Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Bioprocess Biosyst Eng ; 47(8): 1197-1211, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38512495

RESUMEN

In the current study, the bottlebrush [Callistemon viminalis (Sol. ex Gaertn.) G. Don] plant was selected for the green synthesis of silver (Ag) and gold (Au) nanoparticles and to evaluate its antibacterial and antifungal activities. Phytochemical screening of C. viminalis confirmed the presence of alkaloids, anthraquinones, saponins, tannins, betacyanins, phlobatanins, coumarins, terpenoids, steroids, glycosides, and proteins. To characterize the synthesized Ag and Au NPs, UV-Visible spectroscopy, FTIR spectroscopy for functional group identification, field emission scanning electron microscopy (FE-SEM) for particle size, and elemental analysis were performed using EDX. The UV-Visible absorption spectra of the green-synthesized Ag and Au nanoparticles were found to have a maximum absorption band at 420 nm for Ag NPs and 525 nm for Au NPs. FE-SEM analysis of the synthesized NPs revealed a circular shape with a size of 100 nm. Elemental analysis was performed for the synthesis of Ag and Au NPs, which confirmed the purity of the nanoparticles. The greenly synthesized Ag and Au NPs were also evaluated for their anti-bacterial and anti-fungal activities, which exhibited prominent inhibition activities against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Candida albicans, C. krusei, Aspergillus sp., and Trichoderma species. The highest zone of inhibition 15.5 ± 0.75 and 15 ± 0.85 mm was observed for Ag NPs against E. coli and P. aeruginosa. Similarly, Trichoderma sp. and Aspergillus sp. were inhibited by Ag NPs up to 13.5 ± 0.95 and 13 ± 0.70 mm. This work will open doors for the development of new antimicrobial agents using green chemistry.


Asunto(s)
Antiinfecciosos , Oro , Tecnología Química Verde , Nanopartículas del Metal , Extractos Vegetales , Plata , Nanopartículas del Metal/química , Plata/química , Plata/farmacología , Oro/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/química , Pruebas de Sensibilidad Microbiana , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Hongos/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/química
2.
Drug Dev Res ; 83(3): 578-585, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34636064

RESUMEN

The problem of antimicrobial resistance is an important global public health challenge. We propose that a development of new antibiotic compounds around known natural substances is a solution to this problem. We investigate reengineer natural products into potent antibiotics. Uracil fragment is abundant in nature and significant to treat infectious diseases due to its affection to the replication of the bacterial chromosome. 12 new uracil S-derivatives were obtained and tested for their in vitro antimicrobial properties. N3 -(thietan-3-yl)- and N3 -(1,1-dioxothietan-3-yl)uracils derivatives were synthesized by thietanylation of 6-methyluracil with 2-chloromethylthiirane and subsequent oxidation of the thietan ring. A method of their alkylation with ethyl-2-chloroacetate was developed and acetohydrazides containing 3-(thietan-3-yl)- and 3-(1,1-dioxothietan-3-yl)uracilyls fragments in the acetyl group were obtained by hydrazinolysis of 2-(thietanyluracil-1-yl)acetic acid ethyl esters. Their interaction with ß-dicarbonyl compounds, anhydride of mono- and dicarboxylic acids was studied. Antimicrobial activity was determined by the agar diffusion method on test organisms: S. aureus, E. coli, P. vulgaris, K. pneumoniae, C. diversus, E. aerogenes, P. aeruginosa, S. abosit. N-acyl-5-hydroxypyrazolines and N,N'-diacylhydrazines of 6-methyluracil thietanyl- and dioxothietanyl derivatives showed high antimicrobial activity, which is consistent with the results of structure activity relationship analysis (MIC 0.1-10 µg/ml).


Asunto(s)
Antiinfecciosos , Staphylococcus aureus , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Escherichia coli , Pruebas de Sensibilidad Microbiana , Uracilo/química , Uracilo/farmacología
3.
Molecules ; 27(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35268646

RESUMEN

Nanomaterial is a rapidly growing area that is used to create a variety of new materials and nanotechnology applications from medical, pharmaceuticals, chemical, mechanical, electronics and several environmental industries including physical, chemical and biological nanoparticles are very important in our daily life. Nanoparticles with leaf extract from the healthy plant are important in the area of research using biosynthesis methods. Because of it's used as an environmentally ecofriendly, other than traditional physical and chemical strategies. In particular, biologically synthesized nanoparticles have become a key branch of nanotechnology. The present work presents a synthesis of zinc oxide nanoparticles using an extract from the Argemone leaf Mexicana. Biosynthetic nanoparticles are characterized by X-ray diffraction (XRD), Ultraviolet visible (UV-vis) spectroscopy analysis, a Fourier Transform Infrared Spectroscopy analysis (FTIR) and a scanning electron microcopy (SEM), X-ray analysis with dispersive energy (EDAX). XRD is used to examine the crystalline size of zinc oxide nanoparticles. The FTIR test consists in providing evidence of the presence of targeted teams. UV is used for optical properties and calculates the energy of the bandwidth slot. The scanning microscope emission reveals the morphology of the surface and the energy dispersive X-ray analysis confirms the basic composition of zinc oxide nanoparticles. It is found that zinc nanoparticles are capable of achieving high anti-fungal efficacy and therefore have a high potential antimicrobial activity of ZnO NPs, like antibacterial and high antioxidant. Zinc Oxide nanoparticles from the Argemone Mexicana leaf extract have several antimicrobial applications, such as medical specialty, cosmetics, food, biotechnology, nano medicine and drug delivery system. ZnO nanoparticles are important because they provide many practical applications in industry. The most important use of nanoparticles of ZnO would be strong antibacterial and antioxidant activity with a simple and efficient biosynthesis method may be used for future work applications.


Asunto(s)
Óxido de Zinc
4.
Bioorg Chem ; 110: 104803, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33761314

RESUMEN

One of the best ways to design new biocidal agents is synthesizing hybrid molecules by combining two or more bioactive moieties in a single molecular scaffold. So, new series of quinolines bearing a thiazole moiety were synthesized using thiosemicarbazones 2a-f. Cyclization of 2a-f with ethyl chloroacetate, ethyl 2-chloropropanoate or chloroacetone afforded the corresponding thiazoles 3-5. The antimicrobial activity of the new quinoline derivatives was evaluated. The most of tested compounds revealed potent both of the antibacterial and antifungal activities. Fourfold potency of amphotericin B for the inhibition the growth of the A. fumigatus was displayed by ccompound 5e. The latter compound displayed twofold potency of gentamycin for inhibition the growth of N. gonorrhoeae. Moreover, this compound showed equipotent potency of references drugs for inhibition of the growth of S. flexneri, S. pyogenes, P. vulgaris, A. clavatus, G. candidum and P. marneffei. So, quinolines bearing a thiazole moiety can be suggested as interesting scaffolds for the development both of the novel antibacterial and antifungal agents. Some new derivatives were studied as peptide deformylase enzyme inhibitors. Thiazolidin-4-one derivative 3d and 2,3-dihydrothiazole derivative 5c had shown good PDF inhibition activity, which had been supported by the docking results with highest binding affinity and lowest docking energy score. These results suggested that the most potent compounds might be possible agents as novel bacterial PDF inhibitor.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Quinolinas/farmacología , Tiazoles/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Quinolinas/química , Relación Estructura-Actividad , Tiazoles/química
5.
Ann Pharm Fr ; 74(1): 34-44, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26316428

RESUMEN

Two series of diversely substituted phenyldiazenyl(2-(4-methyl-2-oxo-2H-chromen-7-yloxy)acetyl)3,5-dimethyl-1H-pyrazole 11a-g and phenyldiazenyl-1-(2-(4-methyl-2-oxo-4-chromen-7-yloxy)acetyl)-3-methyl-1H-pyrazol-5(4)H-one 12a-j were synthesized. All these compounds were characterized by IR, NMR, mass spectra and elemental analyses. The compounds were evaluated for their in vitro antibacterial activity against some Gram-positive bacteria, Staphylococcus aureus, Bacillus subtilis, Gram-negative bacteria, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi and screened for antifungal activity against A. niger, U. maydis. The compounds showed moderate to very good antibacterial activities.


Asunto(s)
Antiinfecciosos/síntesis química , Antiinfecciosos/farmacología , Oxadiazoles/síntesis química , Oxadiazoles/farmacología , Pirazoles/síntesis química , Pirazoles/farmacología , Antibacterianos/síntesis química , Antibacterianos/farmacología , Antifúngicos/síntesis química , Antifúngicos/farmacología , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Pirazolonas , Relación Estructura-Actividad
6.
Int J Biol Macromol ; 275(Pt 2): 133465, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945322

RESUMEN

O-carboxymethyl chitosan (O-CMC) is a chitosan derivative produced through the substitution of hydroxyl (-OH) functional groups in glucosamine units with carboxymethyl (-CH2COOH) substituents, effectively addressing the inherent solubility issues of chitosan in aqueous solutions. O-CMC has garnered significant interest due to its enhanced solubility, elevated viscosity, minimal toxicity, and advantageous biocompatibility properties. Furthermore, O-CMC demonstrates antibacterial, antifungal, and antioxidant characteristics, rendering it a promising candidate for various biomedical uses such as wound healing, tissue engineering, anti-tumor therapies, biosensors, and bioimaging. Additionally, O-CMC is well-suited for the fabrication of nanoparticles, hydrogels, films, microcapsules, and tablets, offering opportunities for effective drug delivery systems. This review outlines the distinctive features of O-CMC, offers analyses of advancements and future potential based on current research, examines significant obstacles for clinical implementation, and foresees its ongoing significant impacts in the realm of biomedicine.


Asunto(s)
Quitosano , Quitosano/química , Quitosano/análogos & derivados , Humanos , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/uso terapéutico , Ingeniería de Tejidos/métodos , Cicatrización de Heridas/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Hidrogeles/química , Portadores de Fármacos/química
7.
Materials (Basel) ; 16(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36837065

RESUMEN

Hydrolysed collagen obtained from bovine leather by-products were loaded with ginger essential oil and processed by the electrospinning technique for obtaining bioactive nanofibers. Particle size measurements of hydrolysed collagen, GC-MS analysis of ginger essential oil (EO), and structural and SEM examinations of collagen nanofibers loaded with ginger essential oil collected on waxed paper, cotton, and leather supports were performed. Antioxidant and antibacterial activities against Staphylococcus aureus and Escherichia coli and antifungal activity against Candida albicans were also determined. Data show that the hydrolysed collagen nanofibers loaded with ginger EO can be used in the medical, pharmaceutical, cosmetic, or niche fields.

8.
J Funct Biomater ; 14(2)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36826883

RESUMEN

Recently, silver-based nanoparticles have been proposed as components of wound dressings due to their antimicrobial activity. Unfortunately, they are cytotoxic for keratinocytes and fibroblasts, and this limits their use. Less consideration has been given to the use of AgCl nanoparticles in wound dressings. In this paper, a sustainable preparation of alginate AgCl nanoparticles composite films by simultaneous alginate gelation and AgCl nanoparticle formation in the presence of CaCl2 solution is proposed with the aim of obtaining films with antimicrobial and antibiofilm activities and low cytotoxicity. First, AgNO3 alginate films were prepared, and then, gelation and nanoparticle formation were induced by film immersion in CaCl2 solution. Films characterization revealed the presence of both AgCl and metallic silver nanoparticles, which resulted as quite homogeneously distributed, and good hydration properties. Finally, films were tested for their antimicrobial and antibiofilm activities against Staphylococcus epidermidis (ATCC 12228), Staphylococcus aureus (ATCC 29213), Pseudomonas aeruginosa (ATCC 15692), and the yeast Candida albicans. Composite films showed antibacterial and antibiofilm activities against the tested bacteria and resulted as less active towards Candida albicans. Film cytotoxicity was investigated towards human dermis fibroblasts (HuDe) and human skin keratinocytes (NCTC2544). Composite films showed low cytotoxicity, especially towards fibroblasts. Thus, the proposed sustainable approach allows to obtain composite films of Ag/AgCl alginate nanoparticles capable of preventing the onset of infections without showing high cytotoxicity for tissue cells.

9.
ADMET DMPK ; 10(2): 163-179, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35350113

RESUMEN

A series of biorelevant triethylammonium isatin hydrazones containing various substituents in the aromatic fragment have been synthesized. Their structure and composition were confirmed by NMR- and IR-spectroscopies, mass-spectrometry and elemental analysis. It was found that some representatives show activity against Staphylococcus aureus and Bacillus cereus higher or at the level of norfloxacin, including methicillin-resistant Staphylococcus aureus strains. The study also showed low hemo- and cytotoxicity (Chang Liver) and high antiaggregatory and anticoagulant activity of these compounds. The high potential of new ammonium isatin-3-acylhydrazones in the search for antimicrobial activity against phytopathogens of bacterial and fungal nature has been shown for the first time.

10.
Acta Chim Slov ; 68(4): 990-996, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34918753

RESUMEN

One of the best ways to design new biocidal agents is synthesizing hybrid molecules by combining two or more bioactive moieties in a single molecular scaffold. So, new series of pyrroles bearing a thiazole moiety were synthesized using 1-methyl-1H-pyrrole-2-carbaldehyde thiosemicarbazones 1a-c. Cyclization of thiosemicarbazone derivatives 1a-c with ethyl chloroacetate, ethyl 2-chloropropanoate, chloroacetone and phenacyl bromide afforded the corresponding thiazolidin-4-ones 2a-c, 5-methylthiazolidin-4-ones 3a-c, 4-methyl-2,3-dihydrothiazoles 4a-c, and 4-phenyl-2,3-dihydrothiazoles 5a-c, respectively. The antimicrobial activity of the new thiazole derivatives was evaluated.


Asunto(s)
Antibacterianos/síntesis química , Antifúngicos/síntesis química , Pirroles/química , Tiazoles/química , Antibacterianos/química , Antibacterianos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Ciclización , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Tiosemicarbazonas/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda