Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.260
Filtrar
1.
Nano Lett ; 24(11): 3369-3377, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38373202

RESUMEN

Microwave-absorbing materials with regulatable absorption frequency and optical camouflage hold great significance in intelligent electronic devices and advanced stealth technology. Herein, we present an innovative microwave-absorbing foam that can dynamically tune microwave absorption frequencies via a simple mechanical compression while in parallel enabling optical camouflage over broad spectral ranges by adjusting the structural colors. The vivid colors spanning different color categories generated from thin-film interference can be precisely regulated by adjusting the thickness of the conformal TiO2 coatings on Ni/melamine foam. Enhanced interfacial and defect-induced polarizations resulting from the introduction of TiO2 coating synergistically contribute to the dielectric attenuation performance. Consequently, such a foam exhibits exceptional microwave absorption capabilities, and the absorption frequency can be dynamically tuned from the S band to the Ku band by manipulating its compression ratio. Additionally, simulation calculations validate the adjustable electromagnetic wave loss behavior, offering valuable insights for the development of next-generation intelligent electromagnetic devices across diverse fields.

2.
Nano Lett ; 24(4): 1324-1331, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38230977

RESUMEN

Oxide semiconductors (OS) are attractive materials for memory and logic device applications owing to their low off-current, high field effect mobility, and superior large-area uniformity. Recently, successful research has reported the high field-effect mobility (µFE) of crystalline OS channel transistors (above 50 cm2 V-1 s-1). However, the memory and logic device application presents challenges in mobility and stability trade-offs. Here, we propose a method for achieving high-mobility and high-stability by lowering the grain boundary effect. A DBADMIn precursor was synthesized to deposit highly c-axis-aligned C(222) crystalline 3 nm thick In2O3 films. In this study, the 250 °C deposited 3 nm thick In2O3 channel transistor exhibited high µFE of 41.12 cm2 V-1 s-1, Vth of -0.50 V, and SS of 150 mV decade-1 with superior stability of 0.16 V positive shift during PBTS at 100 °C, 3 MV cm-1 stress conditions for 3 h.

3.
Nano Lett ; 24(19): 5737-5745, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38686670

RESUMEN

Tungsten oxide (WO3) doped indium oxide (IWO) field-effect transistors (FET), synthesized using atomic layer deposition (ALD) for three-dimensional integration and back-end-of-line (BEOL) compatibility, are demonstrated. Low-concentration (1∼4 W atom %) WO3-doping in In2O3 films is achieved by adjusting cycle ratios of the indium and tungsten precursors with the oxidant coreactant. Such doping suppresses oxygen deficiency from In2O2.5 to In2O3 stoichiometry with only 1 atom % W, allowing devices to turn off stably and enhancing threshold voltage stability. The ALD IWO FETs exhibit superior performance, including a low subthreshold slope of 67 mV/decade and negligible hysteresis. Strong tunability of the threshold voltage (Vth) is achieved through W concentration tuning, with 2 atom % IWO FETs showing an optimized Vth for enhancement-mode and a high drain current. ALD IWO FETs have remarkable stability under bias stress and nearly ideal performance extending to sub-100 nm channel lengths, making them promising candidates for high-performance monolithic 3D integrated devices.

4.
Small ; 20(4): e2305732, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37712165

RESUMEN

With excellent homogeneity, compactness and controllable thickness, atomic layer deposition (ALD) technology is widely used in perovskite solar cells (PSCs). However, residual organic sources and undesired reactions pose serious challenges to device performance as well as stability. Here, ester groups of poly(ethylene-co-vinyl acetate) are introduced as a reaction medium to promote the nucleation and complete conversion of tetrakis(dimethylamino)tin(IV) (TDMA-Sn). Through simulations and experiments, it is verified that ester groups as Lewis bases can coordinate with TDMA-Sn to facilitate homogeneous deposition of ALD-SnOx , which acts as self-encapsulated interface with blocking properties against external moisture as well as internal ion migration. Meanwhile, a comprehensive evaluation of the self-encapsulated interface reveals that the energy level alignment is optimized to improve the carrier transport. Finally, the self-encapsulated device obtains a champion photovoltaic conversion efficiency (PCE) of 22.06% and retains 85% of the initial PCE after being stored at 85 °C with relative humidity of 85% for more than 800 h.

5.
Small ; 20(10): e2306350, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37880880

RESUMEN

Nanoscale superlattice (SL) structures have proven to be effective in enhancing the thermoelectric (TE) properties of thin films. Herein, the main phase of antimony telluride (Sb2 Te3 ) thin film with sub-nanometer layers of antimony oxide (SbOx ) is synthesized via atomic layer deposition (ALD) at a low temperature of 80 °C. The SL structure is tailored by varying the cycle numbers of Sb2 Te3 and SbOx . A remarkable power factor of 520.8 µW m-1 K-2 is attained at room temperature when the cycle ratio of SbOx and Sb2 Te3 is set at 1:1000 (i.e., SO:ST = 1:1000), corresponding to the highest electrical conductivity of 339.8 S cm-1 . The results indicate that at the largest thickness, corresponding to ten ALD cycles, the SbOx layers act as a potential barrier that filters out the low-energy charge carriers from contributing to the overall electrical conductivity. In addition to enhancing the scattering of the mid-to-long-wavelength at the SbOx /Sb2 Te3 interface, the presence of the SbOx sub-layer induces the confinement effect and strain forces in the Sb2 Te3 thin film, thereby effectively enhancing the Seebeck coefficient and reducing the thermal conductivity. These findings provide a new perspective on the design of SL-structured TE materials and devices.

6.
Small ; 20(7): e2306513, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37803425

RESUMEN

With the rapid development of performance and long-term stability, bismuth vanadate (BiVO4 ) has emerged as the preferred photoanode in photoelectrochemical tandem devices. Although state-of-the-art BiVO4 photoanodes realize a saturated photocurrent density approaching the theoretical maximum, the fill factor (FF) is still inferior, pulling down the half-cell applied bias photon-to-current efficiency (HC-ABPE). Among the major fundamental limitations are the Fermi level pinning and sluggish surface kinetics at the low applied potentials. This work demonstrates that the plasma-assisted atomic layer deposition technique is capable of addressing these issues by seamlessly installing an angstrom-scale FeNi-layer between BiVO4 and electrolyte. Not only this ultrathin FeNi layer serves as an efficient OER cocatalyst, more importantly, it also effectively passivates the surface states of BiVO4 , de-pins the surface Fermi level, and enlarges the built-in voltage, allowing the photoanode to make optimal use of the photogenerated holes for achieving high FF up to 44% and HC-ABPE to 2.2%. This study offers a new approach for enhancing the FF of photoanodes and provides guidelines for designing efficient unassisted solar fuel devices.

7.
Small ; 20(15): e2308024, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37992243

RESUMEN

Atomic layer deposition (ALD) growth of conformal thin SnOx films on perovskite absorbers offers a promising method to improve carrier-selective contacts, enable sputter processing, and prevent humidity ingress toward high-performance tandem perovskite solar cells. However, the interaction between perovskite materials and reactive ALD precursor limits the process parameters of ALD-SnOx film and requires an additional fullerene layer. Here, it demonstrates that reducing the water dose to deposit SnOx can reduce the degradation effect upon the perovskite underlayer while increasing the water dose to promote the oxidization can improve the electrical properties. Accordingly, a SnOx buffer layer with a gradient composition structure is designed, in which the compositionally varying are achieved by gradually increasing the oxygen source during the vapor deposition from the bottom to the top layer. In addition, the gradient SnOx structure with favorable energy funnels significantly enhances carrier extraction, further minimizing its dependence on the fullerene layer. Its broad applicability for different perovskite compositions and various textured morphology is demonstrated. Notably, the design boosts the efficiencies of perovskite/silicon tandem cells (1.0 cm2) on industrially textured Czochralski (CZ) silicon to a certified efficiency of 28.0%.

8.
Small ; : e2404199, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949393

RESUMEN

The performance of perovskite solar cells has been continuously improving. However, humidity stability has become a key problem that hinders its promotion in the process of commercialization. A buffer layer deposited by atomic layer deposition is a very helpful method to solve this problem. In this work, MgO film is deposited between Spiro-OMeTAD and electrode by low-temperature atomic layer deposition at 80 °C, which resists the erosion of water vapor, inhibits the migration of electrode metal ions and the decomposition products of perovskite, then finally improves the stability of the device. At the same time, the MgO buffer layer can passivate the defects of porous Spiro, thus enhancing carrier transport efficiency and device performance. The Cs0.05(FAPbI3)0.85(MAPbBr3)0.15 perovskite device with a MgO buffer layer has displayed PCE of 22.74%, also with a high Voc of 1.223 V which is an excellent performance in devices with same perovskite component. Moreover, the device with a MgO buffer layer can maintain 80% of the initial efficiency after 7200 h of storage at 35% relative humidity under room temperature. This is a major achievement for humidity stability in the world, providing more ideas for further improving the stability of perovskite devices.

9.
Small ; 20(27): e2307202, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38308381

RESUMEN

Thin-films of metal-organic frameworks (MOFs) have widespread potential applications, especially with the emergence of glass-forming MOFs, which remove the inherent issue of grain boundaries and allow coherent amorphous films to be produced. Herein, it is established that atomic layer deposition (ALD) of zinc oxide lends excellent control over the thickness and localization of resultant polycrystalline and glass zeolitic imidazole framework-62 (ZIF-62) thin-films within tubular α-alumina supports. Through the reduction of the chamber pressure and dose times during zinc oxide deposition, the resultant ZIF-62 films are reduced from 38 µm to 16 µm, while the presence of sporadic ZIF-62 (previously forming as far as 280 µm into the support) is prevented. Furthermore, the glass transformation shows a secondary reduction in film thickness from 16 to 2 µm.

10.
Small ; 20(7): e2305868, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37798640

RESUMEN

Transition metal nitrides (TMNs) are promising electrode materials for use in high-performance electrochemical energy storage devices due to their unique properties, which include a high conductivity, pseudocapacitance, and energy density. However, structural instability during electrochemical reactions has limited their practical deployment for energy storage devices. In this context, the present study fabricated a CoOx @NiMoN/Ti3 C2 Tx electrode via in situ growth on Ni foam using hydrothermal treatment with post-nitrogenization. The effect of atomic layer deposition (ALD) of CoOx on the TMN/Ti3 C2 Tx interface and the consequent electrochemical charge storage mechanisms are investigated in detail. The proposed CoOx @NiMoN/Ti3 C2 Tx electrode delivers an impressive specific capacity in a 2 m potassium hydroxide (KOH) electrolyte and is then employed in both a hybrid solid-state supercapacitor (HSSC) with reduced graphene oxide and a symmetric SC in a 2 m KOH + polyvinyl alcohol (PVA) gel electrolyte. Outstanding charge storage and high capacity retention during cyclic testing are observed for both energy storage devices. The exceptional electrochemical performance of the fabricated electrode is a result of its high conductivity and high number of active sites. Here a feasible new strategy is demonstrated for the fabrication of stable energy storage devices with a high energy density using TMNs and MXenes.

11.
Small ; : e2402003, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884191

RESUMEN

Global healthcare based on the Internet of Things system is rapidly transforming to measure precise physiological body parameters without visiting hospitals at remote patients and associated symptoms monitoring. 2D materials and the prevailing mood of current ever-expanding MXene-based sensing devices motivate to introduce first the novel iridium (Ir) precious metal incorporated vanadium (V)-MXene via industrially favored emerging atomic layer deposition (ALD) techniques. The current work contributes a precise control and delicate balance of Ir single atomic forms or clusters on the V-MXene to constitute a unique precious metal-MXene embedded heterostructure (Ir-ALD@V-MXene) in practical real-time sensing healthcare applications to thermography with human-machine interface for the first time. Ir-ALD@V-MXene delivers an ultrahigh durability and sensing performance of 2.4% °C-1 than pristine V-MXene (0.42% °C-1), outperforming several conventionally used MXenes, graphene, underscoring the importance of the Ir-ALD innovative process. Aberration-corrected advanced ultra-high-resolution transmission/scanning transmission electron microscopy confirms the presence of Ir atomic clusters on well-aligned 2D-layered V-MXene structure and their advanced heterostructure formation (Ir-ALD@V-MXene), enhanced sensing mechanism is investigated using density functional theory (DFT) computations. A rational design empowering the Ir-ALD process on least explored V-MXene can potentially unfold further precious metals ALD-process developments for next-generation wearable personal healthcare devices.

12.
Small ; : e2403453, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850189

RESUMEN

Upcoming energy-autonomous mm-scale Internet-of-things devices require high-energy and high-power microbatteries. On-chip 3D thin-film batteries (TFBs) are the most promising option but lack high-rate anode materials. Here, Li4Ti5O12 thin films fabricated by atomic layer deposition (ALD) are electrochemically evaluated on 3D substrates for the first time. The 3D Li4Ti5O12 reveals an excellent footprint capacity of 20.23 µAh cm-2 at 1 C. The outstanding high-rate capability is demonstrated with 7.75 µAh cm-2 at 5 mA cm-2 (250 C) while preserving a remarkable capacity retention of 97.4% after 500 cycles. Planar films with various thicknesses exhibit electrochemical nanoscale effects and are tuned to maximize performance. The developed ALD process enables conformal high-quality spinel (111)-textured Li4Ti5O12 films on Si substrates with an area enhancement of 9. Interface engineering by employing ultrathin AlOx on the current collector facilitates a required crystallization time reduction which ensures high film and interface quality and prospective on-chip integration. This work demonstrates that 3D Li4Ti5O12 by ALD can be an attractive solution for the microelectronics-compatible fabrication of scalable high-energy and high-power Li-ion 3D TFBs.

13.
Nanotechnology ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955146

RESUMEN

We present the electrical characterization of wafer-scale graphene devices fabricated with an industrially-relevant, contact-first integration scheme combined with Al2O3 encapsulation via atomic layer deposition. All the devices show a statistically significant reduction in the Dirac point position, Vcnp, from around + 47V to between -5 and 5 V (on 285 nm SiO2), while maintaining the mobility values. The data and methods presented are relevant for further integration of graphene devices, specifically sensors, at the back-end-of-line of a standard CMOS flow.

14.
Nanotechnology ; 35(20)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38306693

RESUMEN

Two-dimensional (2D) materials are attracting attention because of their outstanding physical, chemical, and electrical properties for applications of various future devices such as back-end-of-line field effect transistor (BEOL FET). Among many 2D materials, tin disulfide (SnS2) material is advantageous for low temperature process due to low melting point that can be used for flexible devices and back-end-of-line (BEOL) devices that require low processing temperature. However, low temperature synthesis method has a poor crystallinity for applying to various semiconductor industries. Hence, many studies of improving crystallinity of tin disulfide film are studied for enhancing the quality of film. In this work, we propose a precursor multi-dosing method before deposition of SnS2. This precursor pre-treatment was conducted by atomic layer deposition cycles for more adsorption of precursors to the substrate before deposition. The film quality was analyzed by x-ray diffraction, Raman, transmission electron microscopy, atomic force microscopy and x-ray photoelectron spectroscopy. As a result, more adsorbates by precursor pre-treatment induce higher growth rate and better crystallinity of film.

15.
Nanotechnology ; 35(31)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38640911

RESUMEN

The polar channels formed by the curing of waterborne anticorrosive coatings compromise their water resistance, leading to coating degradation and metal corrosion. To enhance the anticorrosive performance of waterborne coatings, this study proposed a novel method of depositing ultrathin Al2O3films on the surface of waterborne epoxy coatings by atomic layer deposition, a technique that can modify the surface properties of polymer materials by depositing functional films. The Al2O3-modified coatings exhibited improved sealing and barrier properties by closing the polar channels and surface defects and cracks. The surface structure and morphology of the modified coatings were characterized by x-ray photoelectron spectroscopy and scanning electron microscopy. The hydrophilicity and corrosion resistance of the modified coatings were evaluated by water contact angle measurement, Tafel polarization curve, and electrochemical impedance spectroscopy. The results indicated that the water contact angle of the Al2O3-modified coating increased by 48° compared to the unmodified coating, and the protection efficiency of the modified coating reached 99.81%. The Al2O3-modified coating demonstrated high anticorrosive efficiency and potential applications for metal anticorrosion in harsh marine environments.

16.
Nanotechnology ; 35(26)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38522103

RESUMEN

Titanium oxide (TiO2) coated polyimide has broad application prospects under extreme conditions. In order to obtain a high-quality ultra-thin TiO2coating on polyimide by atomic layer deposition (ALD), the polyimide was activated byin situoxygen plasma. It was found that a large number of polar oxygen functional groups, such as carboxyl, were generated on the surface of the activated polyimide, which can significantly promote the preparation of TiO2coating by ALD. The nucleation and growth of TiO2were studied by x-ray photoelectron spectroscopy monitoring and scanning electron microscopy observation. On the polyimide activated by oxygen plasma, the size of TiO2nuclei decreased and the quantity of TiO2nuclei increased, resulting in the growth of a highly uniform and dense TiO2coating. This coating exhibited excellent resistance to atomic oxygen. When exposed to 3.5 × 1021atom cm-2atomic oxygen flux, the erosion yield of the polyimide coated with 100 ALD cycles of TiO2was as low as 3.0 × 10-25cm3/atom, which is one order less than that of the standard POLYIMIDE-ref Kapton®film.

17.
Nanotechnology ; 35(34)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38806005

RESUMEN

This study investigated the hydrophobic-hydrophilic characteristics of zinc oxide (ZnO) nanorod coatings for potential biomedical applications. We examined the effects of different alignments of ZnO nanorods on the wetting and mechanical characteristics of the coatings. ZnO seed layers were prepared on stainless-steel plates using atomic layer deposition (ALD) at five different temperatures ranging from 50 to 250 °C. The ZnO nanorod coatings were then deposited on these seed layers through chemical bath deposition. The polycrystalline structure of the seed layers and the morphology of the nanorods were analyzed using grazing incidence angle x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Mechanical and wetting properties of the nanorod coatings were examined using nanoindentation and water-droplet tests. The seed layers produced at 50 and 250 °C showed stronger (0 0 2) peaks than the other layers. ZnO nanorods on these seed layers exhibited greater vertical orientation and lower water contact angles indicating a more hydrophilic surface. Additionally, vertically oriented nanorod coatings demonstrated greater elastic modulus and hardness than those of oblique nanorods. Our findings indicate that ALD technology can be used to control the spatial arrangement of ZnO nanorods and optimize the hydrophobic-hydrophilic and mechanical properties of coating surfaces.

18.
Nanotechnology ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981451

RESUMEN

Due to shortcomings such as poor homogeneity of Al doping, precisely controlling the thickness, inability to conformally deposit on high aspect ratio devices and high pinhole rate, the applications of Al-doped ZnO (AZO) nanomembrane in integrated optoelectronic devices are remarkably influenced. Here, we report in situ monitoring during the atomic layer deposition (ALD) of AZO nanomembrane by using an integrated spectroscopic ellipsometer. AZO nanomembranes with different compositions were deposited with real-time and precise atomic level monitoring of the deposition process. We specifically investigate the half reaction and thickness evolution during the ALD processes and the influence of the chamber temperature is also disclosed. Structural characterizations demonstrate that the obtained AZO nanomembranes without any post-treatment are uniform, dense and pinhole-free. The transmittances of the nanomembranes in visible range are > 94%, and the optimal conductivity can reach up to 1210 S/cm. The output of current research may pave the way for AZO nanomembrane becoming promising in integrated optoelectronic devices.

19.
Nanotechnology ; 35(37)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38897181

RESUMEN

While silver nanowires (Ag NWs) have been demonstrated as a highly efficient transparent conducting material, they suffer from strong light scattering, which is quantified by a large haze factor (HF) in the optical spectrum. Here we investigate the influence of the dielectric environment on the light scattering of Ag NWs by comparing experimental measurements and simulations. In air, two peaks on the HF spectra are observed experimentally at the wavelength ofλI= 350 nm andλII= 380 nm and are attributed by simulations to the influence of the Ag NWs pentagonal shape on the localized surface plasmon resonance. The relative intensity between the two peaks is found to be dependent on whether the Ag NWs are in contact with the glass substrate or not. The HF behaviour in the near IR region seems to be dominated by Rayleigh scattering following simulations results. Dielectric environments of Ag NWs with various refractive indexes were obtained experimentally by the conformal deposition of different metal oxide coatings using atomic layer deposition, including Al-doped zinc oxide, Al2O3and SiO2coatings. The HF is found to be correlated with the refractive index environment in terms of HF peaks position, intensity and broadening. This trend of HF peaks is supported by a theoretical model to understand the optical mechanism behind this phenomenon.

20.
Nanotechnology ; 35(15)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38176077

RESUMEN

Aluminum-doped Ga2O3(AGO) thin films were prepared by plasma-enhanced atomic layer deposition (PE-ALD). The growth mechanism, surface morphology, chemical composition, and optical properties of AGO films were systematically investigated. The bandgap of AGO films can be theoretically set between 4.65 and 6.8 eV. Based on typical AGO films, metal-semiconductor-metal photodetectors (PDs) were created, and their photoelectric response was examined. The preliminary results show that PE-ALD grown AGO films have high quality and tunable bandgap, and AGO PDs possess superior characterizations to undoped films. The AGO realized using PE-ALD is expected to be an important route for the development of a new generation of gallium oxide-based photodetectors into the deep-ultraviolet.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda