Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Brief Bioinform ; 24(3)2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37068307

RESUMEN

The off-target effect occurring in the CRISPR-Cas9 system has been a challenging problem for the practical application of this gene editing technology. In recent years, various prediction models have been proposed to predict potential off-target activities. However, most of the existing prediction methods do not fully exploit guide RNA (gRNA) and DNA sequence pair information effectively. In addition, available prediction methods usually ignore the noise effect in original off-target datasets. To address these issues, we design a novel coding scheme, which considers the key features of mismatch type, mismatch location and the gRNA-DNA sequence pair information. Furthermore, a transformer-based anti-noise model called CrisprDNT is developed to solve the noise problem that exists in the off-target data. Experimental results of eight existing datasets demonstrate that the method with the inclusion of the anti-noise loss functions is superior to available state-of-the-art prediction methods. CrisprDNT is available at https://github.com/gzrgzx/CrisprDNT.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Edición Génica/métodos , Secuencia de Bases
2.
Sensors (Basel) ; 23(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36904935

RESUMEN

Extracting circle information from images has always been a basic problem in computer vision. Common circle detection algorithms have some defects, such as poor noise resistance and slow computation speed. In this paper, we propose an anti-noise fast circle detection algorithm. In order to improve the anti-noise of the algorithm, we first perform curve thinning and connection on the image after edge extraction, then suppress noise interference by the irregularity of noise edges and extract circular arcs by directional filtering. In order to reduce the invalid fitting and speed up the running speed, we propose a circle fitting algorithm with five quadrants, and improve the efficiency of the algorithm by the idea of "divide and conquer". We compare the algorithm with RCD, CACD, WANG and AS on two open datasets. The results show that we have the best performance under noise while keeping the speed of the algorithm.

3.
Sensors (Basel) ; 23(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37420773

RESUMEN

Finding relevant features that can represent different types of faults under a noisy environment is the key to practical applications of intelligent fault diagnosis. However, high classification accuracy cannot be achieved with only a few simple empirical features, and advanced feature engineering and modelling necessitate extensive specialised knowledge, resulting in restricted widespread use. This paper has proposed a novel and efficient fusion method, named MD-1d-DCNN, that combines statistical features from multiple domains and adaptive features retrieved using a one-dimensional dilated convolutional neural network. Moreover, signal processing techniques are utilised to uncover statistical features and realise the general fault information. To offset the negative influence of noise in signals and achieve high accuracy of fault diagnosis in noisy settings, 1d-DCNN is adopted to extract more dispersed and intrinsic fault-associated features, while also preventing the model from overfitting. In the end, fault classification based on fusion features is accomplished by the usage of fully connected layers. Two bearing datasets containing varying amounts of noise are used to verify the effectiveness and robustness of the suggested approach. The experimental results demonstrate MD-1d-DCNN's superior anti-noise capability. When compared to other benchmark models, the proposed method performs better at all noise levels.


Asunto(s)
Benchmarking , Ingeniería , Inteligencia , Conocimiento , Redes Neurales de la Computación
4.
Sensors (Basel) ; 22(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36236464

RESUMEN

Deep space exploration navigation requires high accuracy of the Doppler measurement, which is equivalent to a frequency estimation problem. Because of the fence effect and spectrum leakage, the frequency estimation performances, which is based on the FFT spectrum methods, are significantly affected by the signal frequency. In this paper, we propose a novel method that utilizes the mathematical relation of the three Chirp-Z Transform (CZT) coefficients around the peak spectral line. The realization, unbiased performance, and algorithm parameter setting rule of the proposed method are described and analyzed in detail. The Monte Carlo simulation results show that the proposed method has a better anti-noise and unbiased performance compared with some traditional estimator methods. Furthermore, the proposed method is utilized to process the raw data of MEX and Tianwen-1 satellites received by Chinese Deep Space Stations (CDSS). The results show that the Doppler estimation accuracy of MEX and Tianwen-1 are both about 3 millihertz (mHz) in 1-s integration, which is consistent with that of ESA/EVN/CDSN and a little better than that of the Chinese VLBI network (CVN). Generally, this proposed method can be effectively utilized to support Chinese future deep space navigation missions and radio science experiments.

5.
Sensors (Basel) ; 22(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36502133

RESUMEN

Structural health monitoring and fault diagnosis are important scientific issues in mechanical engineering, civil engineering, and other disciplines. The basic premise of structural health work is to be able to accurately diagnose the fault in the structure. Therefore, the accurate fault diagnosis of structure can not only ensure the safe operation of mechanical equipment and the safe use of civil construction, but also ensure the safety of people's lives and property. In order to improve the accuracy fault diagnosis of frame structure under noise conditions, the existing Convolutional Neural Network with Training Interference (TICNN) model is improved, and a new convolutional neural network model with strong noise resistance is proposed. In order to verify THE superiority of the proposed improved TICNN in anti-noise, comparative experiments are carried out by using TICNN, One Dimensional Convolution Neural Network (1DCNN) and First Layer Wide Convolution Kernel Deep Convolution Neural Network (WDCNN). The experimental results show that the improved TICNN has the best anti-noise ability. Based on the improved TICNN, the fault diagnosis experiment of a four-story steel structure model is carried out. The experimental results show that the improved TICNN can obtain high diagnostic accuracy under strong noise conditions, which verifies the advantages of the improved TICNN.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Humanos , Ingeniería , Registros , Acero
6.
Sensors (Basel) ; 23(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36616829

RESUMEN

3D object detection methods based on camera and LiDAR fusion are susceptible to environmental noise. Due to the mismatch of physical characteristics of the two sensors, the feature vectors encoded by the feature layer are in different feature spaces. This leads to the problem of feature information deviation, which has an impact on detection performance. To address this problem, a point-guided feature abstract method is presented to fuse the camera and LiDAR at first. The extracted image features and point cloud features are aggregated to keypoints for enhancing information redundancy. Second, the proposed multimodal feature attention (MFA) mechanism is used to achieve adaptive fusion of point cloud features and image features with information from multiple feature spaces. Finally, a projection-based farthest point sampling (P-FPS) is proposed to downsample the raw point cloud, which can project more keypoints onto the close object and improve the sampling rate of the point-guided image features. The 3D bounding boxes of the object is obtained by the region of interest (ROI) pooling layer and the fully connected layer. The proposed 3D object detection algorithm is evaluated on three different datasets, and the proposed algorithm achieved better detection performance and robustness when the image and point cloud data contain rain noise. The test results on a physical test platform further validate the effectiveness of the algorithm.


Asunto(s)
Algoritmos , Lluvia
7.
Sensors (Basel) ; 23(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36617014

RESUMEN

Accurate damage location diagnosis of frame structures is of great significance to the judgment of damage degree and subsequent maintenance of frame structures. However, the similarity characteristics of vibration data at different damage locations and noise interference bring great challenges. In order to overcome the above problems and realize accurate damage location diagnosis of the frame structure, the existing convolutional neural network with training interference (TICNN) is improved in this paper, and a high-precision neural network model named convolutional neural network based on Inception (BICNN) for fault diagnosis with strong anti-noise ability is proposed by adding the Inception module to TICNN. In order to effectively avoid the overall misjudgment problem caused by using single sensor data for damage location diagnosis, an integrated damage location diagnosis method is proposed. Taking the four-story steel frame model of the University of British Columbia as the research object, the method proposed in this paper is tested and compared with other methods. The experimental results show that the diagnosis accuracy of the proposed method is 97.38%, which is higher than other methods; at the same time, it has greater advantages in noise resistance. Therefore, the method proposed in this paper not only has high accuracy, but also has strong anti-noise ability, which can solve the problem of accurate damage location diagnosis of complex frame structures under a strong noise environment.


Asunto(s)
Juicio , Redes Neurales de la Computación , Registros , Acero , Vibración
8.
Sensors (Basel) ; 21(16)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34450970

RESUMEN

The development of deep learning provides a new research method for fault diagnosis. However, in the industrial field, the labeled samples are insufficient and the noise interference is strong so that raw data obtained by the sensor are occupied with noise signal. It is difficult to recognize time-domain fault signals under the severe noise environment. In order to solve these problems, the convolutional neural network (CNN) fusing frequency domain feature matching algorithm (FDFM), called CNN-FDFM, is proposed in this paper. FDFM extracts key frequency features from signals in the frequency domain, which can maintain high accuracy in the case of strong noise and limited samples. CNN automatically extracts features from time-domain signals, and by using dropout to simulate noise input and increasing the size of the first-layer convolutional kernel, the anti-noise ability of the network is improved. Softmax with temperature parameter T and D-S evidence theory are used to fuse the two models. As FDFM and CNN can provide different diagnostic information in frequency domain, and time domain, respectively, the fused model CNN-FDFM achieves higher accuracy under severe noise environment. In the experiment, when a signal-to-noise ratio (SNR) drops to -10 dB, the diagnosis accuracy of CNN-FDFM still reaches 93.33%, higher than CNN's accuracy of 45.43%. Besides, when SNR is greater than -6 dB, the accuracy of CNN-FDFM is higher than 99%.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Ruido , Relación Señal-Ruido
9.
Sensors (Basel) ; 20(24)2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33302521

RESUMEN

In the era of big data, longer time series fault signals will not only be easy to copy and store, but also reduce the labor cost of manual labeling, which can better meet the needs of industrial big data. Aiming to effectively extract the key classification information from a longer time series of bearing vibration signals and achieve high diagnostic accuracy under noise and different load conditions. The one-dimensional adaptive long sequence convolutional network (ALSCN) is proposed. ALSCN can better extract features directly from high-dimensional original signals without manually extracting features and relying on expert knowledge. By adding two improved multi-scale modules, ALSCN can not only extract important features efficiently from noise signals, but also alleviate the problem of losing key information due to continuous down-sampling. Moreover, a Bayesian optimization algorithm is constructed to automatically find the best combination of hyperparameters in ALSCN. Based on two bearing data sets, the model is compared with traditional model such as SVM and deep learning models such as convolutional neural networks (CNN) et al. The results prove that ALSCN has a higher diagnostic accuracy rate on 5120-dimensional sequences under -5 signal to noise ratio (SNR) with better generalization.

10.
Sensors (Basel) ; 19(4)2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30823579

RESUMEN

Deep learning methods have been widely used in the field of intelligent fault diagnosis due to their powerful feature learning and classification capabilities. However, it is easy to overfit depth models because of the large number of parameters brought by the multilayer-structure. As a result, the methods with excellent performance under experimental conditions may severely degrade under noisy environment conditions, which are ubiquitous in practical industrial applications. In this paper, a novel method combining a one-dimensional (1-D) denoising convolutional autoencoder (DCAE) and a 1-D convolutional neural network (CNN) is proposed to address this problem, whereby the former is used for noise reduction of raw vibration signals and the latter for fault diagnosis using the de-noised signals. The DCAE model is trained with noisy input for denoising learning. In the CNN model, a global average pooling layer, instead of fully-connected layers, is applied as a classifier to reduce the number of parameters and the risk of overfitting. In addition, randomly corrupted signals are adopted as training samples to improve the anti-noise diagnosis ability. The proposed method is validated by bearing and gearbox datasets mixed with Gaussian noise. The experimental result shows that the proposed DCAE model is effective in denoising and almost causes no loss of input information, while the using of global average pooling and input-corrupt training improves the anti-noise ability of the CNN model. As a result, the method combined the DCAE model and the CNN model can realize high-accuracy diagnosis even under noisy environment.

11.
Sensors (Basel) ; 19(18)2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31514382

RESUMEN

An improved anti-noise morphology vision navigation algorithm is proposed for intelligent tractor tillage in a complex agricultural field environment. At first, the two key steps of guided filtering and improved anti-noise morphology navigation line extraction were addressed in detail. Then, the experiments were carried out in order to verify the effectiveness and advancement of the presented algorithm. Finally, the optimal template and its application condition were studied for improving the image-processing speed. The comparison experiment results show that the YCbCr color space has minimum time consumption of 0.094   s in comparison with HSV, HIS, and 2R-G-B color spaces. The guided filtering method can effectively distinguish the boundary between the tillage soil compared to other competing vanilla methods such as Tarel, multi-scale retinex, wavelet-based retinex, and homomorphic filtering in spite of having the fastest processing speed of 0.113   s . The extracted soil boundary line of the improved anti-noise morphology algorithm has the best precision and speed compared to other operators such as Sobel, Roberts, Prewitt, and Log. After comparing different sizes of image templates, the optimal template with the size of 140   ×   260 pixels could achieve high-precision vision navigation while the course deviation angle was not more than 7.5 ° . The maximum tractor speed of the optimal template and global template were 51.41   km / h and 27.47   km / h , respectively, which can meet the real-time vision navigation requirement of the smart tractor tillage operation in the field. The experimental vision navigation results demonstrated the feasibility of the autonomous vision navigation for tractor tillage operation in the field using the tillage soil boundary line extracted by the proposed improved anti-noise morphology algorithm, which has broad application prospect.

12.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 35(3): 460-467, 2018 06 25.
Artículo en Zh | MEDLINE | ID: mdl-29938956

RESUMEN

The inverse problem of electrical impedance tomography (EIT) is seriously ill-posed, which restricts the clinical application of EIT. Regularization is an important numerical method to improve the stability of the EIT inverse problem as well as the resolution of the imaging. This paper proposes a self-diagnosis regularization method based on Tikhonov regularization and diagonal weight regularization method (DWRM). Firstly, the ill-posedness of the inverse problem is analyzed by sensitivity. Then, the performance of the self-diagnosis regularization is analyzed through the singular value theory. Finally, some simulated experiments including simulations and flume experiment are carried out and verify that the self-diagnosis regularization has better image quality and anti-noise ability than those of traditional regularization methods. The self-diagnosis regularization method weakens the ill-posedness of inverse problem of EIT and can prompt the practical application of EIT.


Asunto(s)
Algoritmos , Impedancia Eléctrica , Tomografía Computarizada por Rayos X , Peso Corporal , Simulación por Computador , Humanos
13.
Sensors (Basel) ; 17(2)2017 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-28241451

RESUMEN

Intelligent fault diagnosis techniques have replaced time-consuming and unreliable human analysis, increasing the efficiency of fault diagnosis. Deep learning models can improve the accuracy of intelligent fault diagnosis with the help of their multilayer nonlinear mapping ability. This paper proposes a novel method named Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN). The proposed method uses raw vibration signals as input (data augmentation is used to generate more inputs), and uses the wide kernels in the first convolutional layer for extracting features and suppressing high frequency noise. Small convolutional kernels in the preceding layers are used for multilayer nonlinear mapping. AdaBN is implemented to improve the domain adaptation ability of the model. The proposed model addresses the problem that currently, the accuracy of CNN applied to fault diagnosis is not very high. WDCNN can not only achieve 100% classification accuracy on normal signals, but also outperform the state-of-the-art DNN model which is based on frequency features under different working load and noisy environment conditions.

14.
Materials (Basel) ; 15(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36234106

RESUMEN

At present, the detection accuracy of bolt-loosening diagnoses is still not high. In order to improve the detection accuracy, this paper proposes a fault diagnosis model based on the TSCNN model, which can simultaneously extract fault features from vibration signals and time-frequency images and can precisely detect the bolt-loosening states. In this paper, the LeNet-5 network is improved by adjusting the size and number of the convolution kernels, introducing the dropout operation, and building a two-dimensional convolutional neural network (2DCNN) model. Combining the advantages of a one-dimensional convolutional neural network (1DCNN) with wide first-layer kernels to suppress high-frequency noise, a two-stream convolutional neural network (TSCNN) is proposed based on 1D and 2D input data. The proposed model uses raw vibration signals and time-frequency images as input and automatically extracts sensitive features and representative information. Finally, the effectiveness and superiority of the proposed approach are verified by practical experiments that are carried out on a machine tool guideway. The experimental results show that the proposed approach can effectively achieve end-to-end bolt-loosening fault diagnoses, with an average recognition accuracy of 99.58%. In addition, the method can easily achieve over 93% accuracy when the SNR is over 0 dB without any denoising preprocessing. The results show that the proposed approach not only achieves high classification accuracy but also has good noise immunity.

15.
Front Comput Neurosci ; 14: 564015, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33469423

RESUMEN

Cardiovascular diseases (CVDs) are the leading cause of death today. The current identification method of the diseases is analyzing the Electrocardiogram (ECG), which is a medical monitoring technology recording cardiac activity. Unfortunately, looking for experts to analyze a large amount of ECG data consumes too many medical resources. Therefore, the method of identifying ECG characteristics based on machine learning has gradually become prevalent. However, there are some drawbacks to these typical methods, requiring manual feature recognition, complex models, and long training time. This paper proposes a robust and efficient 12-layer deep one-dimensional convolutional neural network on classifying the five micro-classes of heartbeat types in the MIT- BIH Arrhythmia database. The five types of heartbeat features are classified, and wavelet self-adaptive threshold denoising method is used in the experiments. Compared with BP neural network, random forest, and other CNN networks, the results show that the model proposed in this paper has better performance in accuracy, sensitivity, robustness, and anti-noise capability. Its accurate classification effectively saves medical resources, which has a positive effect on clinical practice.

16.
J. biomed. eng ; Sheng wu yi xue gong cheng xue za zhi;(6): 460-467, 2018.
Artículo en Zh | WPRIM | ID: wpr-687608

RESUMEN

The inverse problem of electrical impedance tomography (EIT) is seriously ill-posed, which restricts the clinical application of EIT. Regularization is an important numerical method to improve the stability of the EIT inverse problem as well as the resolution of the imaging. This paper proposes a self-diagnosis regularization method based on Tikhonov regularization and diagonal weight regularization method (DWRM). Firstly, the ill-posedness of the inverse problem is analyzed by sensitivity. Then, the performance of the self-diagnosis regularization is analyzed through the singular value theory. Finally, some simulated experiments including simulations and flume experiment are carried out and verify that the self-diagnosis regularization has better image quality and anti-noise ability than those of traditional regularization methods. The self-diagnosis regularization method weakens the ill-posedness of inverse problem of EIT and can prompt the practical application of EIT.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda