Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 3.193
Filtrar
Más filtros

Publication year range
1.
Annu Rev Genet ; 57: 275-296, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37708420

RESUMEN

Antibiotic resistance genes predate the therapeutic uses of antibiotics. However, the current antimicrobial resistance crisis stems from our extensive use of antibiotics and the generation of environmental stressors that impose new selective pressure on microbes and drive the evolution of resistant pathogens that now threaten human health. Similar to climate change, this global threat results from human activities that change habitats and natural microbiomes, which in turn interact with human-associated ecosystems and lead to adverse impacts on human health. Human activities that alter our planet at global scales exacerbate the current resistance crisis and exemplify our central role in large-scale changes in which we are both protagonists and architects of our success but also casualties of unanticipated collateral outcomes. As cognizant participants in this ongoing planetary experiment, we are driven to understand and find strategies to curb the ongoing crises of resistance and climate change.


Asunto(s)
Farmacorresistencia Bacteriana , Microbiota , Humanos , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Microbiota/genética
2.
Proc Natl Acad Sci U S A ; 121(6): e2305944121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38252845

RESUMEN

Protected areas are of paramount relevance to conserving wildlife and ecosystem contributions to people. Yet, their conservation success is increasingly threatened by human activities including habitat loss, climate change, pollution, and species overexploitation. Thus, understanding the underlying and proximate drivers of anthropogenic threats is urgently needed to improve protected areas' effectiveness, especially in the biodiversity-rich tropics. We addressed this issue by analyzing expert-provided data on long-term biodiversity change (last three decades) over 14 biosphere reserves from the Mesoamerican Biodiversity Hotspot. Using multivariate analyses and structural equation modeling, we tested the influence of major socioeconomic drivers (demographic, economic, and political factors), spatial indicators of human activities (agriculture expansion and road extension), and forest landscape modifications (forest loss and isolation) as drivers of biodiversity change. We uncovered a significant proliferation of disturbance-tolerant guilds and the loss or decline of disturbance-sensitive guilds within reserves causing a "winner and loser" species replacement over time. Guild change was directly related to forest spatial changes promoted by the expansion of agriculture and roads within reserves. High human population density and low nonfarming occupation were identified as the main underlying drivers of biodiversity change. Our findings suggest that to mitigate anthropogenic threats to biodiversity within biosphere reserves, fostering human population well-being via sustainable, nonfarming livelihood opportunities around reserves is imperative.


Asunto(s)
Biodiversidad , Ecosistema , Humanos , Animales , Agricultura , Animales Salvajes , Cambio Climático
3.
Proc Natl Acad Sci U S A ; 121(41): e2313098121, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39312679

RESUMEN

One of the remaining issues regarding the Anthropocene is the lack of stratigraphic evidence indicating when the cumulative human pressure from the early Holocene began to fundamentally change the Earth system. Herein, we compile anthropogenic fingerprints from various high-precision-dated proxy records for 137 global sites to determine the age of the unprecedented surge in these records over the last 7700 y. The cumulative number of fingerprints revealed an unprecedented surge in diverse anthropogenic fingerprints starting in 1952 ± 3 CE, corresponding to the onset of the Great Acceleration. Notably, the period from 1953 to 1958 CE saw a nearly simultaneous surge in fingerprints across all regions, including Antarctica, the Arctic, East Asia, Europe, North America, and Oceania. This synchronous upsurge reflects the moment when human impacts led to rapid transformations in various natural processes and cycles, with humans becoming a geological force capable of inscribing abundant and diverse anthropogenic fingerprints in global strata. Following this global fingerprint explosion, profound planetary-scale changes, including deviations from the established natural climatic conditions, begin. This unprecedented surge in anthropogenic signals worldwide suggests that human influences started to match many natural forces controlling the processes and cycles and overwhelm some of the functioning of the Earth system around 1952.


Asunto(s)
Efectos Antropogénicos , Humanos , Geología , Planeta Tierra , Archivos
4.
Proc Natl Acad Sci U S A ; 121(12): e2315058121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38466839

RESUMEN

Mercury (Hg) is a contaminant of global concern, and an accurate understanding of its atmospheric fate is needed to assess its risks to humans and ecosystem health. Atmospheric oxidation of Hg is key to the deposition of this toxic metal to the Earth's surface. Short-lived halogens (SLHs) can provide halogen radicals to directly oxidize Hg and perturb the budget of other Hg oxidants (e.g., OH and O3). In addition to known ocean emissions of halogens, recent observational evidence has revealed abundant anthropogenic emissions of SLHs over continental areas. However, the impacts of anthropogenic SLHs emissions on the atmospheric fate of Hg and human exposure to Hg contamination remain unknown. Here, we show that the inclusion of anthropogenic SLHs substantially increased local Hg oxidation and, consequently, deposition in/near Hg continental source regions by up to 20%, thereby decreasing Hg export from source regions to clean environments. Our modeling results indicated that the inclusion of anthropogenic SLHs can lead to higher Hg exposure in/near Hg source regions than estimated in previous assessments, e.g., with increases of 8.7% and 7.5% in China and India, respectively, consequently leading to higher Hg-related human health risks. These results highlight the urgent need for policymakers to reduce local Hg and SLHs emissions. We conclude that the substantial impacts of anthropogenic SLHs emissions should be included in model assessments of the Hg budget and associated health risks at local and global scales.


Asunto(s)
Mercurio , Humanos , Mercurio/toxicidad , Mercurio/análisis , Monitoreo del Ambiente/métodos , Ecosistema , China , India
5.
Proc Natl Acad Sci U S A ; 121(42): e2401950121, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39378086

RESUMEN

Anthropogenic activities emit ~2,000 Mg y-1 of the toxic pollutant mercury (Hg) into the atmosphere, leading to long-range transport and deposition to remote ecosystems. Global anthropogenic emission inventories report increases in Northern Hemispheric (NH) Hg emissions during the last three decades, in contradiction with the observed decline in atmospheric Hg concentrations at NH measurement stations. Many factors can obscure the link between anthropogenic emissions and atmospheric Hg concentrations, including trends in the reemissions of previously released anthropogenic ("legacy") Hg, atmospheric sink variability, and spatial heterogeneity of monitoring data. Here, we assess the observed trends in gaseous elemental mercury (Hg0) in the NH and apply biogeochemical box modeling and chemical transport modeling to understand the trend drivers. Using linear mixed effects modeling of observational data from 51 stations, we find negative Hg0 trends in most NH regions, with an overall trend for 2005 to 2020 of -0.011 ± 0.006 ng m-3 y-1 (±2 SD). In contrast to existing emission inventories, our modeling analysis suggests that annual NH anthropogenic emissions must have declined by at least 140 Mg between the years 2005 and 2020 to be consistent with observed trends. Faster declines in 95th percentile Hg0 values than median values in Europe, North America, and East Asian measurement stations corroborate that the likely cause is a decline in nearby anthropogenic emissions rather than background legacy reemissions. Our results are relevant for evaluating the effectiveness of the Minamata Convention on Mercury, demonstrating that existing emission inventories are incompatible with the observed Hg0 declines.

6.
Proc Natl Acad Sci U S A ; 120(25): e2213815120, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307438

RESUMEN

Record-breaking summer forest fires have become a regular occurrence in California. Observations indicate a fivefold increase in summer burned area (BA) in forests in northern and central California during 1996 to 2021 relative to 1971 to 1995. While the higher temperature and increased dryness have been suggested to be the leading causes of increased BA, the extent to which BA changes are due to natural variability or anthropogenic climate change remains unresolved. Here, we develop a climate-driven model of summer BA evolution in California and combine it with natural-only and historical climate simulations to assess the importance of anthropogenic climate change on increased BA. Our results indicate that nearly all the observed increase in BA is due to anthropogenic climate change as historical model simulations accounting for anthropogenic forcing yield 172% (range 84 to 310%) more area burned than simulations with natural forcing only. We detect the signal of combined historical forcing on the observed BA emerging in 2001 with no detectable influence of the natural forcing alone. In addition, even when considering fuel limitations from fire-fuel feedbacks, a 3 to 52% increase in BA relative to the last decades is expected in the next decades (2031 to 2050), highlighting the need for proactive adaptations.

7.
Proc Natl Acad Sci U S A ; 120(24): e2219031120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37279263

RESUMEN

Communication is a fundamental feature of animal societies and helps their members to solve the challenges they encounter, from exploiting food sources to fighting enemies or finding a new home. Eusocial bees inhabit a wide range of environments and they have evolved a multitude of communication signals that help them exploit resources in their environment efficiently. We highlight recent advances in our understanding of bee communication strategies and discuss how variation in social biology, such as colony size or nesting habits, and ecological conditions are important drivers of variation in communication strategies. Anthropogenic factors, such as habitat conversion, climate change, or the use of agrochemicals, are changing the world bees inhabit, and it is becoming clear that this affects communication both directly and indirectly, for example by affecting food source availability, social interactions among nestmates, and cognitive functions. Whether and how bees adapt their foraging and communication strategies to these changes represents a new frontier in bee behavioral and conservation research.


Asunto(s)
Aclimatación , Ecosistema , Animales , Abejas , Comunicación
8.
Proc Natl Acad Sci U S A ; 120(21): e2216573120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186854

RESUMEN

Declines in European bird populations are reported for decades but the direct effect of major anthropogenic pressures on such declines remains unquantified. Causal relationships between pressures and bird population responses are difficult to identify as pressures interact at different spatial scales and responses vary among species. Here, we uncover direct relationships between population time-series of 170 common bird species, monitored at more than 20,000 sites in 28 European countries, over 37 y, and four widespread anthropogenic pressures: agricultural intensification, change in forest cover, urbanisation and temperature change over the last decades. We quantify the influence of each pressure on population time-series and its importance relative to other pressures, and we identify traits of most affected species. We find that agricultural intensification, in particular pesticides and fertiliser use, is the main pressure for most bird population declines, especially for invertebrate feeders. Responses to changes in forest cover, urbanisation and temperature are more species-specific. Specifically, forest cover is associated with a positive effect and growing urbanisation with a negative effect on population dynamics, while temperature change has an effect on the dynamics of a large number of bird populations, the magnitude and direction of which depend on species' thermal preferences. Our results not only confirm the pervasive and strong effects of anthropogenic pressures on common breeding birds, but quantify the relative strength of these effects stressing the urgent need for transformative changes in the way of inhabiting the world in European countries, if bird populations shall have a chance of recovering.


Asunto(s)
Agricultura , Bosques , Animales , Granjas , Europa (Continente) , Dinámica Poblacional , Aves/fisiología , Biodiversidad , Ecosistema , Conservación de los Recursos Naturales
9.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35012982

RESUMEN

Antarctica, an isolated and long considered pristine wilderness, is becoming increasingly exposed to the negative effects of ship-borne human activity, and especially the introduction of invasive species. Here, we provide a comprehensive quantitative analysis of ship movements into Antarctic waters and a spatially explicit assessment of introduction risk for nonnative marine species in all Antarctic waters. We show that vessels traverse Antarctica's isolating natural barriers, connecting it directly via an extensive network of ship activity to all global regions, especially South Atlantic and European ports. Ship visits are more than seven times higher to the Antarctic Peninsula (especially east of Anvers Island) and the South Shetland Islands than elsewhere around Antarctica, together accounting for 88% of visits to Southern Ocean ecoregions. Contrary to expectations, we show that while the five recognized "Antarctic Gateway cities" are important last ports of call, especially for research and tourism vessels, an additional 53 ports had vessels directly departing to Antarctica from 2014 to 2018. We identify ports outside Antarctica where biosecurity interventions could be most effectively implemented and the most vulnerable Antarctic locations where monitoring programs for high-risk invaders should be established.


Asunto(s)
Ecosistema , Navíos , Transportes , Regiones Antárticas , Geografía , Especies Introducidas
10.
Proc Natl Acad Sci U S A ; 119(32): e2203604119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35917352

RESUMEN

Anthropogenic organophosphorus compounds (AOPCs), such as phosphotriesters, are used extensively as plasticizers, flame retardants, nerve agents, and pesticides. To date, only a handful of soil bacteria bearing a phosphotriesterase (PTE), the key enzyme in the AOPC degradation pathway, have been identified. Therefore, the extent to which bacteria are capable of utilizing AOPCs as a phosphorus source, and how widespread this adaptation may be, remains unclear. Marine environments with phosphorus limitation and increasing levels of pollution by AOPCs may drive the emergence of PTE activity. Here, we report the utilization of diverse AOPCs by four model marine bacteria and 17 bacterial isolates from the Mediterranean Sea and the Red Sea. To unravel the details of AOPC utilization, two PTEs from marine bacteria were isolated and characterized, with one of the enzymes belonging to a protein family that, to our knowledge, has never before been associated with PTE activity. When expressed in Escherichia coli with a phosphodiesterase, a PTE isolated from a marine bacterium enabled growth on a pesticide analog as the sole phosphorus source. Utilization of AOPCs may provide bacteria a source of phosphorus in depleted environments and offers a prospect for the bioremediation of a pervasive class of anthropogenic pollutants.


Asunto(s)
Organismos Acuáticos , Bacterias , Contaminantes Ambientales , Compuestos Organofosforados , Hidrolasas de Triéster Fosfórico , Organismos Acuáticos/enzimología , Bacterias/enzimología , Biodegradación Ambiental , Contaminantes Ambientales/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Océano Índico , Mar Mediterráneo , Compuestos Organofosforados/metabolismo , Hidrolasas de Triéster Fosfórico/genética , Hidrolasas de Triéster Fosfórico/metabolismo , Fósforo/metabolismo , Agua de Mar/microbiología
11.
Proc Natl Acad Sci U S A ; 119(42): e2204465119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215495

RESUMEN

Airborne bacteria are an influential component of the Earth's microbiomes, but their community structure and biogeographic distribution patterns have yet to be understood. We analyzed the bacterial communities of 370 air particulate samples collected from 63 sites around the world and constructed an airborne bacterial reference catalog with more than 27 million nonredundant 16S ribosomal RNA (rRNA) gene sequences. We present their biogeographic pattern and decipher the interlacing of the microbiome co-occurrence network with surface environments of the Earth. While the total abundance of global airborne bacteria in the troposphere (1.72 × 1024 cells) is 1 to 3 orders of magnitude lower than that of other habitats, the number of bacterial taxa (i.e., richness) in the atmosphere (4.71 × 108 to 3.08 × 109) is comparable to that in the hydrosphere, and its maximum occurs in midlatitude regions, as is also observed in other ecosystems. The airborne bacterial community harbors a unique set of dominant taxa (24 species); however, its structure appears to be more easily perturbed, due to the more prominent role of stochastic processes in shaping community assembly. This is corroborated by the major contribution of surface microbiomes to airborne bacteria (averaging 46.3%), while atmospheric conditions such as meteorological factors and air quality also play a role. Particularly in urban areas, human impacts weaken the relative importance of plant sources of airborne bacteria and elevate the occurrence of potential pathogens from anthropogenic sources. These findings serve as a key reference for predicting planetary microbiome responses and the health impacts of inhalable microbiomes with future changes in the environment.


Asunto(s)
Microbiología del Aire , Microbiota , Efectos Antropogénicos , Bacterias/genética , Humanos , Microbiota/genética , ARN Ribosómico 16S/genética
12.
Ecol Lett ; 27(1): e14323, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37830457

RESUMEN

Anthropogenic noise is ubiquitous globally. However, we know little about how the impacts of noise alter fundamental ecosystem properties, such as resource consumption by invertebrate consumers. Using experimental noise manipulation and faecal DNA metabarcoding, we assessed how the direct and cross-trophic indirect effects of noise altered the dietary richness and specializations of omnivorous grasshoppers in a grassland ecosystem. We found that the experimental noise treatment expanded grasshoppers' dietary richness and resulted in dietary generalizations in both noise-exposed and adjacent relatively quieter areas. Unexpectedly, however, these dietary changes were primarily explained by the direct effect of noise not only in the noise-exposed areas but also in the adjacent quieter areas and were relaxed by indirect effects of noise such as reduced birds and predation risk and increased grasshoppers. Our work suggests that noise pollution can be key in explaining the variation of invertebrate consumers' diets across a gradient of noise-exposed environments.


Asunto(s)
Ecosistema , Ruido , Animales , Ruido/efectos adversos , Pradera , Invertebrados , Dieta/veterinaria , Conducta Predatoria
13.
Ecol Lett ; 27(5): e14434, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38716556

RESUMEN

Anthropogenic habitat modification can indirectly effect reproduction and survival in social species by changing the group structure and social interactions. We assessed the impact of habitat modification on the fitness and life history traits of a cooperative breeder, the Arabian babbler (Argya squamiceps). We collected spatial, reproductive and social data on 572 individuals belonging to 21 social groups over 6 years and combined it with remote sensing to characterize group territories in an arid landscape. In modified resource-rich habitats, groups bred more and had greater productivity, but individuals lived shorter lives than in natural habitats. Habitat modification favoured a faster pace-of-life with lower dispersal and dominance acquisition ages, which might be driven by higher mortality providing opportunities for the dominant breeding positions. Thus, habitat modification might indirectly impact fitness through changes in social structures. This study shows that trade-offs in novel anthropogenic opportunities might offset survival costs by increased productivity.


Asunto(s)
Ecosistema , Rasgos de la Historia de Vida , Animales , Masculino , Femenino , Reproducción , Passeriformes/fisiología , Aptitud Genética , Efectos Antropogénicos
14.
Proc Biol Sci ; 291(2027): 20240741, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39043238

RESUMEN

Anthropogenic noise is rising and may interfere with natural acoustic cues used by organisms to recruit. Newly developed acoustic technology provides enriched settlement cues to boost recruitment of target organisms navigating to restoration sites, but can it boost recruitment in noise-polluted sites? To address this dilemma, we coupled replicated aquarium experiments with field experiments. Under controlled and replicated laboratory conditions, acoustic enrichment boosted recruitment by 2.57 times in the absence of anthropogenic noise, but yielded comparable recruitment in its presence (i.e. no boosting effect). Using the same technique, we then tested the replicability of these responses in real-world settings where independently replicated 'sites' are unfeasible owing to the inherent differences in soundscapes. Again, acoustic enrichment increased recruitment where anthropogenic noise was low (by 3.33 times), but had no effect at a site of noise pollution. Together, these coupled laboratory-to-field outcomes indicate that anthropogenic noise can mask the signal of acoustic enrichment. While noise pollution may reduce the effectiveness of acoustic enrichment, some of our reported observations suggest that anthropogenic noise per se might also provide an attractive cue for oyster larvae to recruit. These findings underscore the complexity of larval behavioural responses to acoustic stimuli during recruitment processes.


Asunto(s)
Señales (Psicología) , Ruido , Animales , Larva/fisiología , Larva/crecimiento & desarrollo , Acústica , Crassostrea/fisiología , Conducta Animal
15.
Proc Biol Sci ; 291(2018): 20232705, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38444334

RESUMEN

The correct identification of variables affecting parasite diversity and assemblage composition at different spatial scales is crucial for understanding how pathogen distribution responds to anthropogenic disturbance and climate change. Here, we used a database of avian haemosporidian parasites to test how the taxonomic and phylogenetic diversity and phylogenetic structure of the genera Plasmodium, Haemoproteus and Leucocytozoon from three zoogeographic regions are related to surrogate variables of Earth's energy input, habitat heterogeneity (climatic diversity, landscape heterogeneity, host richness and human disturbance) and ecological interactions (resource use), which was measured by a novel assemblage-level metric related to parasite niche overlap (degree of generalism). We found that different components of energy input explained variation in richness for each genus. We found that human disturbance influences the phylogenetic structure of Haemoproteus while the degree of generalism explained richness and phylogenetic structure of Plasmodium and Leucocytozoon genera. Furthermore, landscape attributes related to human disturbance (human footprint) can filter Haemoproteus assemblages by their phylogenetic relatedness. Finally, assembly processes related to resource use within parasite assemblages modify species richness and phylogenetic structure of Plasmodium and Leucocytozoon assemblages. Overall, our study highlighted the genus-specific patterns with the different components of Earth's energy budget, human disturbances and degree of generalism.


Asunto(s)
Haemosporida , Especificidad del Huésped , Humanos , Animales , Filogenia , Efectos Antropogénicos , Aves
16.
Proc Biol Sci ; 291(2033): 20241620, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39437842

RESUMEN

Animal personality differences may have evolved as alternative strategies for negotiating multiple stressor landscapes. Indeed, ecologists are increasingly recognizing that interactions among multiple stressors can transform selective landscapes and behavioural and physiological responses to stress regimes. Yet, evaluating this hypothesis poses challenges, as most studies involving relationships between personality variation and the environment consider single stressors. Here, we review the literature to explore the theory and evidence that multiple stressor environments may mediate personality variation. We consider effects on evolution of personality variation, as influenced by life-history, energetic and behavioural trade-offs, and effects on phenotypic expression of personality traits. We then explore how personality variation may modulate behavioural and physiological responses to multiple stressors, and how differential responses may be affected by personality-dependent movement ecology and cognitive strategies. Among-individual differences in responses to multiple stressors are critical to elucidate, as multi-stress interactions may transform animal behavioural and physiological responses relative to those predicted under single stressor scenarios, and because among-individual variation comprises the basis for evolutionary shifts in stress responsiveness and population resiliency to global environmental change.


Asunto(s)
Conducta Animal , Evolución Biológica , Individualidad , Personalidad , Estrés Fisiológico , Animales , Ambiente
17.
New Phytol ; 241(1): 142-153, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37932883

RESUMEN

Plant litter is known to affect soil, community, and ecosystem properties. However, we know little about the capacity of litter to modulate grassland responses to climate change. Using a 7-yr litter removal experiment in a semiarid grassland, here we examined how litter removal interacts with a 2-yr drought to affect soil environments, plant community composition, and ecosystem function. Litter loss exacerbates the negative impacts of drought on grasslands. Litter removal increased soil temperature but reduced soil moisture and nitrogen mineralization, which substantially increased the negative impacts of drought on primary productivity and the abundance of perennial rhizomatous graminoids. Moreover, complete litter removal shifted plant community composition from grass-dominated to forb-dominated and reduced species and functional group asynchrony, resulting in lower ecosystem temporal stability. Our results suggest that ecological processes that lead to reduction in litter, such as burning, grazing, and haying, may render ecosystems more vulnerable and impair the capacity of grasslands to withstand drought events.


Asunto(s)
Ecosistema , Pradera , Sequías , Plantas , Suelo
18.
Mol Ecol ; 33(14): e17429, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38847234

RESUMEN

Hybridization can result in the transfer of adaptive genetic material from one species to another, known as adaptive introgression. Bottlenecked (and hence genetically depleted) species are expected to be particularly receptive to adaptive introgression, since introgression can introduce new or previously lost adaptive genetic variation. The Alpine ibex (Capra ibex), which recently recovered from near extinction, is known to hybridize with the domestic goat (Capra aegagrus hircus), and signals of introgression previously found at the major histocompatibility complex were suggested to potentially be adaptive. Here, we combine two ancient whole genomes of Alpine ibex with 29 modern Alpine ibex genomes and 31 genomes representing six related Capra species to investigate the genome-wide patterns of introgression and confirm the potential relevance of immune loci. We identified low rates of admixture in modern Alpine ibex through various F statistics and screening for putative introgressed tracts. Further results based on demographic modelling were consistent with introgression to have occurred during the last 300 years, coinciding with the known species bottleneck, and that in each generation, 1-2 out of 100 Alpine ibex had a domestic goat parent. The putatively introgressed haplotypes were enriched at immune-related genes, where the adaptive value of alternative alleles may give individuals with otherwise depleted genetic diversity a selective advantage. While interbreeding with domestic species is a prevalent issue in species conservation, in this specific case, it resulted in putative adaptive introgression. Our findings highlight the complex interplay between hybridization, adaptive evolution, and the potential risks and benefits associated with anthropogenic influences on wild species.


Asunto(s)
Introgresión Genética , Cabras , Haplotipos , Hibridación Genética , Animales , Cabras/genética , Cabras/inmunología , Haplotipos/genética , Genética de Población , Variación Genética
19.
Glob Chang Biol ; 30(1): e16972, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37882506

RESUMEN

Mosses of the genus Sphagnum are the dominant vegetation in most pristine peatlands in temperate and high-latitude regions. They play a crucial role in carbon sequestration, being responsible for ca. 50% of carbon accumulation through their active participation in peat formation. They have a significant influence on the dynamics of CO2 emissions due to an efficient maximum potential photosynthetic rate, lower respiration rates, and the production of a recalcitrant litter whose decomposition is gradual. However, various anthropogenic disturbances and land use management actions that favor its reestablishment have the potential to modify the dynamics of these CO2 emissions. Therefore, the objective of this review is to discuss the role of Sphagnum in CO2 emissions generated in peatland ecosystems, and to understand the impacts of anthropogenic practices favorable and detrimental to Sphagnum on these emissions. Based on our review, increased Sphagnum cover reduces CO2 emissions and fosters C sequestration, but drainage transforms peatlands dominated by Sphagnum into a persistent source of CO2 due to lower gross primary productivity of the moss and increased respiration rates. Sites with moss removal used as donor material for peatland restoration emit twice as much CO2 as adjacent undisturbed natural sites, and those with commercial Sphagnum extraction generate almost neutral CO2 emissions, yet both can recover their sink status in the short term. The reintroduction of fragments and natural recolonization of Sphagnum in transitional peatlands, can reduce emissions, recover, or increase the CO2 sink function in the short and medium term. Furthermore, Sphagnum paludiculture is seen as a sustainable alternative for the use of transitional peatlands, allowing moss production strips to become CO2 sink, however, it is necessary to quantify the emissions of all the components of the field of production (ditches, causeway), and the biomass harvested from the moss to establish a final closing balance of C.


Asunto(s)
Ecosistema , Sphagnopsida , Dióxido de Carbono/análisis , Humedales , Suelo
20.
Glob Chang Biol ; 30(4): e17267, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38563471

RESUMEN

Lakes, as integral social-ecological systems, are hotspots for exploring climatic and anthropogenic impacts, with crucial pathways revealed by continuous sediment records. However, the response of multi-proxies in large shallow lakes to typical abrupt events and sustained drivers since the Anthropocene remains unclear. Here, we explored the driver-identification relationships between multi-proxy peaks and natural and anthropogenic events as well as the attribution of short-term perturbations and long-term pressures. To this end, sediment core records, socio-ecological data, and documented events from official records were integrated into a large shallow lake (Dongting Lake, China). Significant causal cascades and path effects (goodness-of-fit: 0.488; total effect: -1.10; p < .001) were observed among catchment environmental proxies, lake biogenic proxies, and mixed-source proxies. The peak-event identification rate (PEIR) and event-peak driving rate were proposed, and values of 28.57%-46.43% and 50%-81.25% were obtained, respectively. The incomplete accuracy of depicting event perturbations using sediment proxies was caused by various information filters both inside and outside the lake. PEIRs for compound events were 1.41 (±0.72) and 1.09 (±0.46) times greater than those for anthropogenic-dominated and natural-dominated events, respectively. Furthermore, socio-economic activity, hydrologic dynamics, land-use changes, and agriculture exerted significant and persistent pressures, cumulatively contributing 55.3%-80.9% to alterations in sediment proxies. Relatively synergistic or antagonistic trends in temporal contributions of these forces were observed after 2000, which were primarily attributed to the "Grain for Green" project and the Three Gorges Dam. This study represents one of the few investigations to distinguish the driver-response relationship of multiple proxies in large shallow lakes under typical event perturbations and long-term sustained pressures since the Anthropocene. The findings will help policymakers and managers address ecological perturbations triggered by climate change and human activities over long-term periods.


Asunto(s)
Sedimentos Geológicos , Lagos , Humanos , Ecosistema , China , Agricultura , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda