Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biofouling ; 38(2): 131-146, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35067121

RESUMEN

Pseudomonas aeruginosa is one of the most common biofilm-producing bacteria, often leading to long-term and chronic infections. The LasR regulator protein acts as the central regulator of the quorum sensing (QS) system and coordinates the expression of some virulence and biofilm genes. In this study, novel peptides (WSF, FASK, YDVD) were designed for binding to the domain of the transcriptional activator of the LasR protein and interfere with LasR in the QS system of P. aeruginosa. The effects of these peptides on biofilm production, expression of biofilm-related genes (AlgC, PslA, PelA), and growth of planktonic P. aeruginosa were investigated. All three peptides inhibited the growth of P. aeruginosa planktonic cells at 1600 µg ml-1 and exhibited anti-biofilm effects at sub-inhibitory concentrations (800 µg ml-1). Measurements of the mRNA levels of biofilm-related genes at sub-inhibitory concentrations of the designed peptides showed a significant decrease.


Asunto(s)
Pseudomonas aeruginosa , Percepción de Quorum , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Péptidos/farmacología , Factores de Virulencia/metabolismo
2.
Int J Mol Sci ; 21(6)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32192076

RESUMEN

Chronic respiratory infections are the main cause of morbidity and mortality in cystic fibrosis (CF) patients, and are characterized by the development of multidrug resistance (MDR) phenotype and biofilm formation, generally recalcitrant to treatment with conventional antibiotics. Hence, novel effective strategies are urgently needed. Antimicrobial peptides represent new promising therapeutic agents. Here, we analyze for the first time the efficacy of three versions of a cryptide identified in human apolipoprotein B (ApoB, residues 887-922) towards bacterial strains clinically isolated from CF patients. Antimicrobial and anti-biofilm properties of ApoB-derived cryptides have been analyzed by broth microdilution assays, crystal violet assays, confocal laser scanning microscopy and scanning electron microscopy. Cell proliferation assays have been performed to test cryptide effects on human host cells. ApoB-derived cryptides have been found to be endowed with significant antimicrobial and anti-biofilm properties towards Pseudomonas and Burkholderia strains clinically isolated from CF patients. Peptides have been also found to be able to act in combination with the antibiotic ciprofloxacin, and they are harmless when tested on human bronchial epithelial mesothelial cells. These findings open interesting perspectives to cryptide applicability in the treatment of chronic lung infections associated with CF disease.


Asunto(s)
Apolipoproteínas B/metabolismo , Infecciones Bacterianas/etiología , Infecciones Bacterianas/metabolismo , Fibrosis Quística/complicaciones , Fibrosis Quística/metabolismo , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Apolipoproteínas B/química , Infecciones Bacterianas/tratamiento farmacológico , Biopelículas/efectos de los fármacos , Sinergismo Farmacológico , Interacciones Huésped-Patógeno , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones Oportunistas/tratamiento farmacológico , Infecciones Oportunistas/etiología , Infecciones Oportunistas/metabolismo , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/etiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/ultraestructura
3.
Microb Pathog ; 135: 103605, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31228542

RESUMEN

Biofilm-related infections represent an enormous clinical challenge nowadays. In this context, diverse studies are underway to develop effective antimicrobial agents targeting bacterial biofilms. Here, we describe the antibacterial and anti-biofilm activities of a short, cationic peptide named R5F5, obtained from sliding-window analysis based on a peptide (PcDBS1R5) derived from Plasmodium chabaudi. Ten fragments were generated (R5F1 to F10) and submitted to initial antibacterial assays against Pseudomonas aeruginosa. As a result, R5F5 showed the highest antimicrobial activity. We therefore carried out further antibacterial and anti-biofilm assays against P. aeruginosa and Klebsiella pneumoniae carbapenemase-producing bacterial strains. R5F5 revealed selective anti-biofilm activity, as the peptide inhibited >60% biofilm formation in all cases from 8 to 64 µg·mL-1. Moreover, R5F5 was not hemolytic against mice erythrocytes at 640 µg mL-1. Cytotoxic effects on human lung fibroblast cells were not detected at 160 µg·mL-1. Structural studies revealed that R5F5 presents random coil conformations in water and 50% 2,2,2-trifluoroethanol (TFE)/water (v/v), whereas amphipathic, extended conformations were observed in contact with sodium dodecyl sulfate (SDS) micelles. Thus, here we report a novel peptide with selective anti-biofilm activity against susceptible and resistant bacterial strains, with no toxicity toward mammalian cells and that adopts a stable structure in anionic environment.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Biopelículas/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Animales , Péptidos Catiónicos Antimicrobianos/química , Proteínas Bacterianas , Línea Celular , Supervivencia Celular/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Simulación de Dinámica Molecular , Plasmodium chabaudi/química , beta-Lactamasas
4.
Front Cell Infect Microbiol ; 13: 1295311, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38162583

RESUMEN

Biofilm is a structured community of bacteria encased within a self-produced extracellular matrix. When bacteria form biofilms, they undergo a phenotypic shift that enhances their resistance to antimicrobial agents. Consequently, inducing the transition of biofilm bacteria to the planktonic state may offer a viable approach for addressing infections associated with biofilms. Our previous study has shown that the mouse antimicrobial peptide CRAMP-34 can disperse Pseudomonas aeruginosa (P. aeruginosa) biofilm, and the potential mechanism of CRAMP-34 eradicate P. aeruginosa biofilms was also investigated by combined omics. However, changes in bacterial extracellular metabolism have not been identified. To further explore the mechanism by which CRAMP-34 disperses biofilm, this study analyzed its effects on the extracellular metabolites of biofilm cells via metabolomics. The results demonstrated that a total of 258 significantly different metabolites were detected in the untargeted metabolomics, of which 73 were downregulated and 185 were upregulated. Pathway enrichment analysis of differential metabolites revealed that metabolic pathways are mainly related to the biosynthesis and metabolism of amino acids, and it also suggested that CRAMP-34 may alter the sensitivity of biofilm bacteria to antibiotics. Subsequently, it was confirmed that the combination of CRAMP-34 with vancomycin and colistin had a synergistic effect on dispersed cells. These results, along with our previous findings, suggest that CRAMP-34 may promote the transition of PAO1 bacteria from the biofilm state to the planktonic state by upregulating the extracellular glutamate and succinate metabolism and eventually leading to the dispersal of biofilm. In addition, increased extracellular metabolites of myoinositol, palmitic acid and oleic acid may enhance the susceptibility of the dispersed bacteria to the antibiotics colistin and vancomycin. CRAMP-34 also delayed the development of bacterial resistance to colistin and ciprofloxacin. These results suggest the promising development of CRAMP-34 in combination with antibiotics as a potential candidate to provide a novel therapeutic approach for the prevention and treatment of biofilm-associated infections.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Ratones , Vancomicina , Colistina/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Infecciones por Pseudomonas/microbiología , Pruebas de Sensibilidad Microbiana
5.
J Innate Immun ; 11(3): 193-204, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30134244

RESUMEN

Highly antibiotic resistant, microbial communities, referred to as biofilms, cause various life-threatening infections in humans. At least two-thirds of all clinical infections are biofilm associated, and antibiotic therapy regularly fails to cure patients. Anti-biofilm peptides represent a promising approach to treat these infections by targeting biofilm-specific characteristics such as highly conserved regulatory mechanisms. They are being considered for clinical application and we discuss here key factors in discovery, design, and application, particularly the implementation of host-mimicking conditions, that are required to enable the successful advancement of potent anti-biofilm peptides from the bench to the clinic.


Asunto(s)
Biopelículas/efectos de los fármacos , Péptidos/farmacología , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Composición de Medicamentos , Descubrimiento de Drogas , Humanos , Oligopéptidos/farmacología , Péptidos/uso terapéutico , Relación Estructura-Actividad Cuantitativa , Catelicidinas
6.
Front Microbiol ; 8: 1867, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29021784

RESUMEN

Microorganisms continuously monitor their surroundings and adaptively respond to environmental cues. One way to cope with various stress-related situations is through the activation of the stringent stress response pathway. In Pseudomonas aeruginosa this pathway is controlled and coordinated by the activity of the RelA and SpoT enzymes that metabolize the small nucleotide secondary messenger molecule (p)ppGpp. Intracellular ppGpp concentrations are crucial in mediating adaptive responses and virulence. Targeting this cellular stress response has recently been the focus of an alternative approach to fight antibiotic resistant bacteria. Here, we examined the role of the stringent response in the virulence of P. aeruginosa PAO1 and the Liverpool epidemic strain LESB58. A ΔrelA/ΔspoT double mutant showed decreased cytotoxicity toward human epithelial cells, exhibited reduced hemolytic activity, and caused down-regulation of the expression of the alkaline protease aprA gene in stringent response mutants grown on blood agar plates. Promoter fusions of relA or spoT to a bioluminescence reporter gene revealed that both genes were expressed during the formation of cutaneous abscesses in mice. Intriguingly, virulence was attenuated in vivo by the ΔrelA/ΔspoT double mutant, but not the relA mutant nor the ΔrelA/ΔspoT complemented with either gene. Treatment of a cutaneous P. aeruginosa PAO1 infection with anti-biofilm peptides increased animal welfare, decreased dermonecrotic lesion sizes, and reduced bacterial numbers recovered from abscesses, resembling the phenotype of the ΔrelA/ΔspoT infection. It was previously demonstrated by our lab that ppGpp could be targeted by synthetic peptides; here we demonstrated that spoT promoter activity was suppressed during cutaneous abscess formation by treatment with peptides DJK-5 and 1018, and that a peptide-treated relA complemented stringent response double mutant strain exhibited reduced peptide susceptibility. Overall these data strongly indicated that synthetic peptides target the P. aeruginosa stringent response in vivo and thus offer a promising novel therapeutic approach.

7.
Acta Biomater ; 49: 316-328, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27915018

RESUMEN

Short antimicrobial peptides are essential to keep us healthy and their lasting potency can inspire the design of new types of antibiotics. This study reports the design of a family of eight-residue tryptophan-rich peptides (TetraF2W) obtained by converting the four phenylalanines in temporin-SHf to tryptophans. The temporin-SHf template was identified from the antimicrobial peptide database (http://aps.unmc.edu/AP). Remarkably, the double arginine variant (TetraF2W-RR) was more effective in killing methicillin-resistant Staphylococcus aureus (MRSA) USA300, but less cytotoxic to human skin HaCat and kidney HEK293 cells, than the lysine-containing dibasic combinations (KR, RK and KK). Killing kinetics and fluorescence spectroscopy suggest membrane targeting of TetraF2W-RR, making it more difficult for bacteria to develop resistance. Because established biofilms on medical devices are difficult to remove, we chose to covalently immobilize TetraF2W-RR onto the polyethylene terephthalate (PET) surface to prevent biofilm formation. The successful surface coating of the peptide is supported by FT-IR and XPS spectroscopies, chemical quantification, and antibacterial assays. This peptide-coated surface indeed prevented S. aureus biofilm formation with no cytotoxicity to human cells. In conclusion, TetraF2W-RR is a short Trp-rich peptide with demonstrated antimicrobial and anti-biofilm potency against MRSA in both the free and immobilized forms. Because these short peptides can be synthesized cost effectively, they may be developed into new antimicrobial agents or used as surface coating compounds. STATEMENT OF SIGNIFICANCE: It is stunning that the total deaths due to methicillin-resistant Staphylococcus aureus (MRSA) infection are comparable to AIDS/HIV-1, making it urgent to explore new possibilities. This study deals with this problem by two strategies. First, we have designed a family of novel antimicrobial peptides with merely eight amino acids, making it cost effective for chemical synthesis. These peptides are potent against MRSA USA300. Our study uncovers that the high potency of the tryptophan-rich short peptide is coupled with arginines, whereas these Trp- and Arg-rich peptides are less toxic to select human cells than the lysine-containing analogs. Such a combination generates a more selective peptide. As a second strategy, we also demonstrate successful covalent immobilization of this short peptide to the polyethylene terephthalate (PET) surface by first using a chitosan linker, which is easy to obtain. Because biofilms on medical devices are difficult to remove by traditional antibiotics, we also show that the peptide coated surface can prevent biofilm formation. Although rarely demonstrated, we provide evidence that both the free and immobilized peptides target bacterial membranes, rendering it difficult for bacteria to develop resistance. Collectively, the significance of our study is the design of novel antimicrobial peptides provides a useful template for developing novel antimicrobials against MRSA. In addition, orientation-specific immobilization of the same short peptide can prevent biofilm formation on the PET surface, which is widely used in making prosthetic heart valves cuffs and other bio devices.


Asunto(s)
Biopelículas/efectos de los fármacos , Proteínas Inmovilizadas/farmacología , Péptidos/farmacología , Secuencia de Aminoácidos , Antiinfecciosos/farmacología , Antifúngicos/farmacología , Bacterias/efectos de los fármacos , Fenómenos Biofísicos , Muerte Celular/efectos de los fármacos , Hongos/efectos de los fármacos , Células HEK293 , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Cinética , Pruebas de Sensibilidad Microbiana , Microscopía Confocal , Péptidos/química , Espectroscopía de Fotoelectrones , Tereftalatos Polietilenos/química , Estabilidad Proteica/efectos de los fármacos , Sales (Química)/farmacología , Suero/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
8.
Emerg Top Life Sci ; 1(1): 41-53, 2017 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33525815

RESUMEN

Biofilms represent an adaptive lifestyle where microbes grow as structured aggregates in many different environments, e.g. on body surfaces and medical devices. They are a profound threat in medical (and industrial) settings and cause two-thirds of all infections. Biofilm bacteria are especially recalcitrant to common antibiotic treatments, demonstrating adaptive multidrug resistance. For this reason, novel methods to eradicate or prevent biofilm infections are greatly needed. Recent advances have been made in exploring alternative strategies that affect biofilm lifestyle, inhibit biofilm formation, degrade biofilm components and/or cause dispersal. As such, naturally derived compounds, molecules that interfere with bacterial signaling systems, anti-biofilm peptides and phages show great promise. Their implementation as either stand-alone drugs or complementary therapies has the potential to eradicate resilient biofilm infections. Additionally, altering the surface properties of indwelling medical devices through bioengineering approaches has been examined as a method for preventing biofilm formation. There is also a need for improving current biofilm detection methods since in vitro methods often do not accurately measure live bacteria in biofilms or mimic in vivo conditions. We propose that the design and development of novel compounds will be enabled by the improvement and use of appropriate in vitro and in vivo models.

9.
Pharmacol Ther ; 160: 133-44, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26896562

RESUMEN

Pathogenic microbial biofilm, a consortium of microbial cells protected by a self-produced polymer matrix, is considered a worldwide challenge due to the inherent antibiotic resistance conferred by its lifestyle. Living, as it does, in a community of microbial organisms in a clinical situation, makes it responsible for severe and dangerous cases of infection. Combating this organisation of cells usually requires high antibiotic doses for a prolonged time, and these approaches often fail, contributing to infection persistence. In addition to therapeutic limitations, biofilms can be a source of infections when they grow in medical devices. The challenge imposed by biofilms has mobilised researchers in the entire world to prospect or develop alternatives to control biofilms. In this context, this review summarises the new frontiers that could be used in clinical circumstances in order to prevent or eliminate pathogenic biofilms.


Asunto(s)
Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas/efectos de los fármacos , Animales , Farmacorresistencia Bacteriana/efectos de los fármacos , Humanos
10.
Postdoc J ; 3(2): 1-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27563687

RESUMEN

Host defense (antimicrobial) peptides (HDPs) are produced by virtually all organisms and have an important role in protection against microbial infections. Some naturally occurring peptides such as the human cathelicidin LL-37 and the bovine peptide indolicidin have been shown to inhibit bacterial biofilm development. Rearrangement and substantial modification of the amino acid sequence of these and other HDPs has led to the identification of small synthetic peptides with increased, broad-spectrum anti-biofilm activity that is independent of activity vs. planktonic cells. Some of these peptides have also been shown to act in synergy with antibiotics commonly used in the clinic to prevent biofilm formation and eradicate pre-existing biofilms. Recently, the mechanism of action of one of these peptides (i.e., 1018) was shown to involve binding to and causing degradation of the second messenger stress response nucleotide ppGpp, which plays an important role in biofilm formation and maintenance. Here, we review recent progress in the field of anti-biofilm peptides and propose future directions to further develop these therapeutic agents.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda