Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(2): e2307836121, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38170749

RESUMEN

High-harmonic generation from a gas target exhibits sharp spectral features and rapid phase variation near the Cooper minimum. By applying spectral filtering, shaped isolated attosecond pulses can be generated where the pulse is split into two in the time domain. Using such shaped extreme-ultraviolet (XUV) pulses, we theoretically study attosecond transient absorption (ATA) spectra of helium [Formula: see text] autoionizing state which is resonantly coupled to the [Formula: see text] dark state by a time-delayed infrared laser. Our simulations show that the asymmetric [Formula: see text] Fano line shape can be readily tuned into symmetric Lorentzian within the time delay of a few tens of attoseconds. Such efficient control is due to the destructive interference in the generation of the [Formula: see text] state when it is excited by a strongly shaped XUV pulse. This is to be compared to prior experiments where tuning the line shape of a Fano resonance would take tens of femtoseconds. We also show that the predicted ATA spectral line shape can be observed experimentally after propagation in a gas medium. Our results suggest that strongly shaped attosecond XUV pulses offer the opportunity for controlling and probing fine features of narrow resonances on the few-ten attoseconds timescale.

2.
Rep Prog Phys ; 87(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38996411

RESUMEN

This tutorial provides an overview on the theory of attosecond streaking, a pump-probe scheme to extract timing information of ionization processes that has been widely used in the past decade. Emphasis is put on the origin of the Coulomb-laser-coupling (CLC) term, which is crucial in the interpretation of streaking delays. Having gained a proper understanding of how the CLC terms in various publications relate to each other, we will be able to analyze in which regime the streaking delay can be split into a measurement-induced CLC term and a 'pure' ionization delay and under which conditions this splitting may break down. Thus we address the long-standing question of the validity of the widely applied interpretation of the streaking delay as a sum of the CLC term and a 'pure' ionization delay.

3.
Chemphyschem ; : e202400132, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844417

RESUMEN

Grimme's Continuous Chirality Measure ( C C M ${CCM}$ ) was developed for comparisons of the chirality of the electronic wave functions of molecules, typically in their ground states. For example, C C M = 14 . 5 ${CCM=14.5}$ , 1 . 2 ${1.2}$ and 0 . 0 ${0.0}$ for alanine, hydrogen-peroxide, and for achiral molecules, respectively. Well-designed laser pulses can excite achiral molecules from the electronic ground state to time-dependent chiral superposition states, with chirality flips in the femto- or even attosecond (fs or as) time domains. Here we provide a time-dependent extension C C M t ${CCM\left(t\right)}$ of Grimme's C C M ${CCM}$ for trailing the electronic chirality flips. As examples, we consider two laser driven electronic wavefunctions which represent flips between opposite electronic enantiomers of oriented NaK within 4 . 76 f s ${4.76\ {\rm f}{\rm s}}$ and 433 a s ${433\ {\rm a}{\rm s}}$ . The corresponding C C M t ${CCM\left(t\right)}$ vary respectively from 14 . 5 ${14.5}$ or from 13 . 3 ${13.3}$ to 0 . 0 ${0.0}$ , and back.

4.
Chemphyschem ; : e202400595, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39034292

RESUMEN

Recently it has been shown that two coincident well designed laser pulses with two different combinations of circular polarizations ( ++ or -+ ) can create chiral electronic densities in an oriented heteronuclear diatomic molecule. Subsequently, the chirality flips from the electronic Ra to Sa to Ra to Sa etc. enantiomers, with periods in the femtosecond (fs) and attosecond (as) time domains. The results were obtained by means of quantum dynamics simulations for oriented NaK. Here we investigate the electronic chirality flips in oriented RbCs induced by all possible ( ++ , -+ , +- , -- ) combinations of circular polarizations of two coincident well-designed laser pulses. Accordingly, the ++ and -- as well as the +- and -+ combinations generate opposite electronic enantiomers, e. g. Ra versus Sa, followed by opposite periodic chirality flips, e.g. form Ra to Sa to Ra to Sa  etc. versus form Sa to Ra to Sa to Ra  etc, with periods in the fs and as time domains, respectively. The laser induced spatio-temporal symmetries are derived from first principles and illustrated by quantum dynamics simulations.

5.
Rep Prog Phys ; 86(11)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37591232

RESUMEN

High harmonic generation (HHG) from gas-phase atoms (or molecules) has opened up a new frontier in ultrafast optics, where attosecond time resolution and angstrom spatial resolution are accessible. The fundamental physical pictures of HHG are always explained by the laser-induced recollision of particle-like electron motion, which lay the foundation of attosecond spectroscopy. In recent years, HHG has also been observed in solids. One can expect the extension of attosecond spectroscopy to the condensed matter if a description capable of resolving the ultrafast dynamics is provided. Thus, a large number of theoretical studies have been proposed to understand the underlying physics of solid HHG. Here, we revisit the recollision picture in solid HHG and show some challenges of current particle-perspective methods, and present the recently developed wave-perspective Huygens-Fresnel picture for understanding dynamical systems within the ambit of strong-field physics.

6.
Proc Natl Acad Sci U S A ; 117(20): 10727-10732, 2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32354996

RESUMEN

When small quantum systems, atoms or molecules, absorb a high-energy photon, electrons are emitted with a well-defined energy and a highly symmetric angular distribution, ruled by energy quantization and parity conservation. These rules are based on approximations and symmetries which may break down when atoms are exposed to ultrashort and intense optical pulses. This raises the question of their universality for the simplest case of the photoelectric effect. Here we investigate photoionization of helium by a sequence of attosecond pulses in the presence of a weak infrared laser field. We continuously control the energy of the photoelectrons and introduce an asymmetry in their emission direction, at variance with the idealized rules mentioned above. This control, made possible by the extreme temporal confinement of the light-matter interaction, opens a road in attosecond science, namely, the manipulation of ultrafast processes with a tailored sequence of attosecond pulses.

7.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37958558

RESUMEN

It is well known that X-ray crystallography is based on X-ray diffraction (XRD) for atoms and molecules. The diffraction pattern arises as a result of scattering of incident radiation, which makes it possible to determine the structure of the scattering substance. With the advent of ultrashort radiation sources, the theory and interpretation of X-ray diffraction analysis have remained the same. This work shows that when an attosecond laser pulse is scattered on a DNA molecule, including during its nicking and bending, the pulse duration is an important characteristic of the scattering. In this case, the diffraction pattern changes significantly compared to the previously known scattering theory. The results obtained must be used in XRD theory to study DNA structures, their mutations and damage, since the previously known theory can produce large errors and, therefore, the DNA structure can be "decoding" incorrectly.


Asunto(s)
Rayos Láser , Luz , Difracción de Rayos X , Cristalografía por Rayos X , ADN
8.
Molecules ; 28(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37298978

RESUMEN

Frenkel excitons are responsible for the transport of light energy in many molecular systems. Coherent electron dynamics govern the initial stage of Frenkel-exciton transfer. Capability to follow coherent exciton dynamics in real time will help to reveal their actual contribution to the efficiency of light-harvesting. Attosecond X-ray pulses are the tool with the necessary temporal resolution to resolve pure electronic processes with atomic sensitivity. We describe how attosecond X-ray pulses can probe coherent electronic processes during Frenkel-exciton transport in molecular aggregates. We analyze time-resolved absorption cross section taking broad spectral bandwidth of an attosecond pulse into account. We demonstrate that attosecond X-ray absorption spectra can reveal delocalization degree of coherent exciton transfer dynamics.


Asunto(s)
Espectroscopía de Absorción de Rayos X , Rayos X
9.
Rep Prog Phys ; 85(6)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35294930

RESUMEN

Since the first demonstration of the generation of attosecond pulses (1 as = 10-18s) in the extreme-ultraviolet spectral region, several measurement techniques have been introduced, at the beginning for the temporal characterization of the pulses, and immediately after for the investigation of electronic and nuclear ultrafast dynamics in atoms, molecules and solids with unprecedented temporal resolution. The attosecond spectroscopic tools established in the last two decades, together with the development of sophisticated theoretical methods for the interpretation of the experimental outcomes, allowed to unravel and investigate physical processes never observed before, such as the delay in photoemission from atoms and solids, the motion of electrons in molecules after prompt ionization which precede any notable nuclear motion, the temporal evolution of the tunneling process in dielectrics, and many others. This review focused on applications of attosecond techniques to the investigation of ultrafast processes in atoms, molecules and solids. Thanks to the introduction and ongoing developments of new spectroscopic techniques, the attosecond science is rapidly moving towards the investigation, understanding and control of coupled electron-nuclear dynamics in increasingly complex systems, with ever more accurate and complete investigation techniques. Here we will review the most common techniques presenting the latest results in atoms, molecules and solids.

10.
J Synchrotron Radiat ; 29(Pt 4): 957-968, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35787561

RESUMEN

The newly constructed time-resolved atomic, molecular and optical science instrument (TMO) is configured to take full advantage of both linear accelerators at SLAC National Accelerator Laboratory, the copper accelerator operating at a repetition rate of 120 Hz providing high per-pulse energy as well as the superconducting accelerator operating at a repetition rate of about 1 MHz providing high average intensity. Both accelerators power a soft X-ray free-electron laser with the new variable-gap undulator section. With this flexible light source, TMO supports many experimental techniques not previously available at LCLS and will have two X-ray beam focus spots in line. Thereby, TMO supports atomic, molecular and optical, strong-field and nonlinear science and will also host a designated new dynamic reaction microscope with a sub-micrometer X-ray focus spot. The flexible instrument design is optimized for studying ultrafast electronic and molecular phenomena and can take full advantage of the sub-femtosecond soft X-ray pulse generation program.

11.
Proc Natl Acad Sci U S A ; 116(17): 8173-8177, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30952783

RESUMEN

Structural information on electronically excited neutral molecules can be indirectly retrieved, largely through pump-probe and rotational spectroscopy measurements with the aid of calculations. Here, we demonstrate the direct structural retrieval of neutral carbonyl disulfide (CS2) in the [Formula: see text] excited electronic state using laser-induced electron diffraction (LIED). We unambiguously identify the ultrafast symmetric stretching and bending of the field-dressed neutral CS2 molecule with combined picometer and attosecond resolution using intrapulse pump-probe excitation and measurement. We invoke the Renner-Teller effect to populate the [Formula: see text] excited state in neutral CS2, leading to bending and stretching of the molecule. Our results demonstrate the sensitivity of LIED in retrieving the geometric structure of CS2, which is known to appear as a two-center scatterer.

12.
Proc Natl Acad Sci U S A ; 116(11): 4779-4787, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30824594

RESUMEN

The shortest light pulses produced to date are of the order of a few tens of attoseconds, with central frequencies in the extreme UV range and bandwidths exceeding tens of electronvolts. They are often produced as a train of pulses separated by half the driving laser period, leading in the frequency domain to a spectrum of high, odd-order harmonics. As light pulses become shorter and more spectrally wide, the widely used approximation consisting of writing the optical waveform as a product of temporal and spatial amplitudes does not apply anymore. Here, we investigate the interplay of temporal and spatial properties of attosecond pulses. We show that the divergence and focus position of the generated harmonics often strongly depend on their frequency, leading to strong chromatic aberrations of the broadband attosecond pulses. Our argument uses a simple analytical model based on Gaussian optics, numerical propagation calculations, and experimental harmonic divergence measurements. This effect needs to be considered for future applications requiring high-quality focusing while retaining the broadband/ultrashort characteristics of the radiation.

13.
Sensors (Basel) ; 22(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36236612

RESUMEN

Electron correlation describes the interaction between electrons in a multi-electron system. It plays an important role in determining the speed of relaxation of atoms and molecules excited by XUV/X-ray pulses, such as the argon decay rate. Most research on electron correlation has centered on the role of correlation in stationary states. A time-resolved experimental study of electron correlation is a grand challenge due to the required temporal resolution and photon energy. In this research, we investigated Auger decay in argon using 200-attosecond X-ray pulses reaching the carbon K-edge. At such a high photon energy, ionization occurs not only from the outer most levels (3s and 3p), but also from the 2p core shells. We have measured a lifetime of 4.9 fs of L-shell vacancies of argon in pump-probe experiments with a home-built high-resolution time-of-flight spectrometer.

14.
Chimia (Aarau) ; 76(6): 520-528, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38069721

RESUMEN

Photoionization is a process taking place on attosecond time scales. How its properties evolve from isolated particles to the condensed phase is an open question of both fundamental and practical relevance. Here, we review recent work that has advanced the study of photoionization dynamics from atoms to molecules, clusters and the liquid phase. The first measurements of molecular photoionization delays have revealed the attosecond dynamics of electron emission from a molecular shape resonance and their sensitivity to the molecular potential. Using electron-ion coincidence spectroscopy these measurements have been extended from isolated molecules to clusters. A continuous increase of the delays with the water-cluster size has been observed up to a size of 4-5 molecules, followed by a saturation towards larger clusters. Comparison with calculations has revealed a correlation of the time delay with the spatial extension of the created electron hole. Using cylindrical liquid-microjet techniques, these measurements have also been extended to liquid water, revealing a delay relative to isolated water molecules that was very similar to the largest water clusters studied. Detailed modeling based on Monte-Carlo simulations confirmed that these delays are dominated by the contributions of the first two solvation shells, which agrees with the results of the cluster measurements. These combined results open the perspective of experimentally characterizing the delocalization of electronic wave functions in complex systems and studying their evolution on attosecond time scales.

15.
J Synchrotron Radiat ; 28(Pt 5): 1364-1376, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34475285

RESUMEN

The design of an angular array of electron time-of-flight (eToF) spectrometers is reported, intended for non-invasive spectral, temporal, and polarization characterization of single shots of high-repetition rate, quasi-continuous, short-wavelength free-electron lasers (FELs) such as the LCLS II at SLAC. This array also enables angle-resolved, high-resolution eToF spectroscopy to address a variety of scientific questions on ultrafast and nonlinear light-matter interactions at FELs. The presented device is specifically designed for the time-resolved atomic, molecular and optical science endstation (TMO) at LCLS II. In its final version, the spectrometer comprises up to 20 eToF spectrometers aligned to collect electrons from the interaction point, which is defined by the intersection of the incoming FEL radiation and a gaseous target. The full composition involves 16 spectrometers forming a circular equiangular array in the plane normal to the X-ray propagation and four spectrometers at 54.7° angle relative to the principle linear X-ray polarization axis with orientations in the forward and backward direction of the light propagation. The spectrometers are capable of independent and minimally chromatic electrostatic lensing and retardation, in order to enable simultaneous angle-resolved photo- and Auger-Meitner electron spectroscopy with high energy resolution. They are designed to ensure an energy resolution of 0.25 eV across an energy window of up to 75 eV, which can be individually centered via the adjustable retardation to cover the full range of electron kinetic energies relevant to soft X-ray methods, 0-2 keV. The full spectrometer array will enable non-invasive and online spectral-polarimetry measurements, polarization-sensitive attoclock spectroscopy for characterizing the full time-energy structure of SASE or seeded LCLS II pulses, and support emerging trends in molecular-frame spectroscopy measurements.

16.
Annu Rev Phys Chem ; 71: 315-334, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32075516

RESUMEN

Intriguing properties of photoemission from free, unsupported particles and droplets were predicted nearly 50 years ago, though experiments were a technical challenge. The last few decades have seen a surge of research in the field, due to advances in aerosol technology (generation, characterization, and transfer into vacuum), the development of photoelectron imaging spectrometers, and advances in vacuum ultraviolet and ultrafast light sources. Particles and droplets offer several advantages for photoemission studies. For example, photoemission spectra are dependent on the particle's size, shape, and composition, providing a wealth of information that allows for the retrieval of genuine electronic properties of condensed phase. In this review, with a focus on submicrometer-sized, dielectric particles and droplets, we explain the utility of photoemission from such systems, summarize several applications from the literature, and present some thoughts on future research directions.

17.
Proc Natl Acad Sci U S A ; 114(27): E5300-E5307, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28630331

RESUMEN

Electron-electron interactions are the fastest processes in materials, occurring on femtosecond to attosecond timescales, depending on the electronic band structure of the material and the excitation energy. Such interactions can play a dominant role in light-induced processes such as nano-enhanced plasmonics and catalysis, light harvesting, or phase transitions. However, to date it has not been possible to experimentally distinguish fundamental electron interactions such as scattering and screening. Here, we use sequences of attosecond pulses to directly measure electron-electron interactions in different bands of different materials with both simple and complex Fermi surfaces. By extracting the time delays associated with photoemission we show that the lifetime of photoelectrons from the d band of Cu are longer by ∼100 as compared with those from the same band of Ni. We attribute this to the enhanced electron-electron scattering in the unfilled d band of Ni. Using theoretical modeling, we can extract the contributions of electron-electron scattering and screening in different bands of different materials with both simple and complex Fermi surfaces. Our results also show that screening influences high-energy photoelectrons (≈20 eV) significantly less than low-energy photoelectrons. As a result, high-energy photoelectrons can serve as a direct probe of spin-dependent electron-electron scattering by neglecting screening. This can then be applied to quantifying the contribution of electron interactions and screening to low-energy excitations near the Fermi level. The information derived here provides valuable and unique information for a host of quantum materials.

18.
Philos Trans A Math Phys Eng Sci ; 377(2145): 20170475, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-30929623

RESUMEN

One of the most ubiquitous techniques within attosecond science is the so-called reconstruction of attosecond beating by interference of two-photon transitions (RABBIT). Originally proposed for the characterization of attosecond pulses, it has been successfully applied to the accurate determination of time delays in photoemission. Here, we examine in detail, using numerical simulations, the effect of the spatial and temporal properties of the light fields and of the experimental procedure on the accuracy of the method. This allows us to identify the necessary conditions to achieve the best temporal precision in RABBIT measurements. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.

19.
Philos Trans A Math Phys Eng Sci ; 377(2145): 20170472, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-30929627

RESUMEN

Attosecond pump-probe spectroscopy is a unique tool for the direct observation of the light-activated electronic motion in molecules and it offers the possibility to capture the first instants of a chemical reaction. Recently, advances in attosecond technology allowed the charge migration processes to be revealed in biochemically relevant molecules. Although this purely electronic process might be key for a future chemistry at the electron time scale, the influence of this ultrafast charge flow on the reactivity of a molecule is still debated. In this work, we exploit extreme ultraviolet attosecond pulses to activate charge migration in two aromatic amino acids, namely phenylalanine and tryptophan. Advanced numerical calculations are performed to interpret the experimental data and to discuss the effects of the nuclear dynamics on the activated quantum coherences. By comparing the experimental results obtained in the two molecules, we show that the presence of different functional groups strongly affects the fragmentation pathways, as well as the charge rearrangement. The observed charge dynamics indeed present peculiar aspects, including characteristic periodicities and decoherence times. Numerical results indicate that, even for a very large molecule such as tryptophan, the quantum coherences can survive the nuclear dynamics for several femtoseconds. These results open new and important perspectives for a deeper understanding of the photo-induced charge dynamics, as a promising tool to control the reactivity of bio-relevant molecules via photo-excitation. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.

20.
Philos Trans A Math Phys Eng Sci ; 377(2145): 20170468, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-30929634

RESUMEN

High harmonic generation (HHG) of an intense laser pulse is a highly nonlinear optical phenomenon that provides the only proven source of tabletop attosecond pulses, and it is the key technology in attosecond science. Recent developments in high-intensity infrared lasers have extended HHG beyond its traditional domain of the XUV spectral range (10-150 eV) into the soft X-ray regime (150 eV to 3 keV), allowing the compactness, stability and sub-femtosecond duration of HHG to be combined with the atomic site specificity and electronic/structural sensitivity of X-ray spectroscopy. HHG in the soft X-ray spectral region has significant differences from HHG in the XUV, which necessitate new approaches to generating and characterizing attosecond pulses. Here, we examine the challenges and opportunities of soft X-ray HHG, and we use simulations to examine the optimal generating conditions for the development of high-flux, attosecond-duration pulses in the soft X-ray spectral range. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda