Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
1.
J Biol Chem ; 300(8): 107565, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002675

RESUMEN

Citrate synthase catalyzes the first and the rate-limiting reaction of the tricarboxylic acid (TCA) cycle, producing citrate from the condensation of oxaloacetate and acetyl-coenzyme A. The parasitic protozoan Toxoplasma gondii has full TCA cycle activity, but its physiological roles remain poorly understood. In this study, we identified three proteins with predicted citrate synthase (CS) activities two of which were localized in the mitochondrion, including the 2-methylcitrate synthase (PrpC) that was thought to be involved in the 2-methylcitrate cycle, an alternative pathway for propionyl-CoA detoxification. Further analyses of the two mitochondrial enzymes showed that both had citrate synthase activity, but the catalytic efficiency of CS1 was much higher than that of PrpC. Consistently, the deletion of CS1 resulted in a significantly reduced flux of glucose-derived carbons into TCA cycle intermediates, leading to decreased parasite growth. In contrast, disruption of PrpC had little effect. On the other hand, simultaneous disruption of both CS1 and PrpC resulted in more severe metabolic changes and growth defects than a single deletion of either gene, suggesting that PrpC does contribute to citrate production under physiological conditions. Interestingly, deleting Δcs1 and Δprpc individually or in combination only mildly or negligibly affected the virulence of parasites in mice, suggesting that both enzymes are dispensable in vivo. The dispensability of CS1 and PrpC suggests that either the TCA cycle is not essential for the asexual reproduction of tachyzoites or there are other routes of citrate supply in the parasite mitochondrion.


Asunto(s)
Citrato (si)-Sintasa , Ciclo del Ácido Cítrico , Ácido Cítrico , Mitocondrias , Proteínas Protozoarias , Toxoplasma , Toxoplasma/enzimología , Toxoplasma/metabolismo , Toxoplasma/genética , Mitocondrias/metabolismo , Animales , Citrato (si)-Sintasa/metabolismo , Citrato (si)-Sintasa/genética , Ácido Cítrico/metabolismo , Ratones , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Toxoplasmosis/metabolismo , Toxoplasmosis/parasitología , Toxoplasmosis/genética
2.
BMC Biol ; 22(1): 108, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714997

RESUMEN

BACKGROUND: Populations of the plant pathogenic fungus Verticillium dahliae display a complex and rich genetic diversity, yet the existence of sexual reproduction in the fungus remains contested. As pivotal genes, MAT genes play a crucial role in regulating cell differentiation, morphological development, and mating of compatible cells. However, the functions of the two mating type genes in V. dahliae, VdMAT1-1-1, and VdMAT1-2-1, remain poorly understood. RESULTS: In this study, we confirmed that the MAT loci in V. dahliae are highly conserved, including both VdMAT1-1-1 and VdMAT1-2-1 which share high collinearity. The conserved core transcription factor encoded by the two MAT loci may facilitate the regulation of pheromone precursor and pheromone receptor genes by directly binding to their promoter regions. Additionally, peptide activity assays demonstrated that the signal peptide of the pheromone VdPpg1 possessed secretory activity, while VdPpg2, lacked a predicted signal peptide. Chemotactic growth assays revealed that V. dahliae senses and grows towards the pheromones FO-a and FO-α of Fusarium oxysporum, as well as towards VdPpg2 of V. dahliae, but not in response to VdPpg1. The findings herein also revealed that VdMAT1-1-1 and VdMAT1-2-1 regulate vegetative growth, carbon source utilization, and resistance to stressors in V. dahliae, while negatively regulating virulence. CONCLUSIONS: These findings underscore the potential roles of VdMAT1-1-1 and VdMAT1-2-1 in sexual reproduction and confirm their involvement in various asexual processes of V. dahliae, offering novel insights into the functions of mating type genes in this species.


Asunto(s)
Genes del Tipo Sexual de los Hongos , Genes del Tipo Sexual de los Hongos/genética , Ascomicetos/genética , Ascomicetos/fisiología , Feromonas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Verticillium
3.
BMC Genomics ; 25(1): 888, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304834

RESUMEN

BACKGROUND: Arbuscular mycorrhizal fungi (AMF) form mutualistic partnerships with approximately 80% of plant species. AMF, and their diversity, play a fundamental role in plant growth, driving plant diversity, and global carbon cycles. Knowing whether AMF are sexual or asexual has fundamental consequences for how they can be used in agricultural applications. Evidence for and against sexuality in the model AMF, Rhizophagus irregularis, has been proposed. The discovery of a putative mating-type locus (MAT locus) in R. irregularis, and the previously suggested recombination among nuclei of a dikaryon R. irregularis isolate, potentially suggested sexuality. Unless undergoing frequent sexual reproduction, evolution of MAT-locus diversity is expected to be very low. Additionally, in sexual species, MAT-locus evolution is decoupled from the evolution of arbitrary genome-wide loci. RESULTS: We studied MAT-locus diversity of R. irregularis. This was then compared to diversification in a phosphate transporter gene (PTG), that is not involved in sex, and to genome-wide divergence, defined by 47,378 single nucleotide polymorphisms. Strikingly, we found unexpectedly high MAT-locus diversity indicating that either it is not involved in sex, or that AMF are highly active in sex. However, a strongly congruent evolutionary history of the MAT-locus, PTG and genome-wide arbitrary loci allows us to reject both the hypothesis that the MAT-locus is involved in mating and that the R. irregularis lineage is sexual. CONCLUSION: Our finding shapes the approach to developing more effective AMF strains and is highly informative as it suggests that introduced strains applied in agriculture will not exchange DNA with native populations.


Asunto(s)
Evolución Molecular , Genes del Tipo Sexual de los Hongos , Genoma Fúngico , Micorrizas , Micorrizas/genética , Micorrizas/fisiología , Genes del Tipo Sexual de los Hongos/genética , Polimorfismo de Nucleótido Simple , Glomeromycota/genética , Glomeromycota/fisiología , Variación Genética , Filogenia , Reproducción Asexuada/genética , Hongos
4.
BMC Genomics ; 25(1): 548, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824502

RESUMEN

Gibel carp (Carassius gibelio) is a cyprinid fish that originated in eastern Eurasia and is considered as invasive in European freshwater ecosystems. The populations of gibel carp in Europe are mostly composed of asexually reproducing triploid females (i.e., reproducing by gynogenesis) and sexually reproducing diploid females and males. Although some cases of coexisting sexual and asexual reproductive forms are known in vertebrates, the molecular mechanisms maintaining such coexistence are still in question. Both reproduction modes are supposed to exhibit evolutionary and ecological advantages and disadvantages. To better understand the coexistence of these two reproduction strategies, we performed transcriptome profile analysis of gonad tissues (ovaries) and studied the differentially expressed reproduction-associated genes in sexual and asexual females. We used high-throughput RNA sequencing to generate transcriptomic profiles of gonadal tissues of triploid asexual females and males, diploid sexual males and females of gibel carp, as well as diploid individuals from two closely-related species, C. auratus and Cyprinus carpio. Using SNP clustering, we showed the close similarity of C. gibelio and C. auratus with a basal position of C. carpio to both Carassius species. Using transcriptome profile analyses, we showed that many genes and pathways are involved in both gynogenetic and sexual reproduction in C. gibelio; however, we also found that 1500 genes, including 100 genes involved in cell cycle control, meiosis, oogenesis, embryogenesis, fertilization, steroid hormone signaling, and biosynthesis were differently expressed in the ovaries of asexual and sexual females. We suggest that the overall downregulation of reproduction-associated pathways in asexual females, and their maintenance in sexual ones, allows the populations of C. gibelio to combine the evolutionary and ecological advantages of the two reproductive strategies. However, we showed that many sexual-reproduction-related genes are maintained and expressed in asexual females, suggesting that gynogenetic gibel carp retains the genetic toolkits for meiosis and sexual reproduction. These findings shed new light on the evolution of this asexual and sexual complex.


Asunto(s)
Carpas , Reproducción Asexuada , Reproducción , Animales , Femenino , Reproducción Asexuada/genética , Reproducción/genética , Carpas/genética , Carpas/fisiología , Masculino , Transcriptoma , Perfilación de la Expresión Génica , Ovario/metabolismo , Polimorfismo de Nucleótido Simple
5.
Am Nat ; 203(1): 73-91, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38207137

RESUMEN

AbstractTransitions from sexual to asexual reproduction have occurred in numerous lineages, but it remains unclear why asexual populations rarely persist. In facultatively parthenogenetic animals, all-female populations can arise when males are absent or become extinct, and such populations could help to understand the genetic and phenotypic changes that occur in the initial stages of transitions to asexuality. We investigated a naturally occurring spatial mosaic of mixed-sex and all-female populations of the facultatively parthenogenetic Australian phasmid Megacrania batesii. Analysis of single-nucleotide polymorphisms indicated multiple independent transitions between reproductive modes. All-female populations had much lower heterozygosity and allelic diversity than mixed-sex populations, but we found few consistent differences in fitness-related traits between population types. All-female populations exhibited more frequent and severe deformities in their (flight-incapable) wings but did not show higher rates of appendage loss. All-female populations also harbored more ectoparasites in swamp (but not beach) habitats. Reproductive mode explained little variation in female body size, fecundity, or egg hatch rate. Our results suggest that transitions to parthenogenetic reproduction can lead to dramatic genetic changes with little immediate effect on performance. All-female M. batesii populations appear to consist of high-fitness genotypes that might be able to thrive for many generations in relatively constant and benign environments but could be vulnerable to environmental challenges, such as increased parasite abundance.


Asunto(s)
Partenogénesis , Reproducción , Animales , Masculino , Femenino , Australia , Reproducción/genética , Partenogénesis/genética , Reproducción Asexuada/genética , Fertilidad
6.
J Phycol ; 60(1): 15-25, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37948315

RESUMEN

The relative frequency of sexual versus asexual reproduction governs the distribution of genetic diversity within and among populations. Most studies on the consequences of reproductive variation focus on the mating system (i.e., selfing vs. outcrossing) of diploid-dominant taxa (e.g., angiosperms), often ignoring asexual reproduction. Although reproductive systems are hypothesized to be correlated with life-cycle types, variation in the relative rates of sexual and asexual reproduction remains poorly characterized across eukaryotes. This is particularly true among the three major lineages of macroalgae (green, brown, and red). The Rhodophyta are particularly interesting, as many taxa have complex haploid-diploid life cycles that influence genetic structure. Though most marine reds have separate sexes, we show that freshwater red macroalgae exhibit patterns of switching between monoicy and dioicy in sister taxa that rival those recently shown in brown macroalgae and in angiosperms. We advocate for the investigation of reproductive system evolution using freshwater reds, as this will expand the life-cycle types for which these data exist, enabling comparative analyses broadly across eukaryotes. Unlike their marine cousins, species in the Batrachospermales have macroscopic gametophytes attached to filamentous, often microscopic sporophytes. While asexual reproduction through monospores may occur in all freshwater reds, the Compsopogonales are thought to be exclusively asexual. Understanding the evolutionary consequences of selfing and asexual reproduction will aid in our understanding of the evolutionary ecology of all algae and of eukaryotic evolution generally.


Asunto(s)
Algas Marinas , Algas Marinas/genética , Reproducción , Reproducción Asexuada , Agua Dulce , Genitales
7.
Phytopathology ; 114(3): 653-661, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37750924

RESUMEN

Alternaria linariae is an economically important foliar pathogen that causes early blight disease in tomatoes. Understanding genetic diversity, population genetic structure, and evolutionary potential is crucial to contemplating effective disease management strategies. We leveraged genotyping-by-sequencing (GBS) technology to compare genome-wide variation in 124 isolates of Alternaria spp. (A. alternata, A. linariae, and A. solani) for comparative genome analysis and to test the hypotheses of genetic differentiation and linkage disequilibrium (LD) in A. linariae collected from tomatoes in western North Carolina. We performed a pangenome-aware variant calling and filtering with GBSapp and identified 53,238 variants conserved across the reference genomes of three Alternaria spp. The highest marker density was observed on chromosome 1 (7 Mb). Both discriminant analysis of principal components and Bayesian model-based STRUCTURE analysis of A. linariae isolates revealed three subpopulations with minimal admixture. The genetic differentiation coefficients (FST) within A. linariae subpopulations were similar and high (0.86), indicating that alleles in the subpopulations are fixed and the genetic structure is likely due to restricted recombination. Analysis of molecular variance indicated higher variation among populations (89%) than within the population (11%). We found long-range LD between pairs of loci in A. linariae, supporting the hypothesis of low recombination expected for a fungal pathogen with limited sexual reproduction. Our findings provide evidence of a high level of population genetic differentiation in A. linariae, which reinforces the importance of developing tomato varieties with broad-spectrum resistance to various isolates of A. linariae.


Asunto(s)
Alternaria , Solanum lycopersicum , Desequilibrio de Ligamiento , Alternaria/genética , Variación Genética , Genotipo , Teorema de Bayes , Enfermedades de las Plantas/microbiología
8.
BMC Biol ; 21(1): 266, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993917

RESUMEN

BACKGROUND: Unlike most free-living platyhelminths, catenulids, the sister group to all remaining flatworms, do not have eyes. Instead, the most prominent sensory structures in their heads are statocysts or sensory pits. The latter, found in the family Stenostomidae, are concave depressions located laterally on the head that represent one of the taxonomically important traits of the family. In the past, the sensory pits of flatworms have been homologized with the cephalic organs of nemerteans, a clade that occupies a sister position to platyhelminths in some recent phylogenies. To test for this homology, we studied morphology and gene expression in the sensory pits of the catenulid Stenostomum brevipharyngium. RESULTS: We used confocal and electron microscopy to investigate the detailed morphology of the sensory pits, as well as their formation during regeneration and asexual reproduction. The most prevalent cell type within the organ is epidermally-derived neuron-like cells that have cell bodies embedded deeply in the brain lobes and long neurite-like processes extending to the bottom of the pit. Those elongated processes are adorned with extensive microvillar projections that fill up the cavity of the pit, but cilia are not associated with the sensory pit. We also studied the expression patterns of some of the transcription factors expressed in the nemertean cephalic organs during the development of the pits. Only a single gene, pax4/6, is expressed in both the cerebral organs of nemerteans and sensory pits of S. brevipharyngium, challenging the idea of their deep homology. CONCLUSIONS: Since there is no morphological or molecular correspondence between the sensory pits of Stenostomum and the cerebral organs of nemerteans, we reject their homology. Interestingly, the major cell type contributing to the sensory pits of stenostomids shows ultrastructural similarities to the rhabdomeric photoreceptors of other flatworms and expresses ortholog of the gene pax4/6, the pan-bilaterian master regulator of eye development. We suggest that the sensory pits of stenostomids might have evolved from the ancestral rhabdomeric photoreceptors that lost their photosensitivity and evolved secondary function. The mapping of head sensory structures on plathelminth phylogeny indicates that sensory pit-like organs evolved many times independently in flatworms.


Asunto(s)
Platelmintos , Animales , Platelmintos/genética , Filogenia , Factores de Transcripción/genética , Reproducción Asexuada , Encéfalo
9.
Zoo Biol ; 43(5): 499-504, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39172112

RESUMEN

The mode of reproduction most often seen in snakes is sexual, but studies have noted facultative parthenogenesis in at least six families. Here, we provide evidence for the first observed case of facultative parthenogenesis in a captive Jamaican boa (Chilabothrus subflavus). A 7-year-old female Jamaican boa, isolated since birth, was found to have produced a litter of 15 offspring. To provide molecular DNA evidence of parthenogenesis, 13 new microsatellite loci were isolated in the species. All offspring were found to be homozygous at each locus and only possess alleles found in the dam, implicating that they were born from asexual reproduction. Several developmental abnormalities, including stillbirths and spinal deformities, were noted in the litter which may be explained by their increased level of homozygosity. To preserve genetic diversity in the captive population, research should be conducted to understand the prevalence of this mode of reproduction and to guide future management decisions of this IUCN listed Vulnerable species.


Asunto(s)
Animales de Zoológico , Boidae , Repeticiones de Microsatélite , Partenogénesis , Animales , Partenogénesis/genética , Femenino , Animales de Zoológico/genética , Boidae/genética , Boidae/fisiología
10.
Mol Biol Rep ; 50(2): 1953-1960, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36454431

RESUMEN

BACKGROUND: Holothuria (Halodeima) atra Jaeger, 1833 is a tropical sea cucumber usually harvested for the "bêche-de-mer" trade market. It has been reported to reproduce both sexually, through gamete spawning, or asexually, through fission. To date, no study has ever investigated clonality, nor genetic connectivity, among its populations, using microsatellite markers. METHODS AND RESULTS: We isolated the first 21 microsatellite loci specific for H. atra, which were then used to investigate clonal diversity, genetic structure and diversity among 44 H. atra individuals sampled in Reunion Island (southwestern Indian Ocean), over two seasons. All 21 loci were polymorphic, with number of alleles per locus ranging from 2 to 10. No repetitive multi-locus genotype (MLG) and few clonal lineages (MLL) were found. Observed heterozygosities per locus and season ranged from 0.000 to 0.909, while expected heterozygosities ranged from 0.290 to 0.882. Four loci were at Hardy-Weinberg equilibrium for both seasons, all others presenting a deficit of heterozygotes in one or both seasons. Meanwhile, no genetic differentiation was detected between seasons, according to assignment tests and global FST. CONCLUSIONS: These results suggest low asexual propagation in this population. These loci represent useful tools to better understand reproductive strategies and population connectivity of H. atra, and thus provide relevant knowledge for efficient management.


Asunto(s)
Holothuria , Pepinos de Mar , Animales , Humanos , Equinodermos/genética , Holothuria/genética , Océano Índico , Repeticiones de Microsatélite/genética , Polimorfismo Genético , Reunión , Pepinos de Mar/genética , Reproducción Asexuada/genética , Reproducción/genética
11.
Biosci Biotechnol Biochem ; 87(2): 208-216, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36367537

RESUMEN

Phytophthora are plant pathogens that damage agricultural products. Lycosides (1a-d), found in vegetable juice, have the potential to curb the rapid outbreak and crop damage caused by the asexual reproduction of Phytophthora. Here, aglycones 2a, b with slightly higher activity than lycosides were synthesized as a diastereomeric mixture (mix-2) possessing activity (IC50 = 4.1 µm) comparable with that of lycosides. The importance of the cyclohexanone structure and side-chain length was demonstrated via structure-activity relationship analysis using synthetic intermediates. In addition, the action mechanism of lycosides was investigated using transcriptome analysis, which revealed a contribution to proline biosynthesis inhibition, a process crucial for the asexual reproduction of Phytophthora. These findings indicate that lycosides (and aglycone) are environmentally benign agents that can be used for protecting agricultural products from Phytophthora pathogens.


Asunto(s)
Phytophthora , Plantas , Reproducción Asexuada , Relación Estructura-Actividad
12.
Ecotoxicology ; 32(10): 1201-1208, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37975975

RESUMEN

Animal reproduction under stressful conditions is often reduced, with current survival and future reproduction being generally traded off against current reproductive activity. This study examines the impacts of physical and chemical stressors on the rates of asexual reproduction of the invasive planarian Girardia tigrina. 320 wild-caught planaria (mixed size class) were kept individually in Petri dishes such that their individual rates of fission through fragmentation could be easily monitored. Four treatment groups were compared, one chemical (5 mg/L ammonia) and one physical (decapitation), in comparison to a negative control (animals were starved of food) and a positive control where the animals were given an abundance of food. The two treatment groups immediately began reproducing asexually and accumulated the highest number of fissions over the course of the 12-day investigation period, while the positive control only began to fission after 7 days. We propose that the reproductive response observed here is an adaptive one to stressful conditions, whereby the likelihood of survival through numerical abundance is enhanced, although the size and vulnerability of resulting fragments may impose a balancing cost. The response may play a role in the invasiveness of G. tigrina by making it able to colonize environments where adverse conditions prevail.


Asunto(s)
Planarias , Animales , Reproducción Asexuada , Reproducción
13.
Plant J ; 105(4): 957-977, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33180340

RESUMEN

Natural plants must actively allocate their limited resources for survival and reproduction. Although vegetative growth, sexual reproduction, asexual reproduction and defense are all basic processes in the life cycle of plants, the strategies used to allocate resources between these processes are poorly understood. These processes are conspicuous in naturally grown Aconitum kusnezoffii Reichb., which makes it a suitable study subject. Here, the morphology, dry matter, total organic carbon, total nitrogen and aconitum alkaloid levels of shoot, principal root (PR) and lateral roots were measured throughout the growing season. Then, transcriptome and metabolite content analyses were performed. We found that vegetative growth began first. After vegetative growth ceased, sexual development began. Flower organ development was accompanied by increased photosynthesis and the PR consumed temporarily stored resources after flower formation. Asexual propagule development initiated earlier than sexual reproduction and kept accumulating resources after that. Development was slow before flower formation, mainly manifesting as increasing length; then, after flower formation it accelerated via enhanced material transport and accumulation. Defense compounds were maintained at low levels before flowering. In particular, the turnover of defense compounds was enhanced before and after flower bud emergence, providing resources for other processes. After flower formation, defense compounds were accumulated. The pattern found herein provides a vivid example for further studies on resource allocation strategies. The exciting finding that the PR, as a more direct storage site for photosynthate, is a buffer unit for resources, and that defense compounds can be reused for other processes, suggests a need to explore potential mechanisms.


Asunto(s)
Aconitum/fisiología , Reproducción Asexuada , Aconitum/crecimiento & desarrollo , Aconitum/metabolismo , Carbono/metabolismo , Flores/crecimiento & desarrollo , Flores/metabolismo , Flores/fisiología , Nitrógeno/metabolismo , Fotosíntesis , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Brotes de la Planta/fisiología , Reproducción/fisiología , Reproducción Asexuada/fisiología , Estaciones del Año
14.
Mol Biol Evol ; 38(9): 3581-3592, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-33885820

RESUMEN

How does asexual reproduction influence genome evolution? Although is it clear that genomic structural variation is common and important in natural populations, we know very little about how one of the most fundamental of eukaryotic traits-mode of genomic inheritance-influences genome structure. We address this question with the New Zealand freshwater snail Potamopyrgus antipodarum, which features multiple separately derived obligately asexual lineages that coexist and compete with otherwise similar sexual lineages. We used whole-genome sequencing reads from a diverse set of sexual and asexual individuals to analyze genomic abundance of a critically important gene family, rDNA (the genes encoding rRNAs), that is notable for dynamic and variable copy number. Our genomic survey of rDNA in P. antipodarum revealed two striking results. First, the core histone and 5S rRNA genes occur between tandem copies of the 18S-5.8S-28S gene cluster, a unique architecture for these crucial gene families. Second, asexual P. antipodarum harbor dramatically more rDNA-histone copies than sexuals, which we validated through molecular and cytogenetic analysis. The repeated expansion of this genomic region in asexual P. antipodarum lineages following distinct transitions to asexuality represents a dramatic genome structural change associated with asexual reproduction-with potential functional consequences related to the loss of sexual reproduction.


Asunto(s)
Genoma , Histonas , Animales , Genómica , Histonas/genética , Humanos , Reproducción Asexuada/genética , Caracoles/genética
15.
Mol Biol Evol ; 38(12): 5255-5274, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34410426

RESUMEN

Hybridization and genome duplication have played crucial roles in the evolution of many animal and plant taxa. The subgenomes of parental species undergo considerable changes in hybrids and polyploids, which often selectively eliminate segments of one subgenome. However, the mechanisms underlying these changes are not well understood, particularly when the hybridization is linked with asexual reproduction that opens up unexpected evolutionary pathways. To elucidate this problem, we compared published cytogenetic and RNAseq data with exome sequences of asexual diploid and polyploid hybrids between three fish species; Cobitis elongatoides, C. taenia, and C. tanaitica. Clonal genomes remained generally static at chromosome-scale levels but their heterozygosity gradually deteriorated at the level of individual genes owing to allelic deletions and conversions. Interestingly, the impact of both processes varies among animals and genomic regions depending on ploidy level and the properties of affected genes. Namely, polyploids were more tolerant to deletions than diploid asexuals where conversions prevailed, and genomic restructuring events accumulated preferentially in genes characterized by high transcription levels and GC-content, strong purifying selection and specific functions like interacting with intracellular membranes. Although hybrids were phenotypically more similar to C. taenia, we found that they preferentially retained C. elongatoides alleles. This demonstrates that favored subgenome is not necessarily the transcriptionally dominant one. This study demonstrated that subgenomes in asexual hybrids and polyploids evolve under a complex interplay of selection and several molecular mechanisms whose efficiency depends on the organism's ploidy level, as well as functional properties and parental ancestry of the genomic region.


Asunto(s)
Cipriniformes , Poliploidía , Animales , Cipriniformes/genética , Diploidia , Evolución Molecular , Genoma de Planta , Hibridación Genética , Pérdida de Heterocigocidad
16.
Mol Biol Evol ; 38(7): 2831-2842, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33720342

RESUMEN

Compared with asexual reproduction, sex facilitates the transmission of transposable elements (TEs) from one genome to another, but boosts the efficacy of selection against deleterious TEs. Thus, theoretically, it is unclear whether sex has a positive net effect on TE's proliferation. An empirical study concluded that sex is at the root of TE's evolutionary success because the yeast TE load was found to decrease rapidly in approximately 1,000 generations of asexual but not sexual experimental evolution. However, this finding contradicts the maintenance of TEs in natural yeast populations where sexual reproduction occurs extremely infrequently. Here, we show that the purported TE load reduction during asexual experimental evolution is likely an artifact of low genomic sequencing coverages. We observe stable TE loads in both sexual and asexual experimental evolution from multiple yeast data sets with sufficient coverages. To understand the evolutionary dynamics of yeast TEs, we turn to asexual mutation accumulation lines that have been under virtually no selection. We find that both TE transposition and excision rates per generation, but not their difference, tend to be higher in environments where yeast grows more slowly. However, the transposition rate is not significantly higher than the excision rate and the variance of the TE number among natural strains is close to its neutral expectation, suggesting that selection against TEs is at best weak in yeast. We conclude that the yeast TE load is maintained largely by a transposition-excision balance and that the influence of sex remains unclear.


Asunto(s)
Evolución Biológica , Elementos Transponibles de ADN , Reproducción Asexuada , Saccharomyces cerevisiae/genética , Acumulación de Mutaciones , Selección Genética
17.
Fungal Genet Biol ; 163: 103744, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36209959

RESUMEN

Little is known about the impact of host immunity on sexual reproduction in fungal pathogens. In particular, it is unclear whether crossing requires both sexual partners to infect living plant tissues. We addressed this issue in a three-year experiment investigating different scenarios of Zymoseptoria tritici crosses according to the virulence ('vir') or avirulence ('avr') of the parents against a qualitative resistance gene. Co-inoculations ('vir × vir', 'avr × vir', 'avr × avr') and single inoculations were performed on a wheat cultivar carrying the Stb16q resistance gene (Cellule) and a susceptible cultivar (Apache), in the greenhouse. We assessed the intensity of asexual reproduction by scoring disease severity, and the intensity of sexual reproduction by counting the ascospores discharged from wheat residues. As expected, disease severity was more intense on Cellule for 'vir × vir' co-inoculations than for 'avr × vir' co-inoculations, with no disease for 'avr × avr'. However, all types of co-inoculation yielded sexual offspring, whether or not the parental strains caused plant symptoms. Parenthood was confirmed by genotyping (SSR markers), and the occurrence of crosses between (co-)inoculated and exogenous strains (other strains from the experiment, or from far away) was determined. We showed that symptomatic asexual infection was not required for a strain to participate in sexual reproduction, and deduced from this result that avirulent strains could be maintained asymptomatically "on" or "in" leaf tissues of plants carrying the corresponding resistant gene for long enough to reproduce sexually. In two of the three years, the intensity of sexual reproduction did not differ between the three types of co-inoculation in Cellule, suggesting that crosses involving avirulent strains are not anecdotal. We discuss the possible mechanisms explaining the maintenance of avirulence in Z. tritici populations and the potential impact of particular resistance deployments such as cultivar mixtures for limiting resistance breakdown.


Asunto(s)
Ascomicetos , Triticum , Triticum/microbiología , Virulencia/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Ascomicetos/genética
18.
J Evol Biol ; 35(1): 40-50, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34927297

RESUMEN

The adaptive value of sexual reproduction is still debated. A short-term disadvantage of asexual reproduction is loss of heterozygosity, which leads to the unmasking of recessive deleterious mutations. The cost of this loss of complementation is predicted to be higher than the twofold cost of meiosis for most types of asexual reproduction. Automixis with terminal fusion of sister nuclei is especially vulnerable to the effect of loss of complementation. It is found, however, in some taxa including oribatid mites, the most prominent group of ancient asexuals. Here, I show that automixis with terminal fusion is stable if it is associated with inverted meiosis and that this appears to be the case in nature, notably in oribatid mites. The existence of automixis with terminal fusion, and its co-occurrence with inverted meiosis, therefore, is consistent with the hypothesis that loss of complementation is important in the evolution of sexual reproduction.


Asunto(s)
Ácaros , Partenogénesis , Animales , Pérdida de Heterocigocidad , Meiosis , Partenogénesis/genética
19.
Parasitology ; 149(9): 1160-1163, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35591780

RESUMEN

Babesias are obligate apicomplexan parasites that affect the red blood cells (RBCs) of animals. Humans can serve as accidental hosts for them. Asexual reproduction of a parasite occurs in a vertebrate host through asynchronous binary fission, yielding a complex pleomorphic population of intraerythrocytic forms. In natural hosts (Bos taurus), paired pyriforms ('figure 8') of Babesia divergens are usual, but tetrads ('Maltese Cross') are very rare (only in 0.02% infected erythrocytes); in humans, however, up to 5% of infected erythrocytes show tetrads. The current study shows that B. divergens proliferating in an accidental human host can promote extraordinarily high level of fission. This phenomenon is expressed as the simultaneous division of the parasite into 6 and possibly a greater number of merozoites, forming a 'daisy head' (vs the usual 2, less often 4 merozoites). Reproduction is possible without egressing merozoites from the erythrocyte, which results in multi-occupancy of an RBC (≥5 parasites per RBC). An unusually high polyparasitism ­ up to 14 parasites developed in the affected erythrocytes ­ was observed. This phenomenon is rare in natural hosts (usually ≤5), but when B. divergens is cultured in vitro it can be 10­12.


Asunto(s)
Babesia , Babesiosis , Enfermedades de los Bovinos , Animales , Babesiosis/parasitología , Bovinos , Enfermedades de los Bovinos/parasitología , Eritrocitos/parasitología , Humanos , Reproducción
20.
Zoolog Sci ; 39(1): 52-61, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35106993

RESUMEN

Sagami Bay and Suruga Bay harbor a rich marine biodiversity; however, their outer-shelf scleractinian coral fauna has not been characterized to date. Scleractinian corals were collected by dredge sampling of the Japanese Association for Marine Biology (JAMBIO) Coastal Organisms Joint Surveys in 2015 to elucidate the diversity of azooxanthellate scleractinian corals from the outer shelf zones of Sagami Bay and Suruga Bay. In this study, a total of 1291 azooxanthellate scleractinian specimens were collected, corresponding to 23 genera and 18 species, five of which are new records for Sagami Bay and eight are new records for Suruga Bay. Moreover, in all localities, except sampling locality (SL) 8, more than 70% of the specimens showed asexual reproduction. This finding suggests that asexual reproduction may play an important role in increasing the coral population size in soft-substrate environments of the outer shelf.


Asunto(s)
Antozoos , Animales , Bahías , Biodiversidad , Japón
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda