeneity and outlier removal. RESULTS: The CVI of HOMA-IR was 26.7 % (95 % CI 25.5-28.3), driven largely by variability in plasma insulin and the CVI for QUICKI was 4.1 % (95 % CI 3.9-4.3), reflecting this formula's logarithmic transformation of glucose and insulin values. No differences in values or BV components were observed between subgroups of men or women below and above 50 years. CONCLUSIONS: The EuBIVAS, by utilising a rigorous experimental protocol, has produced robust BV estimates for two of the most commonly used markers of insulin resistance in non-diabetic subjects. This has shown that HOMA-IR, in particular, is highly variable in the same individual which limits the value of single measurements.

12.
Clin Chem Lab Med ; 62(8): 1455-1461, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38277658

RESUMEN

Analytical performance specifications (APS) represent the criteria that specify the quality required for laboratory test information to satisfy clinical needs. In 2014 the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) considered timely to update the topic of APS by organizing a conference in Milan in which some strategic concepts were proposed. Here I summarize the essential points representing the EFLM Strategic Conference heritage and discuss the approaches that will permit us to become more concrete, including roles and main actions expected from each of involved stakeholders for contributing a quantum leap forward in the way of practicality of Milan consensus about APS.


Asunto(s)
Congresos como Asunto , Humanos , Técnicas de Laboratorio Clínico/normas , Química Clínica/normas
13.
Clin Chem Lab Med ; 62(8): 1483-1489, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38501489

RESUMEN

Analytical performance specifications (APS) are typically established through one of three models: (i) outcome studies, (ii) biological variation (BV), or (iii) state-of-the-art. Presently, The APS can, for most measurands that have a stable concentration, be based on BV. BV based APS, defined for imprecision, bias, total allowable error and allowable measurement uncertainty, are applied to many different processes in the laboratory. When calculating APS, it is important to consider the different APS formulae, for what setting they are to be applied and if they are suitable for the intended purpose. In this opinion paper, we elucidate the background, limitations, strengths, and potential intended applications of the different BV based APS formulas. When using BV data to set APS, it is important to consider that all formulae are contingent on accurate and relevant BV estimates. During the last decade, efficient procedures have been established to obtain reliable BV estimates that are presented in the EFLM biological variation database. The database publishes detailed BV data for numerous measurands, global BV estimates derived from meta-analysis of quality-assured studies of similar study design and automatic calculation of BV based APS.


Asunto(s)
Variación Biológica Poblacional , Humanos
14.
Clin Chem Lab Med ; 62(8): 1512-1519, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38624006

RESUMEN

Analytical performance specifications (APS) are used for the quantitative assessment of assay analytical performance, with the aim of providing information appropriate for clinical care of patients. One of the major locations where APS are used is in the routine clinical laboratory. These may be used to assess and monitor assays in a range of settings including method selection, method verification or validation, external quality assurance, internal quality control and assessment of measurement uncertainty. The aspects of assays that may be assessed include imprecision, bias, selectivity, sample type, analyte stability and interferences. This paper reviews the practical use of APS in a routine clinical laboratory, using the laboratory I supervise as an example.


Asunto(s)
Laboratorios Clínicos , Control de Calidad , Humanos , Laboratorios Clínicos/normas , Técnicas de Laboratorio Clínico/normas
15.
Clin Chem Lab Med ; 62(8): 1531-1537, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38801089

RESUMEN

Analytical performance specifications (APS) are used for decisions about the required analytical quality of pathology tests to meet clinical needs. The Milan models, based on clinical outcome, biological variation, or state of the art, were developed to provide a framework for setting APS. An approach has been proposed to assign each measurand to one of the models based on a defined clinical use, physiological control, or an absence of quality information about these factors. In this paper we propose that in addition to such assignment, available information from all models should be considered using a risk-based approach that considers the purpose and role of the actual test in a clinical pathway and its impact on medical decisions and clinical outcomes in addition to biological variation and the state-of-the-art. Consideration of APS already in use and the use of results in calculations may also need to be considered to determine the most appropriate APS for use in a specific setting.


Asunto(s)
Control de Calidad , Humanos , Técnicas de Laboratorio Clínico/normas , Modelos Teóricos
16.
Clin Chem Lab Med ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38815136

RESUMEN

OBJECTIVES: This study aimed to deliver biological variation (BV) estimates for 25 types of lymphocyte subpopulations subjected to deep immunophenotyping (memory T/B cells, regulatory T cells, etc.) and classical, intermediate, and nonclassical monocyte subsets based on the full spectrum flow cytometry (FS-FCM) and a Biological Variation Data Critical Appraisal Checklist (BIVAC) design. METHODS: Samples were collected biweekly from 60 healthy Chinese adults over 10 consecutive two-week periods. Each sample was measured in duplicate within a single run for lymphocyte deep immunophenotyping and monocyte subset determination using FS-FCM, including the percentage (%) and absolute count (cells/µL). After trend adjustment, a Bayesian model was applied to deliver the within-subject BV (CVI) and between-subject BV (CVG) estimates with 95 % credibility intervals. RESULTS: Enumeration (% and cells/µL) for 25 types of lymphocyte deep immunophenotyping and three types of monocyte subset percentages showed considerable variability in terms of CVI and CVG. CVI ranged from 4.23 to 47.47 %. Additionally, CVG ranged between 10.32 and 101.30 %, except for CD4+ effector memory T cells re-expressing CD45RA. No significant differences were found between males and females for CVI and CVG estimates. Nevertheless, the CVGs of PD-1+ T cells (%) may be higher in females than males. Based on the desired analytical performance specification, the maximum allowable imprecision immune parameter was the CD8+PD-1+ T cell (cells/µL), with 23.7 %. CONCLUSIONS: This is the first study delivering BV estimates for 25 types of lymphocyte subpopulations subjected to deep immunophenotyping, along with classical, intermediate, and nonclassical monocyte subsets, using FS-FCM and adhering to the BIVAC design.

17.
Clin Chem Lab Med ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39027966

RESUMEN

OBJECTIVES: This article defines analytical performance specifications (APS) for evaluating laboratory proficiency through an external quality assessment scheme. METHODS: Standard deviations for proficiency assessment were derived from Thompson's characteristic function applied to robust data calculated from participants' submissions in the Occupational and Environmental Laboratory Medicine (OELM) external quality assurance scheme for trace elements in serum, whole blood and urine. Characteristic function was based on two parameters: (1) ß - the average coefficient of variation (CV) at high sample concentrations; (2) α - the average standard deviation (SD) at low sample concentrations. APSs were defined as 1.65 standard deviations calculated by Thompson's approach. Comparison between OELM robust data and characteristic function were used to validate the model. RESULTS: Application of the characteristic function allowed calculated APS for 18 elements across three matrices. Some limitations were noted, particularly for elements (1) with no sample concentrations near analytical technique limit of detection; (2) exhibiting high robust CV at high concentration; (3) exhibiting high analytical variability such as whole blood Tl and urine Pb; (4) with an unbalanced number of robust SD above and under the characteristic function such as whole blood Mn and serum Al and Zn. CONCLUSIONS: The characteristic function was a useful means of deriving APS for trace elements in biological fluids where biological variation data or outcome studies were not available. However, OELM external quality assurance scheme data suggests that the characteristic functions are not appropriate for all elements.

18.
Clin Chem Lab Med ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38801528

RESUMEN

OBJECTIVES: This study performed an analytical validation study of the Mindray high-sensitivity cardiac troponin I (hs-cTnI) assay addressing limit of blank (LoB), limit of detection (LoD), precision, linearity, analytical specificity and sex-specific 99th percentile upper reference limits. METHODS: LoB, LoD, precision, linearity and analytical specificity were studied according to Clinical and Laboratory Standards Institute. We used one reagent lot and one CL1200i analyzer. Skeletal troponin I and T, cardiac troponin T, troponin C, actin, tropomyosin, myosin light chain, myoglobin and creatine kinase (CK-MB) were studied for cross-reactivity. Interference with biotin was examined. Lithium heparin samples (one freeze thaw cycle) from healthy males and females were measured to determine the 99th percentiles by using the non-parametric method. Analyses were performed before and after excluding subjects with clinical conditions and/or increased surrogate biomarkers. RESULTS: The Mindray hs-cTnI assay met criteria to be considered as a hs-cTn assay. LoB and LoD was <0.1 ng/L and 0.1 ng/L, respectively. Repeatability had a coefficient of variation 1.2-3.8 %, and within-laboratory imprecision 1.7-5.0 %. The measuring interval ranged from 1.1 to 28,180 ng/L. The analytical specificity was clinically acceptable for the interferents studied. After exclusions, the 99th percentile URLs obtained were 10 ng/L overall, 5 ng/L for females and 12 ng/L for males. CONCLUSIONS: Analytical observations of the Mindray hs-cTnI assay demonstrated excellent LoB, LoD, precision, linearity and analytical specificity, that were in alignment with the manufacturer's claims and regulatory guidelines for hs-cTnI. The assay is suitable for clinical investigation for patient-oriented studies.

19.
Clin Chem Lab Med ; 62(6): 1158-1166, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38353154

RESUMEN

OBJECTIVES: To accurately evaluate non-ST-elevated acute cardiac syndrome (NSTE-ACS), the quality of high-sensitive cardiac troponin (hs-cTn) assays is of vital importance. The 2020 revision of the NSTE-ACS guideline includes clinical decision-limits (CDL's) to both rule-in and rule-out NSTE-ACS for most commercially available platforms, providing both 0/1 h and 0/2 h delta limits. Our study evaluated whether laboratories are able to meet the analytical performance specifications for imprecision (APS) for hs-cTnT. METHODS: Results from external quality assurance (EQA) in commutable samples were used to evaluate the current and historic performance of analyzers. The performance of analyzers that either passed or failed to comply with 0/1 h-APS were used on a real-world dataset of first hs-cTnT-values to simulate 10.000 samples of t=0, t=1 and t=2 h values with multiple delta's for all relevant CDL's. We compared the simulated values to the input values to obtain the percentage of aberrant results simulated. RESULTS: The majority of analyzers complies with APS for rule-in in 2022 (0/1 h: 90.4 % and 0/2 h: 100 %), compliance for the 0/1 h rule-out is still far from optimal (0/1 h: 30.7 %, 0/2 h: 75.4 %), with improving compliance over the past years (rule-in p=<0.0001, rule-out p=0.011, χ2). Whilst 0/1 h-APS-passing analyzers have a minute risk to falsely rule-out patients whom should be ruled-in (0.0001 %), failing performance increases this risk to 2.1 % upon using 0/1 h CDL's. Here, adopting 0/2 h CDL's is favorable (0.01 %). CONCLUSIONS: Laboratories that fail to meet hs-cTnT 0/1 h-APS should improve their performance to the required and achievable level. Until performance is reached clinics should adopt the 0/2 h CDL's.


Asunto(s)
Troponina T , Humanos , Troponina T/sangre , Troponina T/análisis , Síndrome Coronario Agudo/diagnóstico , Síndrome Coronario Agudo/sangre , Control de Calidad , Garantía de la Calidad de Atención de Salud , Guías de Práctica Clínica como Asunto
20.
J Clin Lab Anal ; 38(4): e25017, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38396348

RESUMEN

BACKGROUND: Three-part differential (3PD) haematology analysers offer a quick, easy-to-use and economical way to acquire important information about a patient's physiology. In this study, we evaluated a new 3PD analyser, the Sysmex XQ-320, investigated its comparability with its predecessor (Sysmex XP-300) and the five-part differential analyser Sysmex XN-9000, and explored its flagging potential. METHODS: Analytical performance studies were conducted for repeatability, within-laboratory precision, between-day precision, carry-over and linearity with fresh blood and QC material. Method comparison was performed in 493 samples comparing XQ-320 with XP-300, using the XN-9000 as the gold standard. RESULTS: The XQ-320 excelled manufacturer's specifications in the analytical performance studies, except for MXD in within-laboratory and between-day precisions using the QC material level 1. The XQ-320 showed correlation values greater than 0.94 with XN-9000 for the majority of the 20 reportable parameters (MXD# 0.891, MXD% 0.898 and MCHC 0.849). Improvements over the XP-300 were observed in WBC in the leucocytopenic range (bias -0.038 vs. -0.097) and PLT (bias 2.568 vs. -7.877, intercept 3.880 vs. -8.845). Concordance between XQ-320 and XP-300 was 91.9% for the WBC histogram abnormal distribution flag and 95.3% for the PLT flag. Patterns of increased neutrophils and decreased mixed cells on the XQ-320 were observed in samples that raised a flag on XN-9000. CONCLUSION: The XQ-320 showed excellent analytical performance, and very good to excellent correlation with XN-9000 with improvements over XP-300. Flagging combined with parameter patterns identified additional suspected abnormal samples, thus making the XQ-320 an excellent solution for laboratories utilising 3PD analysers.


Asunto(s)
Hematología , Humanos , Laboratorios , Nonoxinol , Recuento de Células Sanguíneas/métodos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda