Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Chem Biodivers ; : e202402139, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316583

RESUMEN

Ostrya carpinifolia L., a member of the Betulaceae family, is a tree endemic to the Mediterranean basin that is well known for the hardness of its wood. In this study, we assess the anti-pollution activities of a hydroalcoholic extract of O. carpinifolia twigs using several judiciously selected in vitro cosmetic bioassays. The extract's capacity to counteract excessive production of reactive oxygen species following a cutaneous exposure to atmospheric pollution was evaluated using a combination of several antioxidant assays: DPPH, FRAP and ß-carotene bleaching assays. These antioxidant assays were complemented by anti-elastase, anti-collagenase, anti-hyaluronidase and anti-lipoxygenase assays to evaluate the capacity of the extract to preserve the integrity of the skin. The hydroalcoholic extract of O. carpinifolia demonstrates intriguing biological antioxidant activities, with approximately 50% inhibition observed in DPPH and ß-carotene assays. Furthermore, its anti-lipoxygenase, anti-hyaluronidase, and anti-collagenase activities are noteworthy, exceeding 50% inhibition. The two major compounds of O. carpinifolia ethanolic extract were isolated and identified as myricitrin (1) and quercitrin (2). Myricitrin and quercitrin exhibit antioxidant and anti-hyaluronidase properties; we explored the correlation of these properties with the activity of the crude hydroalcoholic extract. Notably, these compounds have not been previously described in the Ostrya genus.

2.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38203191

RESUMEN

Natural and sustainable anti-aging ingredients have gained attention from the cosmetic industry. This study evaluated the anti-aging potential of a sugarcane straw extract-based (SSE) cosmetic ingredient. First, cytotoxicity tests were assessed in keratinocytes and fibroblast cell lines, and sensitization was carried out through the direct peptide reactivity assay. Subsequently, various anti-aging properties were investigated, including inhibiting skin aging-related enzymes, promoting elastin and hyaluronic acid synthesis, and anti-pollution activity. Finally, a permeability assay using a synthetic membrane resembling skin was conducted. The results demonstrated that the SSE ingredient effectively inhibited elastase (55%), collagenase (25%), and tyrosinase (47%) while promoting hyaluronic acid production at non-cytotoxic and low-sensitizer concentrations. Moreover, it reduced the inflammatory response provoked by urban pollution, as evidenced by decreased levels of IL1-α and IL-6. However, it was observed that the phenolic compounds predominantly reached the skin's surface, indicating a limited ability to penetrate deeper layers of the skin. Therefore, it can be concluded that the SSE ingredient holds anti-aging properties, albeit with limited penetration into deeper skin layers. Further research and formulation advancements are needed to optimize the ingredient's ability to reach and exert its effects in deeper skin layers.


Asunto(s)
Ácido Hialurónico , Saccharum , Queratinocitos , Monofenol Monooxigenasa
3.
Photodermatol Photoimmunol Photomed ; 38(2): 123-131, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34411336

RESUMEN

Ambient particulate matter (PM) is a major contributor to environmental air pollution-associated skin damage. However, most published studies are observational or epidemiologic and have not mechanistically investigated the effects of air pollutants on cellular senescence and aging, particularly in combination with ultraviolet (UV) radiation. Herein, we analyzed whether UVA aggravates the PM-induced inflammatory cascade, which contributes to the aging of skin-derived cells. We hypothesized that cellular senescence is involved in PM&UVA-induced aging and tested whether an l-ascorbic acid compound (LAC), containing vitamin E and ferulic acid, can inhibit PM&UVA-induced aging. PM&UVA-exposed HDFs showed further elevated reactive oxygen species (ROS) levels detected by flow cytometry. We then demonstrated that PM induces MAPK signaling activation and the expression of AhR and NF-κB, responses that are both exacerbated by UVA. The levels of inflammatory cytokines, IL-1ß and IL-6, were significantly higher in the PM&UVA-exposed group which resulted in increased transcription of MMPs, causing downregulation of type I collagen. Meanwhile, treatment with LAC reduced the levels of ROS and inflammatory cytokines. Additionally, PM&UVA-induced SA-ß-gal production (staining assay) was reduced by LAC. These findings suggest a role of atmospheric pollution and UVA radiation in cellular senescence induction. Our findings also suggest a possible role of AhR inhibition by topical antioxidants to prevent atmospheric pollution-induced skin aging.


Asunto(s)
Envejecimiento de la Piel , Ácido Ascórbico/farmacología , Fibroblastos/metabolismo , Humanos , Material Particulado/efectos adversos , Material Particulado/metabolismo , Piel/metabolismo , Rayos Ultravioleta/efectos adversos
4.
Dermatol Ther ; 34(4): e14960, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33884731

RESUMEN

While there is increasing interest in anti-pollution care to particulate matter (PM), there has been no research evaluating the efficacy of skin care products in a real-world setting. Our objective was to find effective ways to protect skin from PM. In total, 64 volunteers whose skin was classified as reactive to PM concentration in the previous study were enrolled. Through split-face study, different combinations of skin care products (barrier cream, barrier cream/micellar water, antioxidant, and antioxidant/micellar water) were applied for 4 weeks during the high-PM period. The biophysical properties were measured, and a facial analysis system was used to evaluate skin condition at days 0, 14, and 28. The concentrations of PM and daily events that may affect skin conditions were also recorded. The mean concentration levels of PM10 and PM2.5 from days 0 to 14 were higher in the barrier cream group than in the antioxidant group. For each group, aside from skin tone in the antioxidant/micellar water group, there were no statistically significant differences in skin measurements before and after the application, which reflects no aggravation in skin condition during high-PM periods. Intergroup analysis showed no differences in skin measurements among the four groups from day 0 to day 14, from day 14 to day 28, and from day 0 to 28. For anti-pollution care, maintaining skin barrier function using barrier cream seems to be sufficient in individuals sensitive to PM.


Asunto(s)
Contaminación del Aire , Material Particulado , Humanos , Material Particulado/efectos adversos , Piel , Cuidados de la Piel
5.
Skin Res Technol ; 27(6): 1092-1099, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34110051

RESUMEN

BACKGROUND: Skin damage arising from pollutants in gaseous and particulate matter forms is mainly mediated by oxidative stress. The pollutants directly or indirectly generate free radicals on and in the skin, leading, for example, to MMP up-regulation and damage of collagen fibers. Antioxidants and chelators are used in anti-pollution cosmetics to reduce the harmful effects of free radical generation. MATERIALS AND METHODS: We investigated the efficacy of two antioxidants and one chelator in an anti-pollution cigarette smoke model. Free radical generation was measured directly after UV and cigarette smoke exposure ex vivo on pig skin (slaughterhouse waste), by use of Electron Spin Resonance (ESR). Effects of cigarette smoke were compared to those of Urban Dust (NIST-standard). ESR was also used to measure the copper chelation activity of the test products. Following cigarette smoke application in vivo, two markers of lipid peroxidation malondialdehyde (MDA), and squalene monohydroperoxide (SQOOH), were measured from swab solutions taken from the smoke-exposed skin sites. RESULTS: EDTA generated no effect and the non-chelator antioxidant Tocopherol only small antioxidant effects after exposed to cigarette smoke ex vivo as well as in vivo. Only the hydrophilic phenylethanoid H1 showed significant effects. A clear reduction of free radicals ex vivo and further a significant reduction of in vivo lipid peroxide formation was measured. CONCLUSION: The cigarette smoke model is an ideal method for in vivo assessment of anti-pollution efficacy of topical products with close relation to the real situation of subjects exposed to urban pollution. Further research is required to better understand the role of chelators in anti-pollution cosmetics.


Asunto(s)
Antioxidantes , Quelantes , Animales , Antioxidantes/farmacología , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Humo/efectos adversos , Fumar , Porcinos
6.
BMC Complement Altern Med ; 19(1): 30, 2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30691451

RESUMEN

BACKGROUND: Exposure of skin to urban air pollutants is closely related to skin aging and inflammatory responses such as wrinkles formation, pigmentation spot, atopic dermatitis, and acne. Thus, a great deal of interest has been focused on the development of natural resources that can provide a protective effect to skin from pollutants. METHODS: The antioxidative activity of Camellia japonica flower extract (CJFE) was evaluated by 1,2-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assay, and the inhibitory effect of CJFE by urban air pollutants-induced reactive oxygen species (ROS) production was determined in cultured normal human dermal fibroblasts (NHDFs). We additionally investigated the protective effects of CJFE against urban air pollutant using in vitro and ex vivo model. RESULTS: CJFE with high phenolic concentration showed antioxidative activity on scavenging capacity of 1,2-diphenyl-2-picrylhydrazyl (DPPH) radicals and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical cation in a concentration dependent manner. CJFE inhibited urban air pollutants-induced ROS generation, matrixmetalloproteinase-1 (MMP-1) production and a xenobiotic response element (XRE)-luciferase activity indicating the aryl hydrocarbon receptor (AhR) transactivation. In addition, CJFE showed an excellent protective activity against pollutants-induced deteriorating effect in ex vivo model. CJFE reduced the level of pollutants-induced malondialdehyde (MDA), lipid peroxidation marker, inhibited MMP-1 expression and increased collagen synthesis. It also reduced the cell numbers with pyknotic nuclei (mainly occurring in apoptosis) and detachment of dermo-epidermal junction (DEJ) induced by pollutants. CONCLUSIONS: Apparently, it is proposed that CJFE can be used as a protective material against pollutant-induced skin damages.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Camellia/química , Flores/química , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Benzotiazoles/metabolismo , Compuestos de Bifenilo/metabolismo , Células Cultivadas , Fibroblastos/efectos de los fármacos , Humanos , Oxidación-Reducción/efectos de los fármacos , Picratos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácidos Sulfónicos/metabolismo
7.
Int J Mol Sci ; 20(3)2019 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-30691106

RESUMEN

Pollution-induced skin damage results in oxidative stress; cellular toxicity; inflammation; and, ultimately, premature skin aging. Previous studies suggest that the activation of autophagy can protect oxidation-induced cellular damage and aging-like changes in skin. In order to develop new anti-pollution ingredients, this study screened various kinds of natural extracts to measure their autophagy activation efficacy in cultured dermal fibroblast. The stimulation of autophagy flux by the selected extracts was further confirmed both by the expression of proteins associated with the autophagy signals and by electron microscope. Crepidiastrum denticulatum (CD) extract treated cells showed the highest autophagic vacuole formation in the non-cytotoxic range. The phosphorylation of adenosine monophosphate kinase (AMPK), but not the inhibition of mammalian target of rapamycin (mTOR), was observed by CD-extract treatment. Its anti-pollution effects were further evaluated with model compounds, benzo[a]pyrene (BaP) and cadmium chloride (CdCl2), and a CD extract treatment resulted in both the protection of cytotoxicity and a reduction of proinflammatory cytokines. These results suggest that the autophagy activators can be a new protection regimen for anti-pollution. Therefore, CD extract can be used for anti-inflammatory and anti-pollution cosmetic ingredients.


Asunto(s)
Asteraceae/química , Contaminantes Ambientales/efectos adversos , Células Epidérmicas/citología , Extractos Vegetales/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Benzopirenos/efectos adversos , Cloruro de Cadmio/efectos adversos , Células Cultivadas , Citocinas/metabolismo , Células Epidérmicas/efectos de los fármacos , Células Epidérmicas/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Microscopía Electrónica de Transmisión , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Extractos Vegetales/química , Serina-Treonina Quinasas TOR/metabolismo
8.
Eur J Pharm Biopharm ; 197: 114211, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38340877

RESUMEN

The concentration of air pollution is gradually increasing every year so that daily skin exposure is unavoidable. Dietary supplements and topical formulations currently represent the protective strategies to guard against the effects of air pollution on the body and the skin. Unfortunately, there are not yet enough methods available to measure the effectiveness of anti-pollution products on skin. Here, we present two ex vivo methods for measuring the protective effect against air pollution of different cream formulations on the skin: Electron paramagnetic resonance (EPR) spectroscopy and autofluorescence excited by 785 nm using a confocal Raman microspectrometer (CRM). Smoke from one cigarette was used as a model pollutant. EPR spectroscopy enables the direct measurement of free radicals in excised porcine skin after smoke exposure. The autofluorescence in the skin was measured ex vivo, which is an indicator of oxidative stress. Two antioxidants and a chelating agent in a base formulation and a commercial product containing an antioxidant mixture were investigated. The ex vivo studies show that the antioxidant epigallocatechin-3-gallate (EGCG) in the base cream formulation provided the best protection against oxidative stress from smoke exposure for both methods.


Asunto(s)
Antioxidantes , Piel , Animales , Porcinos , Antioxidantes/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Piel/metabolismo , Estrés Oxidativo , Radicales Libres/química
9.
Artículo en Inglés | MEDLINE | ID: mdl-36901030

RESUMEN

Water pollution caused by microplastics represents an important challenge for the environment and people's health. The weak international regulations and standards in this domain support increased water pollution with microplastics. The literature is unsuccessful in establishing a common approach regarding this subject. The main objective of this research is to develop a new approach to necessary policies and ways of action to decrease water pollution caused by microplastics. In this context, we quantified the impact of European water pollution caused by microplastics in the circular economy. The main research methods used in the paper are meta-analysis, statistical analysis and an econometric approach. A new econometric model is developed in order to assist the decision makers in increasing efficiency of public policies regarding water pollution elimination. The main result of this study relies on combining, in an integrated way, the Organisation for Economic Co-operation and Development's (OECD) data on microplastic water pollution and identifying relevant policies to combat this type of pollution.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Plásticos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Contaminación del Agua , Ecosistema
10.
Antioxidants (Basel) ; 11(11)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36421490

RESUMEN

Particulate matter (PM) is one of the reasons that exacerbate skin diseases. Impaired barrier function is a common symptom in skin diseases, including atopic dermatitis, eczema and psoriasis. Herbal extracts rich in antioxidants are thought to provide excellent pharmacological activities; however, the anti-pollution activity of Artocarpus altilis extract (AAM) has not been investigated yet. The present study demonstrated that 5 µg/mL of AAM was considered to be a safe dose for further experiments without cytotoxicity. Next, we evaluated the anti-pollution activity of AAM through the PM-induced keratinocytes damage cell model. The results showed that AAM could reduce PM-induced overproduction of intracellular ROS and the final product of lipid peroxidation, 4-hydroxynonenal (4HNE). In addition, AAM not only reduced the inflammatory protein expressions, including tumor necrosis factor α (TNFα), TNF receptor 1 (TNFR1) and cyclooxygenase-2 (COX-2), but also balanced the aging protein ratio of matrix metalloproteinase (MMPs) and tissue inhibitors of metalloproteases (TIMPs) through downregulating the phosphorylation of mitogen-activated protein kinase (MAPK) signaling. For skin barrier protection, AAM could repair PM-induced barrier function proteins damage, including filaggrin, loricrin and aquaporin 3 for providing anti-aging bioactivity. In conclusion, AAM has the potential to be developed as an anti-pollution active ingredient for topical skin products to prevent skin oxidation, inflammation and aging, and restore the skin barrier function.

11.
Membranes (Basel) ; 12(10)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36295681

RESUMEN

Landfill leachates contain several types of pollutants and complex components, which pollute soils and groundwater. To compensate for the limitations of single-layer and double-layer liners, a triple-layer liner system composed of a geomembrane (GM), geosynthetic clay liner (GCL), and attenuation layer (AL) was invented and widely used in landfill anti-pollution systems. In this paper, the available literature on triple-layer GM/GCL/AL composite liners is summarized. First, the four main transport processes of pollutants through the composite liner, including convection, diffusion, adsorption, and degradation, were analyzed, and the anti-pollution performances were evaluated. According to this, the pollutant transport model considering the transport activity and transport state was classified, and the solution methods were summarized. Finally, the breakthrough time expressions of the composite liners were determined, which provided a base for evaluating their long-term performance and predicting the service life. The purpose of this literature review is to scientifically evaluate the anti-pollution performance of GM/GCL/AL and provide a scientific base and theoretical guidance for extending its application.

12.
Environ Sci Pollut Res Int ; 27(23): 28730-28736, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32462622

RESUMEN

For several decades air pollution has been recognized to hit drastically the skin of human body. Air pollutants predominantly accountable for aging, oxidative damage, and inflammatory allergic reactions led to psoriasis, dermatitis, acne, and skin cancer owing to the impaired functions of DNA, proteins, and lipid biomolecules. Elevated air pollution and its detrimental effects along with variations in physiological parameters of the skin are verily the scaffold for anti-pollution assertions and could be recognized as markers. The present article encompasses the salient features of air pollution and UV radiations besides dreadful effects on human skin physiological parameters and some anti-pollution approaches.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire , Energía Solar , Humanos , Piel/química , Rayos Ultravioleta
13.
Int J Biol Macromol ; 139: 332-341, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31351962

RESUMEN

In this study, cellulose pulp and urea were used to synthesize cellulose carbamate (nitrogen content reaches 4.5%) by low-cost and environmentally friendly solid-liquid phase method. Cellulose carbamate fluid was prepared by using sodium hydroxide aqueous solution as solvent. The fluid was regenerated and formed in a coagulation bath, and finally a regenerated cellulose membrane with high transparency and separation ability was obtained. The simple chemical treatment of cellulose not only greatly increased the mass fraction of cellulose dissolution (It has reached 15%) and retains the original crystal form and thermal stability of cellulose. The surface of the membrane was relatively dense, and the inside has regular microchannel. The factors affect the transparency and water flux of regenerated cellulose membranes were discussed by orthogonal experimental range analysis. The ability of the regenerated cellulose membrane to reject dyes was tested. The results showed that the rejection of methyl blue and congo red reached 100%, and the rejection rate of methyl orange reached 60%. The oil/water separation ability and the anti-pollution ability of the regenerated cellulose membrane were tested. The oil/water separation effect reached 100%. This membrane may have application prospect in water treatment, biotechnology.


Asunto(s)
Carbamatos/química , Celulosa/química , Membranas Artificiales , Fenómenos Mecánicos , Hidróxido de Sodio/química , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Difracción de Rayos X
14.
Beilstein J Nanotechnol ; 10: 332-336, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30800572

RESUMEN

This study aimed to apply annealing processes during the coating of photovoltaic (PV) module glasses to PV modules already installed through an easy and simple procedure. Three types of annealing treatments were applied to PV module glasses, i.e., furnace, rapid thermal annealing (RTA) and torch. Among these, torch annealing, which can be easily carried out at PV module installation sites, was applied to PV module glasses using different numbers of repetition. Light transmittance, contact angle, anti-pollution characteristics, adhesion and hardness of the functional coating films after using different annealing treatment times and methods were measured, and it was confirmed that these characteristics varied depending on the annealing treatment times and methods. Through this, it was possible to optimize the process conditions that provide excellent anti-pollution characteristics and could be easily utilized at on-site PV modules.

15.
Chemosphere ; 185: 563-573, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28719875

RESUMEN

A series of novel magnetic carboxyl modified hypercrosslinked resins were successfully prepared via a sequence of suspension polymerization, hydrolysis and post-crosslinking reactions. The serial resins possessed both high cation exchange capacity and high specific surface area with MA-10 having the supreme specific surface area of 1238.65 m2/g and MA-70 having the largest exchange capacity of 6.45 mmol/g. The serial resins exhibited excellent adsorption capacity of typical PPCPs including chloramphenicol, atenolol, ibuprofen and tetracycline, which were neutral, cationic, anionic and zwitterionic respectively in natural water. The adsorption of chloramphenicol and ibuprofen was dominated by the hydrophobic and π-π Electron-Donor-Acceptor (EDA) interactions, while as to atenolol, the electrostatic interaction dominated the adsorption process. Especially, MA-50 was found to have the largest adsorption amount and the longest equilibrium time of zwitterionic tetracycline compared with other resins, the mechanism of which needed further investigation. Breakthrough tests showed that the serial resins had significant advantages over granular activated carbon F400D in contaminants removal for all of the four target pharmaceuticals. Batch experiments proved that the serial resins possessed strong anti-pollution ability and excellent regeneration property, which made it possible for the practical application in future water treatment.


Asunto(s)
Resinas Sintéticas/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Adsorción , Dióxido de Carbono/química , Carbón Orgánico , Interacciones Hidrofóbicas e Hidrofílicas , Ibuprofeno , Magnetismo , Contaminantes Químicos del Agua/química
16.
Artículo en Zh | WPRIM | ID: wpr-588192

RESUMEN

OBJECTIVE To discuss the available methods of preventing the mattress pollution in the wards of the(hospital), and to keep the mattresses clean and dry and eliminate the hidden danger of nosocomial infection.(METHODS) The mattress protective covering is used of a new type of textile materials,and then applied into clinic.Selected 100 pieces of mattresses in the wards,divided them equally into two groups at random,the(experimental) group and the control group.After cleaning and pasteurization(surface) sampling and bacterial culturing for every mattress were undertaken.For the experimental group,spread the protective(covering) before the sheet,and for the control group,used the sheet directly.The colony number of each group was compared in the 3rd,7th,and 14th days.RESULTS The mattresses of experimental group were clean,light polluted and with less colonies,and that of the control group were heavy polluted and with more colonies.The comparisons of the total colony number and the number of every sampling point in the 3rd,7th,and 14th days of the two groups showed that there was a(significant) difference(P

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda