Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Biol Chem ; : 107762, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39265663

RESUMEN

ASAP1 and its paralog ASAP2 belong to a PI4,5P2-dependent Arf GTPase-activating protein (Arf-GAP) family capable of modulating membrane and cytoskeletal dynamics. ASAPs regulate cell adhesive structures such as invadosomes and focal adhesions during cell attachment and migration. Malfunctioning of ASAP1 has been implicated in the malignant phenotypes of various cancers. Here, we discovered that the SH3 domain of ASAP1 or ASAP2 specifically binds to a 12-residue, positively charged peptide fragment from the 440 kDa giant ankyrin-B, a neuronal axon specific scaffold protein. The high-resolution structure of the ASAP1-SH3 domain in complex with the gAnkB peptide revealed a non-canonical SH3-ligand binding mode with high affinity and specificity. Structural analysis of the complex readily uncovered a consensus ASAP1-SH3 binding motif, which allowed the discovery of a number of previously unknown binding partners of ASAP1-SH3 including Clasp1/Clasp2, ALS2, ß-Pix, DAPK3, PHIP, and Limk1. Fittingly, these newly identified ASAP1 binding partners are primarily key modulators of the cytoskeletons. Finally, we designed a cell-penetrating, highly potent ASAP1 SH3 domain binding peptide with a Kd ∼7 nM as a tool for studying the roles of ASAPs in different cellular processes.

2.
J Biol Chem ; 299(6): 104818, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37182735

RESUMEN

Encoded by ANK2, ankyrin-B (AnkB) is a multifunctional adapter protein critical for the expression and targeting of key cardiac ion channels, transporters, cytoskeletal-associated proteins, and signaling molecules. Mice deficient for AnkB expression are neonatal lethal, and mice heterozygous for AnkB expression display cardiac structural and electrical phenotypes. Human ANK2 loss-of-function variants are associated with diverse cardiac manifestations; however, human clinical 'AnkB syndrome' displays incomplete penetrance. To date, animal models for human arrhythmias have generally been knock-out or transgenic overexpression models and thus the direct impact of ANK2 variants on cardiac structure and function in vivo is not clearly defined. Here, we directly tested the relationship of a single human ANK2 disease-associated variant with cardiac phenotypes utilizing a novel in vivo animal model. At baseline, young AnkBp.E1458G+/+ mice lacked significant structural or electrical abnormalities. However, aged AnkBp.E1458G+/+ mice displayed both electrical and structural phenotypes at baseline including bradycardia and aberrant heart rate variability, structural remodeling, and fibrosis. Young and old AnkBp.E1458G+/+ mice displayed ventricular arrhythmias following acute (adrenergic) stress. In addition, young AnkBp.E1458G+/+ mice displayed structural remodeling following chronic (transverse aortic constriction) stress. Finally, AnkBp.E1458G+/+ myocytes harbored alterations in expression and/or localization of key AnkB-associated partners, consistent with the underlying disease mechanism. In summary, our findings illustrate the critical role of AnkB in in vivo cardiac function as well as the impact of single AnkB loss-of-function variants in vivo. However, our findings illustrate the contribution and in fact necessity of secondary factors (aging, adrenergic challenge, pressure-overload) to phenotype penetrance and severity.


Asunto(s)
Ancirinas , Miocitos Cardíacos , Animales , Humanos , Ratones , Adrenérgicos/metabolismo , Ancirinas/metabolismo , Modelos Animales de Enfermedad , Canales Iónicos/metabolismo , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Fenotipo , Envejecimiento/metabolismo
3.
Annu Rev Pharmacol Toxicol ; 61: 757-778, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33017571

RESUMEN

The spontaneous activity of the sinoatrial node initiates the heartbeat. Sino-atrial node dysfunction (SND) and sick sinoatrial (sick sinus) syndrome are caused by the heart's inability to generate a normal sinoatrial node action potential. In clinical practice, SND is generally considered an age-related pathology, secondary to degenerative fibrosis of the heart pacemaker tissue. However, other forms of SND exist, including idiopathic primary SND, which is genetic, and forms that are secondary to cardiovascular or systemic disease. The incidence of SND in the general population is expected to increase over the next half century, boosting the need to implant electronic pacemakers. During the last two decades, our knowledge of sino-atrial node physiology and of the pathophysiological mechanisms underlying SND has advanced considerably. This review summarizes the current knowledge about SND mechanisms and discusses the possibility of introducing new pharmacologic therapies for treating SND.


Asunto(s)
Síndrome del Seno Enfermo , Nodo Sinoatrial , Sistema de Conducción Cardíaco , Humanos
4.
Adv Exp Med Biol ; 1441: 1057-1090, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884769

RESUMEN

Arrhythmias account for over 300,000 annual deaths in the United States, and approximately half of all deaths are associated with heart disease. Mechanisms underlying arrhythmia risk are complex; however, work in humans and animal models over the past 25 years has identified a host of molecular pathways linked with both arrhythmia substrates and triggers. This chapter will focus on select arrhythmia pathways solved by linking human clinical and genetic data with animal models.


Asunto(s)
Arritmias Cardíacas , Modelos Animales de Enfermedad , Animales , Humanos , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/metabolismo , Transducción de Señal/genética
5.
Ann Noninvasive Electrocardiol ; 27(4): e12933, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35224819

RESUMEN

Inherited cardiac arrhythmias (ICA) have become one of the leading causes of sudden cardiac death in people under 40 years old. Variants in the ankyrin-B or ankyrin-2 genes will result in several cardiac arrhythmias ranging from sinus node dysfunction to life-threatening arrhythmias. In this case study, we report a typical ankyrin-2 variant, in which ventricular tachyarrhythmias might be reproduced through exercise or stress tests.


Asunto(s)
Ancirinas , Electrocardiografía , Adulto , Ancirinas/genética , Arritmias Cardíacas , Muerte Súbita Cardíaca/etiología , Humanos
6.
Proc Natl Acad Sci U S A ; 116(30): 15262-15271, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31285321

RESUMEN

Giant ankyrin-B (ankB) is a neurospecific alternatively spliced variant of ANK2, a high-confidence autism spectrum disorder (ASD) gene. We report that a mouse model for human ASD mutation of giant ankB exhibits increased axonal branching in cultured neurons with ectopic CNS axon connectivity, as well as with a transient increase in excitatory synapses during postnatal development. We elucidate a mechanism normally limiting axon branching, whereby giant ankB localizes to periodic axonal plasma membrane domains through L1 cell-adhesion molecule protein, where it couples microtubules to the plasma membrane and prevents microtubule entry into nascent axon branches. Giant ankB mutation or deficiency results in a dominantly inherited impairment in selected communicative and social behaviors combined with superior executive function. Thus, gain of axon branching due to giant ankB-deficiency/mutation is a candidate cellular mechanism to explain aberrant structural connectivity and penetrant behavioral consequences in mice as well as humans bearing ASD-related ANK2 mutations.


Asunto(s)
Ancirinas/genética , Trastorno del Espectro Autista/genética , Molécula L1 de Adhesión de Célula Nerviosa/genética , Proyección Neuronal , Neuronas/metabolismo , Sinapsis/metabolismo , Empalme Alternativo , Animales , Ancirinas/metabolismo , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/fisiopatología , Conducta Animal , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Conectoma , Modelos Animales de Enfermedad , Función Ejecutiva/fisiología , Expresión Génica , Técnicas de Sustitución del Gen , Humanos , Masculino , Ratones , Ratones Transgénicos , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Mutación , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Neuronas/patología , Cultivo Primario de Células , Conducta Social , Sinapsis/patología
7.
Biochem Cell Biol ; 98(2): 299-306, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31965814

RESUMEN

Ankyrin-B (AnkB) is scaffolding protein that anchors integral membrane proteins to the cardiomyocyte cytoskeleton. We recently identified an AnkB variant, AnkB p.S646F (ANK2 c.1937 C>T) associated with a phenotype ranging from predisposition for cardiac arrhythmia to cardiomyopathy. AnkB p.S646F exhibited reduced expression levels in the H9c2 rat ventricular-derived cardiomyoblast cell line relative to wildtype AnkB. Here, we demonstrate that AnkB is regulated by proteasomal degradation and proteasome inhibition rescues AnkB p.S646F expression levels in H9c2 cells, although this effect is not conserved with differentiation. We also compared the impact of wildtype AnkB and AnkB p.S646F on cell viability and proliferation. AnkB p.S646F expression resulted in decreased cell viability at 30 h after transfection, whereas we observed a greater proportion of cycling, Ki67-positive cells at 48 h after transfection. Notably, the number of GFP-positive cells was low and was consistent between wildtype AnkB and AnkB p.S646F expressing cells, suggesting that AnkB and AnkB p.S646F affected paracrine communication between H9c2 cells differentially. This work reveals that AnkB levels are regulated by the proteasome and that AnkB p.S646F compromises cell viability. Together, these findings provide key new insights into the putative cellular and molecular mechanisms of AnkB-related cardiac disease.


Asunto(s)
Ancirinas/metabolismo , Ventrículos Cardíacos/citología , Miocitos Cardíacos/citología , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Cardiomiopatías , Comunicación Celular , Diferenciación Celular , Línea Celular , Supervivencia Celular , Citoesqueleto/metabolismo , Inmunohistoquímica , Microscopía Confocal , Fenotipo , Ratas
8.
Proc Natl Acad Sci U S A ; 114(48): 12743-12748, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29133412

RESUMEN

Obesity typically is linked to caloric imbalance as a result of overnutrition. Here we propose a cell-autonomous mechanism for adiposity as a result of persistent cell surface glucose transporter type 4 (GLUT4) in adipocytes resulting from impaired function of ankyrin-B (AnkB) in coupling GLUT4 to clathrin-mediated endocytosis. Adipose tissue-specific AnkB-KO mice develop obesity and progressive pancreatic islet dysfunction with age or high-fat diet (HFD). AnkB-deficient adipocytes exhibit increased lipid accumulation associated with increased glucose uptake and impaired endocytosis of GLUT4. AnkB binds directly to GLUT4 and clathrin and promotes their association in adipocytes. AnkB variants that fail to restore normal lipid accumulation and GLUT4 localization in adipocytes are present in 1.3% of European Americans and 8.4% of African Americans, and are candidates to contribute to obesity susceptibility in humans.


Asunto(s)
Adipocitos/metabolismo , Adiposidad/genética , Ancirinas/genética , Transportador de Glucosa de Tipo 4/genética , Glucosa/metabolismo , Obesidad/genética , Adipocitos/patología , Animales , Ancirinas/química , Ancirinas/metabolismo , Transporte Biológico , Población Negra , Clatrina/genética , Clatrina/metabolismo , Dieta Alta en Grasa/efectos adversos , Endocitosis , Regulación de la Expresión Génica , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Masculino , Ratones , Ratones Noqueados , Modelos Moleculares , Mutación , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Unión Proteica , Estructura Secundaria de Proteína , Transducción de Señal , Población Blanca
9.
Circulation ; 138(23): 2682-2697, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30571258

RESUMEN

BACKGROUND: Human loss-of-function variants of ANK2 (ankyrin-B) are linked to arrhythmias and sudden cardiac death. However, their in vivo effects and specific arrhythmogenic pathways have not been fully elucidated. METHODS: We identified new ANK2 variants in 25 unrelated Han Chinese probands with ventricular tachycardia by whole-exome sequencing. The potential pathogenic variants were validated by Sanger sequencing. We performed functional and mechanistic experiments in ankyrin-B knockin (KI) mouse models and in single myocytes isolated from KI hearts. RESULTS: We detected a rare, heterozygous ANK2 variant (p.Q1283H) in a proband with recurrent ventricular tachycardia. This variant was localized to the ZU5C region of ANK2, where no variants have been previously reported. KI mice harboring the p.Q1283H variant exhibited an increased predisposition to ventricular arrhythmias after catecholaminergic stress in the absence of cardiac structural abnormalities. Functional studies illustrated an increased frequency of delayed afterdepolarizations and Ca2+ waves and sparks accompanied by decreased sarcoplasmic reticulum Ca2+ content in KI cardiomyocytes on isoproterenol stimulation. The immunoblotting results showed increased levels of phosphorylated ryanodine receptor Ser2814 in the KI hearts, which was further amplified on isoproterenol stimulation. Coimmunoprecipitation experiments demonstrated dissociation of protein phosphatase 2A from ryanodine receptor in the KI hearts, which was accompanied by a decreased binding of ankyrin-B to protein phosphatase 2A regulatory subunit B56α. Finally, the administration of metoprolol or flecainide decreased the incidence of stress-induced ventricular arrhythmias in the KI mice. CONCLUSIONS: ANK2 p.Q1283H is a disease-associated variant that confers susceptibility to stress-induced arrhythmias, which may be prevented by the administration of metoprolol or flecainide. This variant is associated with the loss of protein phosphatase 2A activity, increased phosphorylation of ryanodine receptor, exaggerated delayed afterdepolarization-mediated trigger activity, and arrhythmogenesis.


Asunto(s)
Ancirinas/genética , Arritmias Cardíacas/patología , Proteína Fosfatasa 2/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Ancirinas/química , Arritmias Cardíacas/metabolismo , Calcio/metabolismo , Modelos Animales de Enfermedad , Electrocardiografía , Femenino , Humanos , Isoproterenol/farmacología , Ratones , Persona de Mediana Edad , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Fosforilación , Polimorfismo de Nucleótido Simple , Rianodina/farmacología , Retículo Sarcoplasmático/metabolismo
10.
Heart Lung Circ ; 26(6): 612-618, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27916589

RESUMEN

BACKGROUND: Cardiac rhythm abnormalities are a leading cause of morbidity and mortality in developed countries. Loss-of-function variants in the ANK2 gene can cause a variety of cardiac rhythm abnormalities including sinus node dysfunction, atrial fibrillation and ventricular arrhythmias (called the "ankyrin-B syndrome"). ANK2 encodes ankyrin-B, a molecule critical for the membrane targeting of key cardiac ion channels, transporters, and signalling proteins. METHODS AND RESULTS: Here, we describe a family with a reciprocal chromosomal translocation between chromosomes 4q25 and 9q26 that transects the ANK2 gene on chromosome 4 resulting in loss-of-function of ankyrin-B. Select family members with ankyrin-B haploinsufficiency due to the translocation displayed clinical features of ankyrin-B syndrome. Furthermore, evaluation of primary lymphoblasts from a carrier of the translocation showed altered levels of ankyrin-B as well as a reduced expression of downstream ankyrin-binding partners. CONCLUSIONS: Thus, our data conclude that, similar to previously described ANK2 loss-of-function "point mutations", large chromosomal translocations resulting in ANK2 haploinsufficiency are sufficient to cause the human cardiac ankyrin-B syndrome. The unexpected ascertainment of ANK2 dysfunction via the discovery of a chromosomal translocation in this family, the determination of the familial phenotype, as well as the complexities in formulating screening and treatment strategies are discussed.


Asunto(s)
Ancirinas/genética , Arritmias Cardíacas/genética , Cromosomas Humanos Par 4/genética , Cromosomas Humanos Par 9/genética , Haploinsuficiencia , Translocación Genética , Anomalías Múltiples/genética , Anomalías Múltiples/fisiopatología , Adulto , Arritmias Cardíacas/fisiopatología , Familia , Femenino , Enfermedades Fetales/genética , Enfermedades Fetales/fisiopatología , Humanos , Masculino , Embarazo
11.
Am J Physiol Cell Physiol ; 310(2): C115-26, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26538089

RESUMEN

Periaxin (Prx), a PDZ domain protein expressed preferentially in myelinating Schwann cells and lens fibers, plays a key role in membrane scaffolding and cytoarchitecture. Little is known, however, about how Prx is anchored to the plasma membrane. Here we report that ankyrin-B (AnkB), a well-characterized adaptor protein involved in linking the spectrin-actin cytoskeleton to integral membrane proteins, is required for membrane association of Prx in lens fibers and colocalizes with Prx in hexagonal fiber cells. Under AnkB haploinsufficiency, Prx accumulates in the soluble fraction with a concomitant loss from the membrane-enriched fraction of mouse lenses. Moreover, AnkB haploinsufficiency induced age-dependent disruptions in fiber cell hexagonal geometry and radial alignment and decreased compressive stiffness in mouse lenses parallel to the changes observed in Prx null mouse lens. Both AnkB- and Prx-deficient mice exhibit disruptions in membrane organization of the spectrin-actin network and the dystrophin-glycoprotein complex in lens fiber cells. Taken together, these observations reveal that AnkB is required for Prx membrane anchoring and for maintenance of lens fiber cell hexagonal geometry, membrane skeleton organization, and biomechanics.


Asunto(s)
Ancirinas/metabolismo , Células Epiteliales/fisiología , Cristalino/citología , Cristalino/fisiología , Proteínas de la Membrana/metabolismo , Animales , Sitios de Unión , Membrana Celular , Tamaño de la Célula , Fuerza Compresiva/fisiología , Módulo de Elasticidad/fisiología , Células Epiteliales/citología , Dureza/fisiología , Técnicas In Vitro , Ratones , Ratones Noqueados , Unión Proteica , Estrés Mecánico , Resistencia a la Tracción/fisiología
12.
Biochim Biophys Acta ; 1838(2): 723-30, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23732236

RESUMEN

The past twenty years have revealed the existence of numerous ion channel mutations resulting in human pathology. Ion channels provide the basis of diverse cellular functions, ranging from hormone secretion, excitation-contraction coupling, cell signaling, immune response, and trans-epithelial transport. Therefore, the regulation of biophysical properties of channels is vital in human physiology. Only within the last decade has the role of non-ion channel components come to light in regard to ion channel spatial, temporal, and biophysical regulation in physiology. A growing number of auxiliary components have been determined to play elemental roles in excitable cell physiology, with dysfunction resulting in disorders and related manifestations. This review focuses on the broad implications of such dysfunction, focusing on disease-causing mutations that alter interactions between ion channels and auxiliary ion channel components in a diverse set of human excitable cell disease. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé


Asunto(s)
Canalopatías/patología , Canales Iónicos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Animales , Transporte Biológico , Canalopatías/metabolismo , Humanos
13.
Heart Lung Circ ; 24(2): e31-4, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25456501

RESUMEN

Ankyrin-B protein is involved in regulating expression and localisation of cardiac ion channels and transporters. Mutations of the ANK2 gene in the rare condition Ankyrin-B syndrome result in loss of function of the ankyrin-B protein which in turn leads to abnormal regulation of intracellular sodium and calcium and a predisposition to cardiac arrhythmia including torsades de pointes. We describe a rare case of this condition characterised by sinus node dysfunction, atrial fibrillation and prolonged QT syndrome in a young patient with a family history of sudden death. The management of Ankyrin-B syndrome may include avoidance of QT prolonging medications, insertion of a permanent pacemaker for sinus node dysfunction, or a cardioverter defibrillator for those at high-risk of sudden death from torsades de pointes.


Asunto(s)
Ancirinas/genética , Fibrilación Atrial , Enfermedades Genéticas Congénitas , Síndrome de QT Prolongado , Síndrome del Seno Enfermo , Adulto , Fibrilación Atrial/complicaciones , Fibrilación Atrial/genética , Enfermedades Genéticas Congénitas/complicaciones , Enfermedades Genéticas Congénitas/genética , Humanos , Síndrome de QT Prolongado/complicaciones , Síndrome de QT Prolongado/genética , Masculino , Síndrome del Seno Enfermo/complicaciones , Síndrome del Seno Enfermo/genética , Torsades de Pointes/complicaciones , Torsades de Pointes/genética
14.
Am J Physiol Heart Circ Physiol ; 304(9): H1253-66, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23436330

RESUMEN

Ankyrin-B is a multifunctional adapter protein responsible for localization and stabilization of select ion channels, transporters, and signaling molecules in excitable cells including cardiomyocytes. Ankyrin-B dysfunction has been linked with highly penetrant sinoatrial node (SAN) dysfunction and increased susceptibility to atrial fibrillation. While previous studies have identified a role for abnormal ion homeostasis in ventricular arrhythmias, the molecular mechanisms responsible for atrial arrhythmias and SAN dysfunction in human patients with ankyrin-B syndrome are unclear. Here, we develop a computational model of ankyrin-B dysfunction in atrial and SAN cells and tissue to determine the mechanism for increased susceptibility to atrial fibrillation and SAN dysfunction in human patients with ankyrin-B syndrome. Our simulations predict that defective membrane targeting of the voltage-gated L-type Ca(2+) channel Cav1.3 leads to action potential shortening that reduces the critical atrial tissue mass needed to sustain reentrant activation. In parallel, increased fibrosis results in conduction slowing that further increases the susceptibility to sustained reentry in the setting of ankyrin-B dysfunction. In SAN cells, loss of Cav1.3 slows spontaneous pacemaking activity, whereas defects in Na(+)/Ca(2+) exchanger and Na(+)/K(+) ATPase increase variability in SAN cell firing. Finally, simulations of the intact SAN reveal a shift in primary pacemaker site, SAN exit block, and even SAN failure in ankyrin-B-deficient tissue. These studies identify the mechanism for increased susceptibility to atrial fibrillation and SAN dysfunction in human disease. Importantly, ankyrin-B dysfunction involves changes at both the cell and tissue levels that favor the common manifestation of atrial arrhythmias and SAN dysfunction.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Fibrilación Atrial/fisiopatología , Modelos Cardiovasculares , Nodo Sinoatrial/fisiopatología , Potenciales de Acción , Animales , Ancirinas/metabolismo , Canales de Calcio Tipo L/metabolismo , Simulación por Computador , Fibrosis/fisiopatología , Atrios Cardíacos/patología , Humanos , Ratones , Nodo Sinoatrial/patología , Intercambiador de Sodio-Calcio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
15.
Front Physiol ; 14: 959660, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37064897

RESUMEN

Neuronal ankyrin-B is an intracellular scaffolding protein that plays multiple roles in the axon. By contrast, relatively little is known about the function of ankyrin-B in dendrites, where ankyrin-B is also localized in mature neurons. Recently, we showed that ankyrin-B acts as a scaffold for the voltage-gated sodium channel, NaV1.2, in dendrites of neocortical pyramidal neurons. How ankyrin-B is itself targeted to the dendritic membrane is not well understood. Here, we report that ankyrin-B is lipid-modified by S-palmitoylation to promote dendritic localization of NaV1.2. We identify the palmitoyl acyl transferase zDHHC17 as a key mediator of ankyrin-B palmitoylation in heterologous cells and in neurons. Additionally, we find that zDHHC17 regulates ankyrin-B protein levels independently of its S-acylation function through a conserved binding mechanism between the ANK repeat domain of zDHHC17 and the zDHHC ankyrin-repeat binding motif of ankyrin-B. We subsequently identify five cysteines in the N-terminal ankyrin repeat domain of ankyrin-B that are necessary for ankyrin-B palmitoylation. Mutation of these five cysteines to alanines not only abolishes ankyrin-B palmitoylation, but also prevents ankyrin-B from scaffolding NaV1.2 at dendritic membranes of neurons due to ankyrin-B's inability to localize properly at dendrites. Thus, we show palmitoylation is critical for localization and function of ankyrin-B at dendrites. Strikingly, loss of ankyrin-B palmitoylation does not affect ankyrin-B-mediated axonal cargo transport of synaptic vesicle synaptotagmin-1 in neurons. This is the first demonstration of S-palmitoylation of ankyrin-B as an underlying mechanism required for ankyrin-B localization and function in scaffolding NaV1.2 at dendrites.

16.
Channels (Austin) ; 16(1): 216-229, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36082411

RESUMEN

The ankyrin proteins (Ankyrin-R, Ankyrin-B, and Ankyrin-G) are a family of scaffolding, or membrane adaptor proteins necessary for the regulation and targeting of several types of ion channels and membrane transporters throughout the body. These include voltage-gated sodium, potassium, and calcium channels in the nervous system, heart, lungs, and muscle. At these sites, ankyrins recruit ion channels, and other membrane proteins, to specific subcellular domains, which are then stabilized through ankyrin's interaction with the submembranous spectrin-based cytoskeleton. Several recent studies have expanded our understanding of both ankyrin expression and their ion channel binding partners. This review provides an updated overview of ankyrin proteins and their known channel and transporter interactions. We further discuss several potential avenues of future research that would expand our understanding of these important organizational proteins.


Asunto(s)
Ancirinas , Canales Iónicos , Ancirinas/química , Ancirinas/metabolismo , Citoesqueleto/metabolismo , Canales Iónicos/metabolismo , Proteínas de la Membrana/metabolismo , Espectrina/química , Espectrina/metabolismo
17.
Biomolecules ; 10(2)2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-32023981

RESUMEN

Ankyrin-B (encoded by ANK2), originally identified as a key cytoskeletal-associated protein in the brain, is highly expressed in the heart and plays critical roles in cardiac physiology and cell biology. In the heart, ankyrin-B plays key roles in the targeting and localization of key ion channels and transporters, structural proteins, and signaling molecules. The role of ankyrin-B in normal cardiac function is illustrated in animal models lacking ankyrin-B expression, which display significant electrical and structural phenotypes and life-threatening arrhythmias. Further, ankyrin-B dysfunction has been associated with cardiac phenotypes in humans (now referred to as "ankyrin-B syndrome") including sinus node dysfunction, heart rate variability, atrial fibrillation, conduction block, arrhythmogenic cardiomyopathy, structural remodeling, and sudden cardiac death. Here, we review the diverse roles of ankyrin-B in the vertebrate heart with a significant focus on ankyrin-B-linked cell- and molecular-pathways and disease.


Asunto(s)
Ancirinas/genética , Ancirinas/fisiología , Arritmias Cardíacas/metabolismo , Enfermedades Cardiovasculares/metabolismo , Animales , Citoesqueleto/metabolismo , Variación Genética , Bloqueo Cardíaco , Frecuencia Cardíaca , Humanos , Canales Iónicos , Fenotipo , Dominios Proteicos , Isoformas de Proteínas , Transducción de Señal
18.
Cardiovasc Res ; 116(1): 78-90, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30949686

RESUMEN

AIMS: Ankyrin B (AnkB) is an adaptor protein that assembles Na+/K+-ATPase (NKA) and Na+/Ca2+ exchanger (NCX) in the AnkB macromolecular complex. Loss-of-function mutations in AnkB cause the AnkB syndrome in humans, characterized by ventricular arrhythmias and sudden cardiac death. It is unclear to what extent NKA binding to AnkB allows regulation of local Na+ and Ca2+ domains and hence NCX activity. METHODS AND RESULTS: To investigate the role of NKA binding to AnkB in cardiomyocytes, we synthesized a disruptor peptide (MAB peptide) and its AnkB binding ability was verified by pulldown experiments. As opposed to control, the correlation between NKA and NCX currents was abolished in adult rat ventricular myocytes dialyzed with MAB peptide, as well as in cardiomyocytes from AnkB+/- mice. Disruption of NKA from AnkB (with MAB peptide) increased NCX-sensed cytosolic Na+ concentration, reduced Ca2+ extrusion through NCX, and increased frequency of Ca2+ sparks and Ca2+ waves without concomitant increase in Ca2+ transient amplitude or SR Ca2+ load, suggesting an effect in local Ca2+ domains. Selective inhibition of the NKAα2 isoform abolished both the correlation between NKA and NCX currents and the increased rate of Ca2+ sparks and waves following NKA/AnkB disruption, suggesting that an AnkB/NKAα2/NCX domain controls Ca2+ fluxes in cardiomyocytes. CONCLUSION: NKA binding to AnkB allows ion regulation in a local domain, and acute disruption of the NKA/AnkB interaction using disruptor peptides lead to increased rate of Ca2+ sparks and waves. The functional effects were mediated through the NKAα2 isoform. Disruption of the AnkB/NKA/NCX domain could be an important pathophysiological mechanism in the AnkB syndrome.


Asunto(s)
Ancirinas/metabolismo , Señalización del Calcio , Miocitos Cardíacos/enzimología , Intercambiador de Sodio-Calcio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Ancirinas/deficiencia , Ancirinas/genética , Acoplamiento Excitación-Contracción , Masculino , Potenciales de la Membrana , Ratones Noqueados , Contracción Miocárdica , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Ratas Wistar , Factores de Tiempo
19.
Mol Brain ; 12(1): 75, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477143

RESUMEN

Ankyrin B (AnkB) is an adaptor and scaffold for motor proteins and various ion channels that is ubiquitously expressed, including in the brain. AnkB has been associated with neurological disorders such as epilepsy and autism spectrum disorder, but understanding of the underlying mechanisms is limited. Cav2.1, the pore-forming subunit of P/Q type voltage gated calcium channels, is a known interactor of AnkB and plays a crucial role in neuronal function. Here we report that wildtype AnkB increased overall Cav2.1 levels without impacting surface Cav2.1 levels in HEK293T cells. An AnkB variant, p.S646F, which we recently discovered to be associated with seizures, further increased overall Cav2.1 levels, again with no impact on surface Cav2.1 levels. AnkB p.Q879R, on the other hand, increased surface Cav2.1 levels in the presence of accessory subunits α2δ1 and ß4. Additionally, AnkB p.E1458G decreased surface Cav2.1 irrespective of the presence of accessory subunits. In addition, we found that partial deletion of AnkB in cortex resulted in a decrease in overall Cav2.1 levels, with no change to the levels of Cav2.1 detected in synaptosome fractions. Our work suggests that depending on the particular variant, AnkB regulates intracellular and surface Cav2.1. Notably, expression of the AnkB variant associated with seizure (AnkB p.S646F) caused further increase in intracellular Cav2.1 levels above that of even wildtype AnkB. These novel findings have important implications for understanding the role of AnkB and Cav2.1 in the regulation of neuronal function in health and disease.


Asunto(s)
Ancirinas/metabolismo , Canales de Calcio Tipo N/metabolismo , Membrana Celular/metabolismo , Espacio Intracelular/metabolismo , Proteínas Mutantes/metabolismo , Animales , Ancirinas/genética , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Modelos Biológicos , Mutación/genética , Subunidades de Proteína/metabolismo , Sinapsis/metabolismo
20.
Mol Brain ; 11(1): 24, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29720258

RESUMEN

This study describes the functional interaction between the Cav3.1 and Cav3.2 T-type calcium channels and cytoskeletal spectrin (α/ß) and ankyrin B proteins. The interactions were identified utilizing a proteomic approach to identify proteins that interact with a conserved negatively charged cytosolic region present in the carboxy-terminus of T-type calcium channels. Deletion of this stretch of amino acids decreased binding of Cav3.1 and Cav3.2 calcium channels to spectrin (α/ß) and ankyrin B and notably also reduced T-type whole cell current densities in expression systems. Furthermore, fluorescence recovery after photobleaching analysis of mutant channels lacking the proximal C-terminus region revealed reduced recovery of both Cav3.1 and Cav3.2 mutant channels in hippocampal neurons. Knockdown of spectrin α and ankyrin B decreased the density of endogenous Cav3.2 in hippocampal neurons. These findings reveal spectrin (α/ß) / ankyrin B cytoskeletal and signaling proteins as key regulators of T-type calcium channels expressed in the nervous system.


Asunto(s)
Ancirinas/metabolismo , Canales de Calcio Tipo T/metabolismo , Espectrina/metabolismo , Secuencia de Aminoácidos , Animales , Canales de Calcio Tipo T/química , Caveolina 3/química , Caveolina 3/metabolismo , Citoesqueleto/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Activación del Canal Iónico , Ratones , Proteínas Mutantes/metabolismo , Unión Proteica , Dominios Proteicos , Ratas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda