Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Plant Cell Physiol ; 65(1): 107-119, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-37874980

RESUMEN

Symbioses with beneficial microbes are widespread in plants, but these relationships must balance the energy invested by the plants with the nutrients acquired. Symbiosis with arbuscular mycorrhizal (AM) fungi occurs throughout land plants, but our understanding of the genes and signals that regulate colonization levels is limited, especially in non-legumes. Here, we demonstrate that in tomato, two CLV3/EMBRYO-SURROUNDING REGION (CLE) peptides, SlCLE10 and SlCLE11, act to suppress AM colonization of roots. Mutant studies and overexpression via hairy transformation indicate that SlCLE11 acts locally in the root to limit AM colonization. Indeed, SlCLE11 expression is strongly induced in AM-colonized roots, but SlCLE11 is not required for phosphate suppression of AM colonization. SlCLE11 requires the FIN gene that encodes an enzyme required for CLE peptide arabinosylation to suppress mycorrhizal colonization. However, SlCLE11 suppression of AM does not require two CLE receptors with roles in regulating AM colonization, SlFAB (CLAVATA1 ortholog) or SlCLV2. Indeed, multiple parallel pathways appear to suppress mycorrhizal colonization in tomato, as double mutant studies indicate that SlCLV2 and FIN have an additive influence on mycorrhizal colonization. SlCLE10 appears to play a more minor or redundant role, as cle10 mutants did not influence intraradical AM colonization. However, the fact that cle10 mutants had an elevated number of hyphopodia and that ectopic overexpression of SlCLE10 did suppress mycorrhizal colonization suggests that SlCLE10 may also play a role in suppressing AM colonization. Our findings show that CLE peptides regulate AM colonization in tomato and at least SlCLE11 likely requires arabinosylation for activity.


Asunto(s)
Micorrizas , Solanum lycopersicum , Micorrizas/fisiología , Solanum lycopersicum/genética , Raíces de Plantas/metabolismo , Simbiosis/genética , Péptidos/metabolismo
2.
J Exp Bot ; 75(4): 1134-1147, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-37877933

RESUMEN

Strigolactone is the collective name for compounds containing a butenolide as a part of their structure, first discovered as compounds that induce seed germination of root parasitic plants. They were later found to be rhizosphere signaling molecules that induce hyphal branching of arbuscular mycorrhizal fungi, and, finally, they emerged as a class of plant hormones. Strigolactones are found in root exudates, where they display a great variability in their chemical structure. Their structure varies among plant species, and multiple strigolactones can exist in one species. Over 30 strigolactones have been identified, yet the chemical structure of the strigolactone that functions as an endogenous hormone and is found in the above-ground parts of plants remains unknown. We discuss our current knowledge of the synthetic pathways of diverse strigolactones and their regulation, as well as recent progress in identifying strigolactones as plant hormones. Strigolactone is perceived by the DWARF14 (D14), receptor, an α/ß hydrolase which originated by gene duplication of KARRIKIN INSENSITIVE 2 (KAI2). D14 and KAI2 signaling pathways are partially overlapping paralogous pathways. Progress in understanding the signaling mechanisms mediated by two α/ß hydrolase receptors as well as remaining challenges in the field of strigolactone research are reviewed.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos , Micorrizas , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Lactonas/metabolismo , Micorrizas/fisiología , Plantas/metabolismo , Hidrolasas/genética
3.
Plant J ; 110(2): 513-528, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35080285

RESUMEN

Arbuscular mycorrhizal fungi help their host plant in the acquisition of nutrients, and this association is itself impacted by soil nutrient levels. High phosphorus levels inhibit the symbiosis, whereas high nitrogen levels enhance it. The genetic mechanisms regulating the symbiosis in response to soil nutrients are poorly understood. Here, we characterised the symbiotic phenotypes in four Medicago truncatula Tnt1-insertion mutants affected in arbuscular mycorrhizal colonisation. We located their Tnt1 insertions and identified alleles for two genes known to be involved in mycorrhization, RAM1 and KIN3. We compared the effects of the kin3-2 and ram1-4 mutations on gene expression, revealing that the two genes alter the expression of overlapping but not identical gene sets, suggesting that RAM1 acts upstream of KIN3. Additionally, KIN3 appears to be involved in the suppression of plant defences in response to the fungal symbiont. KIN3 is located on the endoplasmic reticulum of arbuscule-containing cortical cells, and kin3-2 mutants plants hosted significantly fewer arbuscules than the wild type. KIN3 plays an essential role in the symbiotic response to soil nitrogen levels, as, contrary to wild-type plants, the kin3-2 mutant did not exhibit increased root colonisation under high nitrogen.


Asunto(s)
Medicago truncatula , Micorrizas , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/metabolismo , Micorrizas/metabolismo , Nitrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Suelo , Simbiosis/fisiología
4.
BMC Plant Biol ; 23(1): 111, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36814215

RESUMEN

Microorganisms and organic compounds (humic and fulvic acid) offer viable alternatives to insecticides and mineral fertilizers. Even though many studies have shown the effects of biofertilizers and organic substances separately, little information is available on plant responses to the combined application of these bio-stimulants, even though these biological inputs have a high potential for simultaneous action. A two-year (2020/21-2021/22) field experiment was conducted to investigate the impact of organic and biofertilizers application on the growth, yield, and biochemical attributes of wheat (cv. Misr-1). Pre-planting, wheat seeds were inoculated with two biofertilizers including Mycorrhizae, and Azotobacter, and their combination (MIX), and control (un-inoculation) were considered the main plot factor. The subplot factor contained the foliar sprays of humic acid, fulvic acid, and control (no spray). The results revealed that the seed inoculation with mycorrhizae and azotobacter in combination with foliar-applied humic acid markedly (p ≤ 0.05) affected the growth, yield, and seed biochemical composition of wheat. Combination of mycorrhiza and azotobacter significantly (p ≤ 0.05) increased) plant height (100 cm), crop growth rate (18.69 g), number of spikelets per spike (22), biological yield (13.4 ton ha-1), grain yield (5.56 ton ha-1), straw yield (8.21 ton ha-1),), nitrogen (2.07%), phosphorous (0.91%), potassium (1.64%), protein content (12.76%), starch (51.81%), and gluten content (30.90%) compared to control. Among organic fertilizers, humic acid caused the maximum increase in plant height (93 cm), crop growth rate ( 15 g day-1 m-2),1000 grain weight (51 g), biological yield ( 11ton ha-1), grain yield (4.5 ton ha-1), protein content (11%), chlorophyll content (46 SPAD), and gluten (29.45%) as compared to all other treatments. The foliar application of humic acid combined with the mycorrhizae or azotobacter seed inoculation was efficient to induce wheat vegetative growth development, as well as yield and its components.


Asunto(s)
Sustancias Húmicas , Triticum , Triticum/metabolismo , Fertilizantes/análisis , Grano Comestible , Semillas/química , Suelo/química , Nitrógeno/metabolismo , Agricultura/métodos
5.
New Phytol ; 237(3): 766-779, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36352518

RESUMEN

Tropical forests are often characterized by low soil phosphorus (P) availability, suggesting that P limits plant performance. However, how seedlings from different functional types respond to soil P availability is poorly known but important for understanding and modeling forest dynamics under changing environmental conditions. We grew four nitrogen (N)-fixing Fabaceae and seven diverse non-N-fixing tropical dry forest tree species in a shade house under three P fertilization treatments and evaluated carbon (C) allocation responses, P demand, P-use, investment in P acquisition traits, and correlations among P acquisition traits. Nitrogen fixers grew larger with increasing P addition in contrast to non-N fixers, which showed fewer responses in C allocation and P use. Foliar P increased with P addition for both functional types, while P acquisition strategies did not vary among treatments but differed between functional types, with N fixers showing higher root phosphatase activity (RPA) than nonfixers. Growth responses suggest that N fixers are limited by P, but nonfixers may be limited by other resources. However, regardless of limitation, P acquisition traits such as mycorrhizal colonization and RPA were nonplastic across a steep P gradient. Differential limitation among plant functional types has implications for forest succession and earth system models.


Asunto(s)
Nitrógeno , Árboles , Árboles/fisiología , Fósforo , Clima Tropical , Bosques , Plantas , Suelo
6.
BMC Genomics ; 23(1): 688, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36199042

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are important post-transcriptional regulators involved in the control of a range of processes, including symbiotic interactions in plants. MiRNA involvement in arbuscular mycorrhizae (AM) symbiosis has been mainly studied in model species, and our study is the first to analyze global miRNA expression in the roots of AM colonized switchgrass (Panicum virgatum), an emerging biofuel feedstock. AM symbiosis helps plants gain mineral nutrition from the soil and may enhance switchgrass biomass production on marginal lands. Our goals were to identify miRNAs and their corresponding target genes that are controlling AM symbiosis in switchgrass. RESULTS: Through genome-wide analysis of next-generation miRNA sequencing reads generated from switchgrass roots, we identified 122 mature miRNAs, including 28 novel miRNAs. By comparing miRNA expression profiles of AM-inoculated and control switchgrass roots, we identified 15 AM-responsive miRNAs across lowland accession "Alamo", upland accession "Dacotah", and two upland/lowland F1 hybrids. We used degradome sequencing to identify target genes of the AM-responsive miRNAs revealing targets of miRNAs residing on both K and N subgenomes. Notably, genes involved in copper ion binding were targeted by downregulated miRNAs, while upregulated miRNAs mainly targeted GRAS family transcription factors. CONCLUSION: Through miRNA analysis and degradome sequencing, we revealed that both upland and lowland switchgrass genotypes as well as upland-lowland hybrids respond to AM by altering miRNA expression. We demonstrated complex GRAS transcription factor regulation by the miR171 family, with some miR171 family members being AM responsive while others remained static. Copper miRNA downregulation was common amongst the genotypes tested and we identified superoxide dismutases and laccases as targets, suggesting that these Cu-miRNAs are likely involved in ROS detoxification and lignin deposition, respectively. Other prominent targets of the Cu miRNAs were blue copper proteins. Overall, the potential effect of AM colonization on lignin deposition pathways in this biofuel crop highlights the importance of considering AM and miRNA in future biofuel crop development strategies.


Asunto(s)
MicroARNs , Micorrizas , Panicum , Biocombustibles , Cobre , Lignina , MicroARNs/genética , MicroARNs/metabolismo , Micorrizas/metabolismo , Panicum/metabolismo , Especies Reactivas de Oxígeno , Suelo , Superóxidos , Factores de Transcripción
7.
Am J Bot ; 109(12): 2068-2081, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36310350

RESUMEN

PREMISE: Approximately 14% of all fern species have physiologically active chlorophyllous spores that are much more short-lived than the more common and dormant achlorophyllous spores. Most chlorophyllous-spored species (70%) are epiphytes and account for almost 37% of all epiphytic ferns. Chlorophyllous-spored ferns are also overrepresented among fern species in habitats with waterlogged soils, of which nearly 60% have chlorophyllous spores. Ferns in these disparate habitat types also have a low incidence of mycorrhizal associations. We therefore hypothesized that autotrophic chlorophyllous spores represent an adaptation of ferns to habitats with scarce mycorrhizal associations. METHODS: We evaluated the coevolution of chlorophyllous spores and mycorrhizal associations in ferns and their relation to habitat type using phylogenetic comparative methods. RESULTS: Although we did not find support for the coevolution of spore type and mycorrhizal associations, we did find that chlorophyllous spores and the absence of mycorrhizal associations have coevolved with epiphytic and waterlogged habitats. Transition rates to epiphytic and waterlogged habitats were significantly higher in species with chlorophyllous spores compared to achlorophyllous lineages. CONCLUSIONS: Spore type and mycorrhizal associations appear to play important roles in the radiation of ferns into different habitat types. Future work should focus on clarifying the functional significance of these associations.


Asunto(s)
Helechos , Micorrizas , Micorrizas/fisiología , Helechos/fisiología , Filogenia , Esporas Fúngicas , Evolución Biológica , Esporas/fisiología
8.
J Sci Food Agric ; 102(1): 407-416, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34143900

RESUMEN

BACKGROUND: Hydric stress affects the production of wheat (Triticum aestivum L.) worldwide, making some tools necessary to cope with the decrease in rainfall. A sustainable alternative is the use of arbuscular mycorrhizal fungi (AMF) as biofertilisers. Here, we analysed the effects of AMF strains adapted or non-adapted to hyper-arid conditions on the phenolic profiles and antioxidant activities of wheat grains from two cultivars with contrasting tolerance to osmotic stress (Ilustre, moderately tolerant; and Maxi, tolerant) grown with and without hydric stress. RESULTS: Eight phenolic compounds were detected, apigenin-C-pentoside-C-hexoside I being the most abundant and showing an increase of 80.5% when inoculated with the fungus Funneliformis mosseae (FM) obtained from Atacama Desert under normal irrigation with respect to non-mycorrhizal (NM) plants. NM treatments were associated with higher grain yields. FM showed a noticeable effect on most phenolic compounds, with an increase up to 30.2% in apigenin-C-pentoside-C-hexoside III concentration under hydric stress with respect to normal irrigation, being also responsible for high antioxidant activities such as ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and DPPH (2,2-diphenyl-1-picrylhydrazyl) activities. CONCLUSION: Inoculation with FM adapted to hydric stress produced improvements in phenolics composition and antioxidant activities in grains from wheat plants growing under hydric stress conditions, improving their food quality and supporting the development of further studies to determine whether the use of adapted AMF could be a realistic tool to improve grain quality in a scenario of increasing hydric stress conditions. © 2021 Society of Chemical Industry.


Asunto(s)
Inoculantes Agrícolas/fisiología , Antioxidantes/química , Hongos/fisiología , Micorrizas/fisiología , Fenoles/química , Semillas/química , Triticum/crecimiento & desarrollo , Antioxidantes/metabolismo , Fenoles/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Semillas/microbiología , Triticum/química , Triticum/metabolismo , Triticum/microbiología
9.
World J Microbiol Biotechnol ; 38(11): 213, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36053362

RESUMEN

The soils of Lakshadweep Islands are formed as a result of the fragmentation of coral limestone, that is carbonate-rich, with neutral pH, but poor in plant nutrients. Coconut palm (Cocos nucifera L.) is the main crop cultivated, supporting the life and livelihood of the islanders. No external fertilizer application or major plant protection measures are adopted for their cultivation as the Islands were declared to go organic decades back. Yet, Lakshadweep has one of the highest productivity of coconut compared with other coconut growing areas in India. Therefore, a question arises: how is such a high coconut productivity sustained? We try to answer by estimating in three main islands (i) the nutrients added to the soil via the litter generated by coconut palms and (ii) the role of soil microbiota, including arbuscular mycorrhizae, for the high productivity. Our results indicated that, besides adding a substantial quantum of organic carbon, twice the needed amount of nitrogen, extra 20% phosphorus to the already P-rich soils, 43-45% of potassium required by palms could be easily met by the total coconut biomass residues returned to the soil. Principal Component Analysis showed that soil organic carbon %, potassium, and organic carbon added via the palm litter and AM spore load scored >± 0.95 in PC1, whereas, available K in the soil, bacteria, actinomycetes, phosphate solubilizers and fluorescent pseudomonads scored above >± 0.95 in PC2. Based on our analysis, we suggest that the autochthonous nutrients added via the coconut biomass residues, recycled by the soil microbial communities, could be one of the main reasons for sustaining a high productivity of the coconut palms in Lakshadweep Islands, in the absence of any external fertilizer application, mimicking a semi-closed-loop forest ecosystem.


Asunto(s)
Fertilizantes , Microbiota , Carbono/análisis , Cocos , Fertilizantes/análisis , Nitrógeno/análisis , Nutrientes/análisis , Plantas , Potasio/análisis , Suelo/química , Microbiología del Suelo
10.
Plant Mol Biol ; 106(4-5): 319-334, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33825084

RESUMEN

KEY MESSAGE: Overexpression of genes involved in coumarin production and secretion can mitigate mycorrhizal incompatibility in nonhost Arabidopsis plants. The coumarin scopoletin, in particular, stimulates pre-penetration development and metabolism in mycorrhizal fungi. Although most plants can benefit from mutualistic associations with arbuscular mycorrhizal (AM) fungi, nonhost plant species such as the model Arabidopsis thaliana have acquired incompatibility. The transcriptional response of Arabidopsis to colonization by host-supported AM fungi switches from initial AM recognition to defense activation and plant growth antagonism. However, detailed functional information on incompatibility in nonhost-AM fungus interactions is largely missing. We studied interactions between host-sustained AM fungal networks of Rhizophagus irregularis and 18 Arabidopsis genotypes affected in nonhost penetration resistance, coumarin production and secretion, and defense (salicylic acid, jasmonic acid, and ethylene) and growth hormones (auxin, brassinosteroid, cytokinin, and gibberellin). We demonstrated that root-secreted coumarins can mitigate incompatibility by stimulating fungal metabolism and promoting initial steps of AM colonization. Moreover, we provide evidence that major molecular defenses in Arabidopsis do not operate as primary mechanisms of AM incompatibility nor of growth antagonism. Our study reveals that, although incompatible, nonhost plants can harbor hidden tools that promote initial steps of AM colonization. Moreover, it uncovered the coumarin scopoletin as a novel signal in the pre-penetration dialogue, with possible implications for the chemical communication in plant-mycorrhizal fungi associations.


Asunto(s)
Arabidopsis/microbiología , Hongos/crecimiento & desarrollo , Micorrizas/crecimiento & desarrollo , Escopoletina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Genes de Plantas , Genotipo , Interacciones Microbiota-Huesped/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Transducción de Señal
11.
J Exp Bot ; 72(5): 1702-1713, 2021 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-33186449

RESUMEN

Plants form mutualistic nutrient-acquiring symbioses with microbes, including arbuscular mycorrhizal fungi. The formation of these symbioses is costly, and plants employ a negative feedback loop termed autoregulation of mycorrhizae (AOM) to limit formation of arbuscular mycorrhizae (AM). We provide evidence for the role of one leucine-rich repeat receptor-like kinase (FAB), a hydroxyproline O-arabinosyltransferase enzyme (FIN), and additional evidence for one receptor-like protein (SlCLV2) in the negative regulation of AM formation in tomato. Reciprocal grafting experiments suggest that the FAB gene acts locally in the root, while the SlCLV2 gene may act in both the root and the shoot. External nutrients including phosphate and nitrate can also strongly suppress AM formation. We found that FAB and FIN are required for nitrate suppression of AM but are not required for the powerful suppression of AM colonization by phosphate. This parallels some of the roles of legume homologues in the autoregulation of the more recently evolved symbioses with nitrogen-fixing bacteria leading to nodulation. This deep homology in the symbiotic role of these genes suggests that in addition to the early signalling events that lead to the establishment of AM and nodulation, the autoregulation pathway might also be considered part of the common symbiotic toolkit that enabled plants to form beneficial symbioses.


Asunto(s)
Fabaceae , Micorrizas , Solanum lycopersicum , Solanum lycopersicum/genética , Nitrógeno , Raíces de Plantas , Simbiosis
12.
Ecotoxicology ; 30(1): 118-129, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33141388

RESUMEN

Environmental risks of silver (Ag) nanoparticles (NPs) have aroused considerable concern, however, their ecotoxicity in soil-plant systems has yet not been well elaborated, particularly in agroecosystems with various fertility levels and soil biota. The aims of the present study were to determine AgNPs impacts on maize as influenced by mycorrhizal inoculation and P fertilization. A greenhouse pot experiment was conducted determine the effects of mycorrhizal inoculation with Rhizophagus intraradices and P fertilization (0, 20, and 50 P mg/kg soil, as Ca(H2PO4)2) on plant growth, Ag accumulation and physiological responses of maize exposed to AgNPs (1 mg/kg), or an equivalent Ag+. Overall, AgNPs and Ag+ did not significantly affect plant biomass and acquisition of mineral nutrients, activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), chlorophyll contents and photosystem (PS) II photochemical efficiency. In most cases, AgNPs and Ag+ caused similar Ag accumulation in plant tissues. P fertilization significantly increased Ag bioavailability and plant Ag accumulation, but only promoted the growth and P uptake of nonmycorrhizal plants. AM inoculation produced positive impacts on plant biomass, nutritional and physiological responses, but slightly affected extractable Ag in soil and Ag accumulation in plants. Mycorrhizal responses in plant growth and P uptake were more pronounced in the treatments without P but with Ag. By and large, AgNPs exhibited similar phytoavailability, phytoaccumulation and low phytotoxicity compared to Ag+, but higher fungitoxicity (i.e., lower root colonization). In conclusion, both AM inoculation and P fertilization can improve plant performance in the soil exposed to Ag, but P increases environmental risk of Ag. Our results indicate a beneficial role of arbuscular mycorrhizal fungi but a dual role of P in soil-plant systems exposed to AgNPs or Ag+.


Asunto(s)
Fertilizantes , Nanopartículas del Metal , Micorrizas , Fósforo , Plata/toxicidad , Contaminantes del Suelo , Zea mays/fisiología , Biomasa , Hongos , Nanopartículas del Metal/toxicidad , Micorrizas/química , Raíces de Plantas/química , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Zea mays/efectos de los fármacos
13.
Arch Microbiol ; 202(1): 1-16, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31552478

RESUMEN

The acerbic elevation of toxic metal ions in arable lands, enhance the risk of their accumulation and biomagnification in crops as well as in humans. Phytoremediation is an eco-friendly approach to clear metal-contaminated lands by making use of metal accumulation potential of plants; which are referred to as hyperaccumulators. This phytoremediation potential can be enhanced with the symbiotic association between the root of hyperaccumulators and arbuscular mycorrhizae. Modification of root morphology, enhancement of antioxidants biosynthesis, and the increase in shoot biomass are the changes observed in plants as a result of indirect influence of arbuscular mycorrhizae. Direct influence of arbuscular mycorrhizae on enhancing metal tolerance of plants includes immobilization strategies, adsorption of metals on to the hyphal wall and glomalin exudation. Furthermore, we have discussed arbuscular mycorrhizal induced increment in the metal tolerance potential of plants through the alteration in various metabolic processes with special emphasis to the phenylpropanoid pathway.


Asunto(s)
Biodegradación Ambiental , Metales/toxicidad , Micorrizas/metabolismo , Raíces de Plantas/microbiología , Plantas/efectos de los fármacos , Plantas/microbiología , Simbiosis/fisiología , Biomasa , Contaminantes del Suelo/toxicidad
14.
Oecologia ; 192(2): 449-462, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31960145

RESUMEN

In forest communities, conspecific density/distance dependence (CDD) is an important factor regulating diversity. It remains unknown how and the extent to which gap creation alters the mode and strength of CDD via changes in the relative importance of pathogens and mycorrhizae. Seeds of two hardwoods (i.e., Acer mono associated with arbuscular mycorrhizae [AM] and Quercus serrata associated with ectomycorrhizae [EM]) were sown reciprocally at four distances from the boundary between Acer- and Quercus-dominated forests towards forest interior in each of forest understories (FUs) and gaps. The causes of seed and seedling mortality, seedling growth and colonization of mycorrhizal fungi were investigated. In Acer, seed and seedling mortality were highest in Acer forests and gradually decreased towards the interior of Quercus forests in FU, mainly due to severe attack of soil pathogens, invertebrates, and leaf diseases. The reverse was true in gaps, due to reduction of damping-off damage caused by distance-dependent colonization of AM. In Quercus, most seeds and seedlings were eaten by vertebrates in FUs. The seedling mortality caused by leaf diseases was not high, even beneath conspecific forests with higher colonization of EM in gaps, suggesting a positive EM influence. In both species, seedling mass was greatest in conspecific forests and gradually decreased towards the interior of heterospecific forests in gaps, due to higher colonization of mycorrhizae near conspecifics. In conclusion, light conditions strongly altered the mode of CDD via changes in relative influence of pathogens and mycorrhizae, suggesting that gap creation may regulate species diversity via changes in the mode of CDD.


Asunto(s)
Acer , Micorrizas , Animales , Bosques , Plantones , Árboles
15.
Oecologia ; 192(3): 735-744, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31989319

RESUMEN

Soil microbial communities can have an important role in the adaptation of plants to their local abiotic soil conditions and in mediating plant responses to environmental stress. This has been clearly demonstrated for individual plant species, but it is unknown how locally adapted microbes may affect plant communities. It is possible that the adaptation of microbial communities to local conditions can shape plant community composition. Additionally, it is possible that the effects of locally adapted microorganisms on individual plant species could be altered by co-occurring plant species. We tested these possibilities in plant community mesocosms with soils and mycorrhizal fungi (AMF) from three locations. We found that plant community biomass responded positively to local adaptation of AMF to soil conditions. Plant community composition also changed in response to local adaptation of AMF. Unexpectedly, the strongest benefits of locally adapted AMF went to early successional plant species that have the highest relative growth rates and the lowest responsiveness to the presence of AMF. Late successional plants that responded positively overall to the presence of AMF were often suppressed in communities with local AMF, perhaps because of strong competition from fast growing plant species. These results show that local adaptation of soil microbial communities can shape plant community composition, and the benefits that plants derive from locally adapted microorganisms can be reshaped by the competitive context in which these associations occur.


Asunto(s)
Micorrizas , Raíces de Plantas , Plantas , Suelo , Microbiología del Suelo
16.
Physiol Mol Biol Plants ; 26(1): 143-162, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32153322

RESUMEN

Mycorrhizal symbiotic relationship is one of the most common collaborations between plant roots and the arbuscular mycorrhizal fungi (AMF). The first barrier for establishing this symbiosis is plant cell wall which strongly provides protection against biotic and abiotic stresses. The aim of this study was to investigate the gene expression changes in cell wall of wheat root cv. Chamran after inoculation with AMF, Funneliformis mosseae under two different irrigation regimes. To carry out this investigation, total RNA was extracted from the roots of mycorrhizal and non-mycorrhizal plants, and analyzed using RNA-Seq in an Illumina Next-Seq 500 platform. The results showed that symbiotic association between wheat and AMF and irrigation not only affect transcription profile of the plant growth, but also cell wall and membrane components. Of the 114428 genes expressed in wheat roots, the most differentially expressed genes were related to symbiotic plants under water stress. The most differentially expressed genes were observed in carbohydrate metabolic process, lipid metabolic process, cellulose synthase activity, membrane transports, nitrogen compound metabolic process and chitinase activity related genes. Our results indicated alteration in cell wall and membrane composition due to mycorrhization and irrigation regimes might have a noteworthy effect on the plant tolerance to water deficit.

17.
Arch Microbiol ; 201(9): 1151-1161, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31168635

RESUMEN

The Prespa lakes plain is an isolated area where about 1000 ha are seeded to Phaseolus vulgaris L. and Phaseolus coccineus L. Nodulation, arbuscular mycorrhizal fungal (AMF) presence and the genetic diversity of rhizobia were evaluated by 16S-ITS-23S-RFLP patterns and by sequencing. The bean rhizobial population in the region was diverse, despite its geographic isolation. No biogeographic relationships were detected, apart from a Rhizobium tropici-related strain that originated from an acidic soil. No clear pattern was detected in clustering with bean species and all isolates formed nodules with both bean species. Most strains were related to Rhizobium leguminosarum and a number of isolates were falling outside the already characterized species of genus Rhizobium. Application of heavy fertilization has resulted in high soil N and P levels, which most likely reduced nodulation and AMF spore presence. However, considerable AMF root length colonization was found in most of the fields.


Asunto(s)
Micorrizas/fisiología , Phaseolus/microbiología , Raíces de Plantas/microbiología , Rhizobium/genética , Grecia , Lagos , Polimorfismo de Longitud del Fragmento de Restricción , Rhizobium/clasificación , Suelo/química , Microbiología del Suelo , Simbiosis/genética
18.
Am J Bot ; 106(6): 894-900, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31162645

RESUMEN

PREMISE: Polyploidy is known to cause physiological changes in plants which, in turn, can affect species interactions. One major physiological change predicted in polyploid plants is a heightened demand for growth-limiting nutrients. Consequently, we expect polyploidy to cause an increased reliance on the belowground mutualists that supply these growth-limiting nutrients. An important first step in investigating how polyploidy affects nutritional mutualisms in plants, then, is to characterize differences in the rate at which diploids and polyploids interact with belowground mutualists. METHODS: We used Heuchera cylindrica (Saxifragaceae) to test how polyploidy influences interactions with arbuscular mycorrhizal fungi (AMF). Here we first confirmed the presence of AMF in H. cylindrica, and then we used field-collected specimens to quantify and compare the presence of AMF structures while controlling for site-specific variation. RESULTS: Tetraploids had higher colonization rates as measured by total, hyphal, and nutritional-exchange structures; however, we found that diploids and tetraploids did not differ in vesicle colonization rates. CONCLUSIONS: The results suggest that polyploidy may alter belowground nutritional mutualisms with plants. Because colonization by nutritional-exchange structures was higher in polyploids but vesicle colonization was not, polyploids might form stronger associations with their AMF partners. Controlled experiments are necessary to test whether this pattern is driven by the direct effect of polyploidy on AMF colonization.


Asunto(s)
Heuchera/genética , Micorrizas/fisiología , Poliploidía , Simbiosis , Heuchera/microbiología , Heuchera/fisiología , Fenómenos Fisiológicos de las Plantas/genética , Simbiosis/genética
19.
Mycorrhiza ; 29(3): 227-235, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30868248

RESUMEN

Arbuscular mycorrhizal (AM) fungi are considered to be a key group of soil organisms for assessments of soil biological properties and developing relationships among crop production management practices, soil properties, crop performance, and ecosystem services. In a field study of cover crop treatments established during the transition from small grains to corn (Zea mays L), we assessed multiple measures of AM fungal responses to the management treatments: soil propagule numbers, biomass via lipid biomarkers, and root colonization extent. Our objectives were to determine response variables that reliably distinguished cover crop treatments and formed consistent relationships with grain yield, plant biomass, and mineral nutrient concentrations of the following corn crop. The number of soil AM fungal propagules and amount of the NLFA biomarker C16:1cis11 measured on fall-collected soils most consistently and significantly responded to fall cover crop treatments. Neither of these measures of soil inoculum potential was strongly related to measures of crop performance. The PLFA biomarker C16:1cis11 was marginally responsive to cover crop but did not strongly relate to crop performance parameters. Corn root colonization by AM fungi was not significantly affected by cover crop treatment, but significant negative relationships were found between root colonization and grain N concentration and plant biomass at maturity. In contrast, a significant positive relationship between root colonization and plant N concentration at the 6-leaf stage was found. Understanding the relative effectiveness and limitations of AM fungal response variables will inform their application in field studies of agricultural management practices.


Asunto(s)
Agricultura , Micorrizas/fisiología , Raíces de Plantas/microbiología , Microbiología del Suelo , Biomasa , Producción de Cultivos , Productos Agrícolas/microbiología , Ecosistema , Suelo , Zea mays/crecimiento & desarrollo , Zea mays/microbiología
20.
Ecology ; 99(11): 2525-2534, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30218450

RESUMEN

Biomass production efficiency (BPE), the ratio of biomass production to photosynthesis, varies greatly among ecosystems and typically increases with increasing nutrient availability. Reduced carbon partitioning to mycorrhizal fungi (i.e., per unit photosynthesis) is the hypothesized underlying mechanism, as mycorrhizal abundance and plant dependence on these symbionts typically decrease with increasing nutrient availability. In a mesocosm experiment with Zea mays, we investigated the effect of nitrogen (N) and phosphorus (P) addition and of mycorrhizal inoculation on BPE. Photosynthesis and respiration were measured at mesocosm scale and at leaf scale. The growth of arbuscular mycorrhizal fungi (AMF) was assessed with ingrowth bags while also making use of the difference in δ13 C between C4 plants and C3 soil. Mesocosms without AMF, that is, with pasteurized soil, were used to further explore the role of AMF. Plant growth, photosynthesis, and BPE were positively affected by P, but not by N addition. AMF biomass also was slightly higher under P addition, but carbon partitioning to AMF was significantly lower than without P addition. Interestingly, in the absence of AMF, plants that did not receive P died prematurely. Our study confirmed the hypothesis that BPE increases with increasing nutrient availability, and that carbon partitioning to AMF plays a key role in this nutrient effect. The comparison of inoculated vs. pasteurized mesocosms further suggested a lower carbon cost of nutrient uptake via AMF than via other mechanisms under nutrient rich conditions.


Asunto(s)
Micorrizas , Biomasa , Carbono , Ecosistema , Fósforo , Raíces de Plantas/microbiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda