Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Microbiology (Reading) ; 165(5): 527-537, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30882296

RESUMEN

Biofilm model systems are used to study biofilm growth and predict the effects of anti-biofilm interventions within the human oral cavity. Many in vitro biofilm model systems use a confocal laser scanning microscope (CLSM) in conjunction with image analysis tools to study biofilms. The aim of this study was to evaluate an in-house developed image analysis software program that we call BAIT (Biofilm Architecture Inference Tool) to quantify the architecture of oral multi-species biofilms following anti-biofilm interventions using a microfluidic biofilm system. Differences in architecture were compared between untreated biofilms and those treated with water (negative control), sodium gluconate ('placebo') or stannous fluoride (SnF2). The microfluidic system was inoculated with pooled human saliva and biofilms were developed over 22 h in filter-sterilized 25 % pooled human saliva. During this period, biofilms were treated with water, sodium gluconate, or SnF2 (1000, 3439 or 10 000 p.p.m. Sn2+) 8 and 18 h post-inoculation. After 22 h of growth, biofilms were stained with LIVE/DEAD stain, and imaged by CLSM. BAIT was used to calculate biofilm biovolume, total number of objects, surface area, fluffiness, connectivity, convex hull porosity and viability. Image analysis showed oral biofilm architecture was significantly altered by 3439 and 10 000 p.p.m. Sn2+ treatment regimens, resulting in decreased biovolume, surface area, number of objects and connectivity, while fluffiness increased (P<0.01). In conclusion, BAIT was shown to be able to measure the changes in biofilm architecture and detects possible antimicrobial and anti-biofilm effects of candidate agents.


Asunto(s)
Biopelículas , Procesamiento de Imagen Asistido por Computador/métodos , Boca/microbiología , Programas Informáticos , Algoritmos , Antibacterianos/farmacología , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Fenómenos Fisiológicos Bacterianos , Técnicas Bacteriológicas/instrumentación , Técnicas Bacteriológicas/métodos , Biopelículas/efectos de los fármacos , Humanos , Procesamiento de Imagen Asistido por Computador/instrumentación , Viabilidad Microbiana/efectos de los fármacos , Saliva/microbiología , Fluoruros de Estaño/farmacología
2.
Artículo en Inglés | MEDLINE | ID: mdl-30104272

RESUMEN

The endotracheal tube (ETT) is an essential interface between the patient and ventilator in mechanically ventilated patients. However, a microbial biofilm is formed gradually on this tube and is associated with the development of ventilator-associated pneumonia. The bacteria present in the biofilm are more resistant to antibiotics, and current medical practices do not make it possible to eliminate. Pseudomonas aeruginosa is one of the leading pathogens that cause biofilm infections and ventilator-associated pneumonia. Poly-l-lysine (pLK) is a cationic polypeptide possessing antibacterial properties and mucolytic activity by compacting DNA. Here, we explored the antibiofilm activity of pLK to treat P. aeruginosa biofilms on ETTs while taking into consideration the necessary constraints for clinical translation in our experimental designs. First, we showed that pLK eradicates a P. aeruginosa biofilm formed in vitro on 96-well microplates. We further demonstrated that pLK alters bacterial membrane integrity, as revealed by scanning electron microscopy, and eventually eradicates biofilm formed either by reference or clinical strains of P. aeruginosa biofilms generated in vitro on ETTs. Second, we collected the ETT from patients with P. aeruginosa ventilator-associated pneumonia. We observed that a single dose of pLK is able to immediately disrupt the biofilm structure and kills more than 90% of bacteria present in the biofilm. Additionally, we did not observe any lung tolerance issue when the pLK solution was instilled into the ETT of ventilated pigs, an animal model particularly relevant to mimic invasive mechanical ventilation in humans. In conclusion, pLK appears as an innovative antibiofilm molecule, which could be applied in the ETT of mechanically ventilated patients.


Asunto(s)
Biopelículas/efectos de los fármacos , Intubación Intratraqueal/efectos adversos , Polilisina/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Respiración Artificial/efectos adversos , Animales , Antibacterianos/farmacología , Contaminación de Equipos , Humanos , Microscopía Electrónica de Rastreo/métodos , Neumonía Asociada al Ventilador/tratamiento farmacológico , Porcinos
3.
J Appl Microbiol ; 124(5): 1139-1146, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29349932

RESUMEN

AIMS: Lectin is a nonimmunogenic glycoprotein that has been extracted mostly from the primary plant source leguminoase. Its ability to precisely recognize and bind to the complex cell bound structure enables it to play diverse roles. In this study, we obligate to define new sources of lectins since the production of lectins is very expensive. Therefore, we performed a study with the goal to isolate and characterize lectin from bacteria of plant origin and screen its ability as an antibacterial, antibiofilm and antiproliferative agent. METHODS AND RESULTS: We investigated isolates of environmental origin for their ability to produce lectin using phenotypic and molecular detection. The lectin was purified from an isolate AB119 which has abundant lectin activity and its molecular weight was determined by SDS-PAGE and HPLC. This lectin has a molecular weight of 30 kD and used to evaluate its antimicrobial, antibiofilm and antiproliferative activities using earlier published protocols. All bacterial isolates tested in this study showed the ability to produce biofilm which was inhibited in the presence of lectin significantly. In microtitre plate assay, the scale of biofilm inhibition by the purified lectin was significantly reduced for all bacterial species. Lectin inhibited the growth of all three tested bacterial species after treatment for 24 h and this antimicrobial effect was uniform to all species irrespective of Gram positive or Gram negative. The antiproliferative effects of lectin against HeLa cells were determined using MTT assay showed significant inhibitory effects on the proliferation at an IC50 of 10 µM for 24 h. CONCLUSION: This study concludes that lectin has a promising application as an antimicrobial and, antibiofilm agent to control multidrug-resistant pathogen-associated infections. At the same time, it has also promising ability to control the proliferation of tumour cell as evident by our study results. SIGNIFICANCE AND IMPACT OF STUDY: AB119 lectin from A.baumannii species was verified for its capability to control microbial growth and its biofilm formation. Results showed lectin was able to reduce growth as well biofilm formation of both Gram-positive and Gram-negative bacterial species. Lectin has a promising application as an antibiofilm agent to combat the growing number of multidrug-resistant pathogen-associated infections.


Asunto(s)
Acinetobacter baumannii/química , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Lectinas/aislamiento & purificación , Lectinas/farmacología , Células Cultivadas , Bacterias Gramnegativas/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana
4.
AAPS PharmSciTech ; 19(3): 1219-1230, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29280044

RESUMEN

Bacterial biofilm which adheres onto wound surface is shown to be impervious to antibiotics and this in turn delays wound healing. Previous studies showed that antibiofilm agents such as xylitol and ethylenediaminetetraacetic acid (EDTA) prevent bacterial adherence onto surfaces. Formulation of a wound dressing containing antibiofilm agents may be a plausible strategy in breaking the biofilm on wound surfaces and at the same time increase the efficacy of the antibiotic. The purpose of this study was to develop hydrogel formulations containing antibiofilm agents along with antibiotic (gentamicin) for bacterial biofilm-associated wound infection. Sodium carboxymethyl cellulose (NaCMC) hydrogels loaded with antibiofilm agents and antibiotic were prepared. The hydrogels were characterized for their physical properties, rheology, Fourier transform infrared spectroscopy (FTIR), drug content uniformity, differential scanning calorimetry (DSC) and in vitro drug release study. The antibiofilm (Crystal Violet staining and XTT assay) and antibacterial performances of the hydrogels against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia coli were assessed in vitro. The formulated hydrogels showed adequate release of both antibiofilm agents (xylitol and EDTA). Both antimicrobial and antibiofilm tests showed promising results and demonstrated that the combination of xylitol, EDTA, and gentamicin had an additive effect against both Gram-positive and Gram-negative bacteria. In summary, NaCMC (sodium carboxymethyl cellulose) hydrogels containing the combination of antimicrobial and antibiofilm agents were successfully developed and this can be a new strategy in combating biofilm in wound infection which in turn accelerate wound healing.


Asunto(s)
Antibacterianos/administración & dosificación , Biopelículas/efectos de los fármacos , Portadores de Fármacos/química , Hidrogeles/química , Antibacterianos/química , Antibacterianos/uso terapéutico , Infecciones Bacterianas/tratamiento farmacológico , Carboximetilcelulosa de Sodio/química , Liberación de Fármacos , Ácido Edético/administración & dosificación , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Cicatrización de Heridas/efectos de los fármacos , Infección de Heridas/tratamiento farmacológico , Xilitol/administración & dosificación
5.
Molecules ; 22(11)2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29165338

RESUMEN

We investigated the biological activity of surfactants based on quaternary ammonium compounds: gemini surfactant hexamethylene-1,6-bis-(N,N-dimethyl-N-dodecylammonium bromide) (C6), synthesized by the reaction of N,N-dimethyl-N-dodecylamine with 1,6-dibromohexane, and its monomeric analogue dodecyltrimethylammonium bromide (DTAB). The experiments were performed with bacteria Asaia lannensis, a common spoilage in the beverage industry. The minimal inhibitory concentration (MIC) values were determined using the tube standard two-fold dilution method. The growth and adhesive properties of bacterial cells were studied in different culture media, and the cell viability was evaluated using plate count method. Both of the surfactants were effective against the bacterial strain, but the MIC of gemini compound was significantly lower. Both C6 and DTAB exhibited anti-adhesive abilities. Treatment with surfactants at or below MIC value decreased the number of bacterial cells that were able to form biofilm, however, the gemini surfactant was more effective. The used surfactants were also found to be able to eradicate mature biofilms. After 4 h of treatment with C6 surfactant at concentration 10 MIC, the number of bacterial cells was reduced by 91.8%. The results of this study suggest that the antibacterial activity of the gemini compound could make it an effective microbiocide against the spoilage bacteria Asaia sp. in both planktonic and biofilm stages.


Asunto(s)
Alphaproteobacteria/efectos de los fármacos , Antibacterianos/química , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Calcitriol/análogos & derivados , Tensoactivos/química , Tensoactivos/farmacología , Calcitriol/química , Calcitriol/farmacología , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Estructura Molecular
6.
Drug Dev Ind Pharm ; 41(11): 1902-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25758412

RESUMEN

It has been established that microbial biofilms are largely responsible for the recalcitrance of many wound infections to conventional antibiotics. It was proposed that the efficacy of antibiotics could be optimized via the inhibition of bacterial biofilm growth in wounds. The combination of antibiofilm agent and antibiotics into a wound dressing may be a plausible strategy in wound infection management. Xylitol is an antibiofilm agent that has been shown to inhibit the biofilm formation. The purpose of this study was to develop an alginate film containing xylitol and gentamicin for the treatment of wound infection. Three films, i.e. blank alginate film (SA), alginate film with xylitol (F5) and alginate film with xylitol and gentamicin (AG), were prepared. The films were studied for their physical properties, swelling ratio, moisture absorption, moisture vapor transmission rate (MVTR), mechanical and rheology properties, drug content uniformity as well as in vitro drug release properties. Antimicrobial and antibiofilm in vitro studies on Staphylococcus aureus and Pseudomonas aeruginosa were also performed. The results showed that AG demonstrates superior mechanical properties, rheological properties and a higher MVTR compared with SA and F5. The drug flux of AG was higher than that of commercial gentamicin cream. Furthermore, antimicrobial studies showed that AG is effective against both S. aureus and P. aeruginosa, and the antibiofilm assays demonstrated that the combination was effective against biofilm bacteria. In summary, alginate films containing xylitol and gentamicin may potentially be used as new dressings for the treatment of wound infection.


Asunto(s)
Biopelículas/efectos de los fármacos , Gentamicinas/farmacología , Infección de Heridas/tratamiento farmacológico , Xilitol/farmacología , Alginatos/química , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Vendajes , Enfermedad Crónica , Composición de Medicamentos/métodos , Liberación de Fármacos , Gentamicinas/administración & dosificación , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Pseudomonas aeruginosa/efectos de los fármacos , Reología , Staphylococcus aureus/efectos de los fármacos , Infección de Heridas/microbiología , Xilitol/administración & dosificación
7.
Int J Biol Macromol ; 262(Pt 2): 130085, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38346613

RESUMEN

Biofilm formation on the inner surfaces of pipes poses significant threats to water distribution systems, increasing maintenance costs and public health risks. To address this immense issue, we synthesized a nanogel formulation comprising acacia gum (AG) and chitosan (Cs), loaded with varying concentrations of silver nanoparticles (AgNPs), for using as an antimicrobial coating material. AgNPs were synthesized using AG as a reducing and stabilizing agent, exhibiting absorbance at 414 nm. The preparation of AgNPs was proved using TEM. Bactericidal efficacy was assessed against E. coli, Klebsiella pneumoniae, Enterococcus faecalis, and Bacillus subtilis. Using the dipping coating method, two pipe materials (polypropylene (PP) and ductile iron (DI)) were successfully coated. Notably, AgNPs2@AGCsNG nanogel exhibited potent antibacterial action against a wide range of pathogenic bacteria. Toxicity tests confirmed nanogel safety, suggesting broad applications. High EC50% values underscored their non-toxic nature. This research proposes an effective strategy for biofilm prevention in water systems, offering excellent antibacterial properties and biocompatibility. AG and Cs nanogels loaded with AgNPs promise to enhance water quality, reduce maintenance prices, and protect human public health in water distribution networks.


Asunto(s)
Quitosano , Nanopartículas del Metal , Polietilenglicoles , Polietileneimina , Humanos , Plata/farmacología , Nanogeles , Goma Arábiga , Quitosano/farmacología , Escherichia coli , Antibacterianos/farmacología , Biopelículas , Pruebas de Sensibilidad Microbiana
8.
ACS Appl Bio Mater ; 7(4): 2423-2449, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38478915

RESUMEN

In this research article, two multicopper [Cu3] and [Cu6] clusters, [Cu3(cpdp)(µ3-SO4)(Cl)(H2O)2]·3H2O (1) and [Cu6(cpdp)2(µ2-O)(Cl)2(H2O)4]·2Cl (2) (H3cpdp = N,N'-bis[2-carboxybenzomethyl]-N,N'-bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol), have been explored as potent antibacterial and antibiofilm agents. Their molecular structures have been determined by a single-crystal X-ray diffraction study, and the compositions have been established by thermal and elemental analyses, including electrospray ionization mass spectrometry. Structural analysis shows that the metallic core of 1 is composed of a trinuclear [Cu3] assembly encapsulating a µ3-SO42- group, whereas the structure of 2 represents a hexanuclear [Cu6] assembly in which two trinuclear [Cu3] motifs are exclusively bridged by a linear µ2-O2- group. The most striking feature of the structure of 2 is the occurrence of an unusual linear oxido-bridge, with the Cu3-O6-Cu3' bridging angle being 180.00°. Whereas 1 can be viewed as an example of a copper(II)-based compound displaying a rare µ3:η1:η1:η1 bridging mode of the SO42- group, 2 is the first example of any copper(II)-based compound showing an unsupported linear Cu-O-Cu oxido-bridge. Employing variable-temperature SQUID magnetometry, the magnetic susceptibility data were measured and analyzed exemplarily for 1 in the temperature range of 2-300 K, revealing the occurrence of antiferromagnetic interactions among the paramagnetic copper centers. Both 1 and 2 exhibited potent antibacterial and antibiofilm activities against methicillin-resistant Staphylococcus aureus (MRSA BAA1717) and the clinically isolated culture of methicillin-resistant S. aureus (MRSA CI1). The mechanism of antibacterial and antibiofilm activities of these multicopper clusters was investigated by analyzing and determining the intracellular reactive oxygen species (ROS) generation, lipid peroxidation, microscopic observation of cell membrane disruption, membrane potential, and leakage of cellular components. Additionally, 1 and 2 showed a synergistic effect with commercially available antibiotics such as vancomycin with enhanced antibacterial activity. However, 1 possesses higher antibacterial, antibiofilm, and antivirulence actions, making it a potent therapeutic agent against both MRSA BAA1717 and MRSA CI1 strains.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Compuestos Organoplatinos , Cobre/farmacología , Cobre/química , Staphylococcus aureus , Antibacterianos/farmacología , Biopelículas
9.
ACS Infect Dis ; 9(10): 1949-1963, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37646612

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) infections are some of the most common antibiotic-resistant infections, often exacerbated by the formation of biofilms. Here, we evaluated six compounds, three common antibiotics used against MRSA and three antibiofilm compounds, in nine combinations to investigate the mechanisms of synergistic eradication of MRSA biofilms. Using metabolic assessment, colony enumeration, confocal fluorescence microscopy, and scanning electron microscopy, we identified two promising combinations of antibiotics with antibiofilm agents against preformed MRSA biofilms. The broad-spectrum protease, proteinase K, and membrane-targeting antibiotic, daptomycin, worked in synergy against MRSA biofilms by manipulating the protein content, increasing access to the cell membrane of biofilm bacteria. We also found that the combination of cationic peptide, IDR-1018, with the cell wall cross-linking inhibitor, vancomycin, exhibited synergy against MRSA biofilms by causing bacterial damage and preventing repair. Our findings identify synergistic combinations of antibiotics and antibiofilm agents, providing insight into mechanisms that may be explored further for the development of effective treatments against MRSA biofilm.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pruebas de Sensibilidad Microbiana , Vancomicina/farmacología , Biopelículas
10.
Curr Pharm Biotechnol ; 23(5): 664-678, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34238148

RESUMEN

Formation of Staphylococcus aureus biofilm causes significant infections in the human body. Biofilm forms through the aggregation of bacterial species and brings about many complications. It mediates drug resistance and persistence and facilitates the recurrence of infection at the end of antimicrobial therapy. Biofilm formation is completed in a series of steps, and any interference in these steps can disrupt its formation. Such interference may occur at any stage of biofilm production, including attachment, monolayer formation, and accumulation. Interfering agents can act as quorum sensing inhibitors and interfere in the functionality of quorum sensing receptors, attachment inhibitors, and affect cell hydrophobicity. Among these inhibiting strategies, attachment inhibitors could serve as the best agents against biofilm formation, because in case pathogens abort the attachment, the next stages of biofilm formation, e.g., accumulation and dispersion, will fail to materialize. Inhibition at this stage leads to suppression of virulence factors and invasion. One of the best knowing inhibitors is a chelator that collects metal, Fe+, Zn+, and magnesium critical for biofilm formation. These effective factors in the binding and formation of biofilm are investigated, and the coping strategy is discussed. This review examines the stages of biofilm formation and determines what factors interfere in the continuity of these steps. Finally, the inhibition strategies are investigated, reviewed, and discussed.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Biopelículas , Humanos , Percepción de Quorum , Factores de Virulencia
11.
Antibiotics (Basel) ; 11(11)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36358169

RESUMEN

Despite the implementation of stringent guidelines for the prevention of catheter-associated (CA) urinary tract infection (UTI), CAUTI remains one of the most common health care-related infections. We previously showed that an antimicrobial/antibiofilm agent inhibited biofilm development by Gram-positive and Gram-negative bacterial pathogens isolated from human infections. In this study, we examined the ability of a novel biofilm preventative agent (BPA) coating on silicone urinary catheters to inhibit biofilm formation on the catheters by six different bacterial pathogens isolated from UTIs: three Escherichia coli strains, representative of the most common bacterium isolated from UTI; one Enterobacter cloacae, a multidrug-resistant isolate; one Pseudomonas aeruginosa, common among patients with long-term catheterization; and one isolate of methicillin-resistant Staphylococcus aureus, as both a Gram-positive and a resistant organism. First, we tested the ability of these strains to form biofilms on urinary catheters made of red rubber, polyvinyl chloride (PVC), and silicone using the microtiter plate biofilm assay. When grown in artificial urine medium, which closely mimics human urine, all tested isolates formed considerable biofilms on all three catheter materials. As the biofilm biomass formed on silicone catheters was 0.5 to 1.6 logs less than that formed on rubber or PVC, respectively, we then coated the silicone catheters with BPA (benzalkonium chloride, polyacrylic acid, and glutaraldehyde), and tested the ability of the coated catheters to further inhibit biofilm development by these uropathogens. Compared with the uncoated silicone catheters, BPA-coated catheters completely prevented biofilm development by all the uropathogens, except P. aeruginosa, which showed no reduction in biofilm biomass. To explore the reason for P. aeruginosa resistance to the BPA coating, we utilized two specific lipopolysaccharide (LPS) mutants. In contrast to their parent strain, the two mutants failed to form biofilms on the BPA-coated catheters, which suggests that the composition of P. aeruginosa LPS plays a role in the resistance of wild-type P. aeruginosa to the BPA coating. Together, our results suggest that, except for P. aeruginosa, BPA-coated silicone catheters may prevent biofilm formation by both Gram-negative and Gram-positive uropathogens.

12.
Biofilm ; 3: 100061, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34825176

RESUMEN

Novel anti-biofilm and dispersal agents are currently being investigated in an attempt to combat biofilm-associated wound infections. Glycoside hydrolases (GHs) are enzymes that hydrolyze the glycosidic bonds between sugars, such as those found within the exopolysaccharides of the biofilm matrix. Previous studies have shown that GHs can weaken the matrix, inducing bacterial dispersal, and improving antibiotic clearance. Yet, the number of GH enzymes that have been examined for potential therapeutic effects is limited. In this study, we screened sixteen GHs for their ability to disperse mono-microbial and polymicrobial biofilms grown in different environments. Six GHs, α-amylase (source: A. oryzae), alginate lyase (source: various algae), pectinase (source: Rhizopus sp.), amyloglucosidase (source: A. niger), inulinase (source: A. niger), and xylanase (source: A. oryzae), exhibited the highest dispersal efficacy in vitro. Two GHs, α-amylase (source: Bacillus sp.) and cellulase (source: A. niger), used in conjunction with meropenem demonstrated infection clearing ability in a mouse wound model. GHs were also effective in improving antibiotic clearance in diabetic mice. To examine their safety, we screened the GHs for toxicity in cell culture. Overall, there was an inverse relationship between enzyme exposure time and cellular toxicity, with twelve out of sixteen GHs demonstrating some level of toxicity in cell culture. However, only one GH exhibited harmful effects in mice. These results further support the ability of GHs to improve antibiotic clearance of biofilm-associated infections and help lay a foundation for establishing GHs as therapeutic agents for chronic wound infections.

13.
Probiotics Antimicrob Proteins ; 13(5): 1452-1457, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34173207

RESUMEN

The antibiofilm effect of bacteriocin-like inhibitory substance (BLIS) from Enterococcus faecium DB1 against Clostridium perfringens was investigated in the present study. BLIS of E. faecium DB1 significantly reduced biofilm formation by C. perfringens in a dose-dependent manner for 24 and 48 h. In particular, treatment with BLIS of E. faecium DB1 significantly inhibited biofilm formation by C. perfringens on chicken meat and stainless steel coupon surfaces. Moreover, BLIS of E. faecium DB1 decreased the viability of C. perfringens biofilm and planktonic cells, indicating that the reduction of biofilm formation by C. perfringens might be achieved by killing the bacterial cells. Taken together, the present results suggest that BLIS of E. faecium DB1 can be a promising antibiofilm agent to eradicate C. perfringens.


Asunto(s)
Bacteriocinas , Biopelículas/efectos de los fármacos , Clostridium perfringens/efectos de los fármacos , Enterococcus faecium , Bacteriocinas/farmacología , Clostridium perfringens/crecimiento & desarrollo
14.
AMB Express ; 11(1): 85, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34110520

RESUMEN

Considering the prevalence of resistance to antibiotics, the discovery of effective agents against resistant pathogens is of extreme urgency. Herein, 26 mecA-positive methicillin-resistant S. aureus (MRSA) isolated from clinical samples were identified, and their resistance to 11 antibiotics was investigated. Next, the antibacterial and anti-biofilm activity of the ethanolic extract of M. communis on these strains was evaluated. Furthermore, the effect of this extract on the expression of biofilm-associated genes, icaA, icaD, bap, sarA, and agr, was studied. According to the results, all isolated strains were multidrug-resistant and showed resistance to oxacillin and tetracycline. Also, 96.15 and 88.46 % of them were resistant to gentamicin and erythromycin. However, the extract could effectively combat the strains. The minimum inhibitory concentration (MIC) against different strains ranged from 1.56 to 25 mg/ml and the minimum bactericidal concentration (MBC) was between 3.125 and 50 mg/ml. Even though most MRSA (67 %) strongly produced biofilm, the sub-MIC concentration of the extract destroyed the pre-formed biofilm and affected the bacterial cells inside the biofilm. It could also inhibit biofilm development by significantly decreasing the expression of icaA, icaD, sarA and bap genes involved in biofilm formation and development. In conclusion, the extract inhibits biofilm formation, ruins pre-formed biofilm, and kills cells living inside the biofilm. Furthermore, it down-regulates the expression of necessary genes and nips the biofilm formation in the bud.

15.
Res Microbiol ; 172(1): 103787, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33049327

RESUMEN

Staphylococcus aureus and Staphylococcus epidermidis are among the most important bacterial species responsible for biofilm formation on indwelling medical devices, including orthopaedic implants. The increasing resistance to antimicrobials, partly attributed to the ability to form biofilms, is a challenge for the development of new antimicrobial agents. In this study, the cell-free supernatant obtained from sponge-associated Enterobacter strain 84.3 culture inhibited biofilm formation (>65%) and dissociated mature biofilm (>85%) formed by S. aureus and S. epidermidis strains. The culture supernatant was subjected to solvent partitioning and the aqueous extract presented a concentration-dependent antibiofilm activity for each strain with a minimum biofilm eradication concentration (MBEC) ranging from 16 to 256 µg/mL. The effect of the aqueous extract on mature S. aureus biofilm was analyzed by confocal scanning laser microscopy, showing a significant reduction of the biofilm layer as well as diminished interactions among the cells. This extract is not toxic for mammalian cells (L929 cell line). Studies targeting substances with antibiofilm activity gained significant attention in recent years due to difficult-to-treat biofilm infections. Here, sponge-associated Enterobacter 84.3 proved to be a source of substances capable of eradicating staphylococcal biofilm, with potential medical use in the future.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Extractos Celulares/farmacología , Enterobacter/metabolismo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Animales , Infecciones Relacionadas con Catéteres/tratamiento farmacológico , Infecciones Relacionadas con Catéteres/microbiología , Catéteres de Permanencia/microbiología , Línea Celular , Infección Hospitalaria/tratamiento farmacológico , Infección Hospitalaria/microbiología , Células L , Ratones , Pruebas de Sensibilidad Microbiana , Poríferos/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/prevención & control
16.
Curr Protein Pept Sci ; 22(1): 50-59, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33143623

RESUMEN

Chronic wound biofilm infections are a threat to the population with respect to morbidity and mortality. The presence of multidrug-resistant bacterial pathogens in chronic wound renders the action of antibiotics and antibiofilm agents difficult. Therefore an alternative therapy is essential for reducing bacterial biofilm burden. In this scenario, the peptide-based antibiofilm therapy for chronic wound biofilm management seeks more attention. A synthetic peptide with a broad range of antibiofilm activity against preformed and established biofilms, having the ability to kill multispecies bacteria within biofilms and possessing combinatorial activity with other antimicrobial agents, provides significant insights. In this review, we portray the possibilities and difficulties of peptide-mediated treatment in chronic wounds biofilm management and how it can be clinically translated into a product.


Asunto(s)
Biopelículas/efectos de los fármacos , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Proteínas Citotóxicas Formadoras de Poros/farmacología , Herida Quirúrgica/tratamiento farmacológico , Animales , Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Citocinas/genética , Citocinas/inmunología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Células Endoteliales/efectos de los fármacos , Células Endoteliales/inmunología , Células Endoteliales/microbiología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Gramnegativas/patogenicidad , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/patología , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/crecimiento & desarrollo , Bacterias Grampositivas/patogenicidad , Infecciones por Bacterias Grampositivas/inmunología , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/patología , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/inmunología , Queratinocitos/microbiología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/microbiología , Proteínas Citotóxicas Formadoras de Poros/síntesis química , Proteínas Citotóxicas Formadoras de Poros/aislamiento & purificación , Herida Quirúrgica/inmunología , Herida Quirúrgica/microbiología , Herida Quirúrgica/patología , Investigación Biomédica Traslacional/tendencias
17.
Curr Top Med Chem ; 20(24): 2186-2191, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32648843

RESUMEN

BACKGROUND: Resistance to antimicrobial agents is a major public health problem, being Staphylococcus aureus prevalent in infections in hospital and community environments and, admittedly, related to biofilm formation in biotic and abiotic surfaces. Biofilms form a complex and structured community of microorganisms surrounded by an extracellular matrix adhering to each other and to a surface that gives them even more protection from and resistance against the action of antimicrobial agents, as well as against host defenses. METHODS: Aiming to control and solve these problems, our study sought to evaluate the action of 1,2,3- triazoles against a Staphylococcus aureus isolate in planktonic and in the biofilm form, evaluating the activity of this triazole through Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) tests. We have also performed cytotoxic evaluation and Scanning Electron Microscopy (SEM) of the biofilms under the treatment of the compound. The 1,2,3-triazole DAN 49 showed bacteriostatic and bactericidal activity (MIC and MBC 128 µg/mL). In addition, its presence interfered with the biofilm formation stage (1/2 MIC, p <0.000001) and demonstrated an effect on young preformed biofilm (2 MICs, p <0.05). RESULTS: Scanning Electron Microscopy images showed a reduction in the cell population and the appearance of deformations on the surface of some bacteria in the biofilm under treatment with the compound. CONCLUSION: Therefore, it was possible to conclude the promising anti-biofilm potential of 1,2,3-triazole, demonstrating the importance of the synthesis of new compounds with biological activity.


Asunto(s)
Antibacterianos/química , Infecciones Estafilocócicas/tratamiento farmacológico , Triazoles/química , Antibacterianos/farmacología , Azoles/química , Biopelículas/efectos de los fármacos , Diseño de Fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad , Triazoles/farmacología
18.
Biofilm ; 2: 100032, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33447817

RESUMEN

Wounds complicated by biofilms challenge even the best clinical care and can delay a return to duty for service members. A major component of treatment in wounded warriors includes infected wound management. Yet, all antibiotic therapy options have been optimized against planktonic bacteria, leaving an important gap in biofilm-related wound care. We tested the efficacy of a unique compound (CZ-01179) specifically synthesized to eradicate biofilms. CZ-01179 was formulated as the active agent in a hydrogel, and tested in vitro and in vivo in a pig excision wound model for its ability to treat and prevent biofilm-related wound infection caused by Acinetobacter baumannii. Data indicated that compared to a clinical standard-silver sulfadiazine-CZ-01179 was much more effective at eradicating biofilms of A. baumannii in vitro and up to 6 days faster at eradicating biofilms in vivo. CZ-01179 belongs to a broader class of newly-synthesized antibiofilm agents (referred to as CZ compounds) with reduced risk of resistance development, specific efficacy against biofilms, and promising formulation potential for clinical applications. Given its broad spectrum and biofilm-specific nature, CZ-01179 gel may be a promising agent to increase the pipeline of products to treat and prevent biofilm-related wound infections.

19.
Mater Sci Eng C Mater Biol Appl ; 108: 110319, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31923962

RESUMEN

Zinc oxide nanoparticles have received much attention worldwide as they possess unique properties like varied morphology, large surface area to volume ratio, potent antibacterial activity, and biocompatibility. Biofilm contains homogenous or heterogeneous microorganisms that remain enclosed in a matrix of an extracellular polymeric substance on biotic or abiotic surfaces. Bacterial biofilm formed on medical devices such as central venous catheters, urinary catheters, prosthetic joints, cardiovascular implantable devices, dental implants, contact lenses, intrauterine contraceptive devices and breast implants cause persistent infections. Such biofilm-associated infections in medical implants cause serious problems for public health and affect the function of medical implants. So, there is an urgent need for the use of an antimicrobial agent that will inhibit biofilm, including such antibiotic-resistant bacterial strains as bacteria, to develop multiple drug-resistances resulting in failure of the antibiotic's action. The antimicrobial agent used should be ideal in terms of biocompatibility, antimicrobial activity, stability at different environmental conditions, with less sensitivity to the development of resistance towards micro-organisms, safe for in vivo and in vitro use, and remain non-hazardous to the environment, etc. The first objective of the review discusses the insights into the formation of biofilm on a medical device with the current strategies to inhibit. The second purpose is to review the recent progress in ZnO- based nanostructure including composites for antibacterial and anti-biofilm activities. This will offer a new opportunity for the application of Zinc oxide-based material in the prevention of biofilm on the medical devices.


Asunto(s)
Bacterias/crecimiento & desarrollo , Fenómenos Fisiológicos Bacterianos , Biopelículas/crecimiento & desarrollo , Nanopartículas/química , Prótesis e Implantes/microbiología , Óxido de Zinc/química , Antibacterianos/química , Infecciones Bacterianas/prevención & control , Humanos
20.
Mar Biotechnol (NY) ; 21(1): 88-98, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30612218

RESUMEN

Bacterial biofilm can cause nosocomial recurrent infections and implanted device secondary infections in patients and strongly promotes development of pathogenic drug resistance in clinical treatments. Butenolide is an effective anti-macrofouling compound derived from a marine Streptomyces sp., but its antibiofilm efficacy remains largely unexplored. In the present study, the antibiofilm activities of butenolide were examined using biofilms formed by both Gram-positive and Gram-negative pathogenic model species. Four Escherichia coli strains, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus (MRSA) were used as targets in antibiofilm assays that examined the effects of butenolide, including the following: (i) on bacterial growth; (ii) in inhibiting biofilm formation and eradicating mature biofilm; (iii) on biofilm structures. In addition, the synergistic effect between butenolide with tetracycline was also examined. Butenolide not only effectively inhibited the biofilm formation but also eradicated pre-formed biofilms of tested bacteria. Fractional inhibitory concentration index (FICI) indicated that butenolide was a potential tetracycline enhancer against E. coli, P. aeruginosa, and MRSA. These results indicated that butenolide may hold a great potential as an effective antibiofilm agent to control and prevent biofilm-associated infections in future clinical treatments.


Asunto(s)
4-Butirolactona/análogos & derivados , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , 4-Butirolactona/farmacología , Biopelículas/crecimiento & desarrollo , Combinación de Medicamentos , Sinergismo Farmacológico , Escherichia coli/crecimiento & desarrollo , Escherichia coli/ultraestructura , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Staphylococcus aureus Resistente a Meticilina/ultraestructura , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/ultraestructura , Tetraciclina/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda