Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Crit Rev Food Sci Nutr ; 57(2): 407-417, 2017 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25975749

RESUMEN

Three main in vitro approaches can be distinguished for obtaining amylose (AM): enzymatic synthesis, AM leaching, and AM complexation following starch dispersion. The first uses α-d-glucose-1-phosphate (G1P), a glucosyl primer with a degree of polymerization (DP) of at least 4 and phosphorylase (EC 2.4.1.1), commonly from potatoes. Such approach provides AM chains with low polydispersity, the average DP of which can be manipulated by varying the reaction time and the ratio between G1P, primer, and enzyme dose. AM leaching is the result of heating a starch suspension above the gelatinization temperature. This approach allows isolating AM on large scale. The AM DP, yield, and purity depend on the heating rate, leaching temperature, shear forces and botanical origin. High leaching temperatures (80-85°C) result in mostly pure AM of DP >1000. At higher temperatures, lower purity AM is obtained due to amylopectin leaching. Annealing as pretreatment and ultracentrifugation or repetitive organic solvent-based precipitations after leaching are strategies, which improve the purity of AM extracts. When AM is separated by complex formation, complete dispersion of starch is followed by bringing AM into contact with, e.g., n-butanol or thymol. The resultant complex is separated from amylopectin as a precipitate. Complete starch dispersion without degradation is critical for obtaining AM of high purity. Finally, higher DP AM can be converted enzymatically into AM fractions of lower DP.


Asunto(s)
Amilosa/metabolismo , Aditivos Alimentarios/metabolismo , Amilosa/química , Amilosa/aislamiento & purificación , Aditivos Alimentarios/química , Aditivos Alimentarios/aislamiento & purificación , Hidrólisis , Peso Molecular , Almidón/química , Almidón/metabolismo
2.
Waste Manag ; 51: 105-110, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26951722

RESUMEN

Coarse and fine samples of a Class F fly ash obtained from commercial combustion of Illinois bituminous coal have been exposed to two long-term leaching tests designed to simulate conditions in waste impoundments. ICP-AES analysis indicated that the coarse and fine fly ash samples contained 135 and 171mg/kg Cr, respectively. Measurements by XAFS spectroscopy showed that the ash samples originally contained 5 and 8% of the chromium, respectively, in the hexavalent oxidation state, Cr(VI). After exposure to water for more than four months, the percentage of chromium as Cr(VI) in the fly-ash decreased significantly for the coarse and fine fly-ash in both tests. Combining the XAFS data with ICP-AES data on the concentration of chromium in the leachates indicated that, after the nineteen-week-long, more aggressive, kinetic test on the coarse fly ash, approximately 60% of the Cr(VI) had been leached, 20% had been reduced to Cr(III) and retained in the ash, and 20% remained as Cr(VI) in the ash. In contrast, during the six-month-long baseline test, very little Cr was actually leached from either the coarse or the fine fly-ash (<0.1mg/kg); rather, about 66% and 20%, respectively, of the original Cr(VI) in the coarse and fine fly-ash was retained in the ash in that form, while the remainder, 34% and 80%, respectively, was reduced and retained in the ash as Cr(III). The results are interpreted as indicating that Cr(VI) present in Class F fly-ash can be reduced to Cr(III) when in contact with water and that such chemical reduction can compete with physical removal of Cr(VI) from the ash by aqueous leaching.


Asunto(s)
Cromo/química , Cromo/aislamiento & purificación , Ceniza del Carbón/química , Contaminantes Ambientales/análisis , Contaminantes Ambientales/aislamiento & purificación , Administración de Residuos/métodos , Agua/química , Eliminación de Residuos , Espectrofotometría Atómica , Espectroscopía de Absorción de Rayos X
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda