Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Cell ; 186(19): 4074-4084.e11, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37669665

RESUMEN

H3N8 avian influenza viruses (AIVs) in China caused two confirmed human infections in 2022, followed by a fatal case reported in 2023. H3N8 viruses are widespread in chicken flocks; however, the zoonotic features of H3N8 viruses are poorly understood. Here, we demonstrate that H3N8 viruses were able to infect and replicate efficiently in organotypic normal human bronchial epithelial (NHBE) cells and lung epithelial (Calu-3) cells. Human isolates of H3N8 virus were more virulent and caused severe pathology in mice and ferrets, relative to chicken isolates. Importantly, H3N8 virus isolated from a patient with severe pneumonia was transmissible between ferrets through respiratory droplets; it had acquired human-receptor-binding preference and amino acid substitution PB2-E627K necessary for airborne transmission. Human populations, even when vaccinated against human H3N2 virus, appear immunologically naive to emerging mammalian-adapted H3N8 AIVs and could be vulnerable to infection at epidemic or pandemic proportion.


Asunto(s)
Subtipo H3N8 del Virus de la Influenza A , Gripe Humana , Animales , Humanos , Ratones , Pollos , Hurones , Subtipo H3N2 del Virus de la Influenza A , Aerosoles y Gotitas Respiratorias
2.
J Virol ; 98(6): e0062624, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38747601

RESUMEN

Highly pathogenic avian influenza viruses of the H5N1 clade 2.3.4.4b were detected in North America in the winter of 2021/2022. These viruses have spread across the Americas, causing morbidity and mortality in both wild and domestic birds as well as some mammalian species, including cattle. Many surveillance programs for wildlife as well as commercial poultry operations have detected these viruses. In this study, we conducted surveillance of avian species in the urban environment in New York City. We detected highly pathogenic H5N1 viruses in six samples from four different bird species and performed whole-genome sequencing. Sequencing analysis showed the presence of multiple different genotypes. Our work highlights that the interface between animals and humans that may give rise to zoonotic infections or even pandemics is not limited to rural environments and commercial poultry operations but extends into the heart of our urban centers.IMPORTANCEWhile surveillance programs for avian influenza viruses are often focused on migratory routes and their associated stop-over locations or commercial poultry operations, many bird species-including migratory birds-frequent or live in urban green spaces and wetlands. This brings them into contact with a highly dense population of humans and pets, providing an extensive urban animal-human interface in which the general public may have little awareness of circulating infectious diseases. This study focuses on virus surveillance of this interface, combined with culturally responsive science education and community outreach.


Asunto(s)
Animales Salvajes , Aves , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Animales , Humanos , Animales Salvajes/virología , Aves/virología , Genoma Viral/genética , Genotipo , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/clasificación , Gripe Aviar/virología , Gripe Aviar/epidemiología , Gripe Humana/virología , Gripe Humana/epidemiología , Ciudad de Nueva York/epidemiología , Aves de Corral/virología , Secuenciación Completa del Genoma , Zoonosis Virales/virología
3.
J Virol ; 98(3): e0112923, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38305155

RESUMEN

The global circulation of clade 2.3.4.4b H5Ny highly pathogenic avian influenza viruses (HPAIVs) in poultry and wild birds, increasing mammal infections, continues to pose a public health threat and may even form a pandemic. An efficacious vaccine against H5Ny HPAIVs is crucial for emergency use and pandemic preparedness. In this study, we developed a parainfluenza virus 5 (PIV5)-based vaccine candidate expressing hemagglutinin (HA) protein of clade 2.3.4.4b H5 HPAIV, termed rPIV5-H5, and evaluated its safety and efficacy in mice and ferrets. Our results demonstrated that intranasal immunization with a single dose of rPIV5-H5 could stimulate H5-specific antibody responses, moreover, a prime-boost regimen using rPIV5-H5 stimulated robust humoral, cellular, and mucosal immune responses in mice. Challenge study showed that rPIV5-H5 prime-boost regimen provided sterile immunity against lethal clade 2.3.4.4b H5N1 virus infection in mice and ferrets. Notably, rPIV5-H5 prime-boost regimen provided protection in mice against challenge with lethal doses of heterologous clades 2.2, 2.3.2, and 2.3.4 H5N1, and clade 2.3.4.4h H5N6 viruses. These results revealed that rPIV5-H5 can elicit protective immunity against a diverse clade of highly pathogenic H5Ny virus infection in mammals, highlighting the potential of rPIV5-H5 as a pan-H5 influenza vaccine candidate for emergency use.IMPORTANCEClade 2.3.4.4b H5Ny highly pathogenic avian influenza viruses (HPAIVs) have been widely circulating in wild birds and domestic poultry all over the world, leading to infections in mammals, including humans. Here, we developed a recombinant PIV5-vectored vaccine candidate expressing the HA protein of clade 2.3.4.4b H5 virus. Intranasal immunization with rPIV5-H5 in mice induced airway mucosal IgA responses, high levels of antibodies, and robust T-cell responses. Importantly, rPIV5-H5 conferred complete protection in mice and ferrets against clade 2.3.4.4b H5N1 virus challenge, the protective immunity was extended against heterologous H5Ny viruses. Taken together, our data demonstrate that rPIV5-H5 is a promising vaccine candidate against diverse H5Ny influenza viruses in mammals.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N6 del Virus de la Influenza A , Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Virus de la Parainfluenza 5 , Animales , Humanos , Ratones , Hurones/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunidad Celular , Inmunidad Humoral , Inmunidad Mucosa , Subtipo H5N1 del Virus de la Influenza A/química , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N6 del Virus de la Influenza A/química , Subtipo H5N6 del Virus de la Influenza A/clasificación , Subtipo H5N6 del Virus de la Influenza A/genética , Subtipo H5N6 del Virus de la Influenza A/inmunología , Gripe Aviar/inmunología , Gripe Aviar/prevención & control , Gripe Aviar/transmisión , Gripe Aviar/virología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Preparación para una Pandemia/métodos , Virus de la Parainfluenza 5/genética , Virus de la Parainfluenza 5/inmunología , Virus de la Parainfluenza 5/metabolismo , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Administración Intranasal , Aves de Corral/virología , Inmunoglobulina A/inmunología , Linfocitos T/inmunología
4.
Emerg Infect Dis ; 30(8): 1737-1739, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38986148

RESUMEN

Several subtypes and many different genotypes of highly pathogenic avian influenza viruses of subtype H5 clade 2.3.4.4b have repeatedly caused outbreaks in Germany. Four new highly pathogenic avian influenza genotypes emerged in November 2023 after reassortment with low pathogenicity precursors, replacing genotype BB, which had dominated in Europe since 2022.


Asunto(s)
Genotipo , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Filogenia , Alemania/epidemiología , Animales , Gripe Aviar/virología , Gripe Aviar/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/clasificación , Virus Reordenados/genética , Brotes de Enfermedades , Historia del Siglo XXI , Aves/virología , Humanos
5.
J Gen Virol ; 105(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38289661

RESUMEN

During the UK 2020-2021 epizootic of H5Nx clade 2.3.4.4b high-pathogenicity avian influenza viruses (HPAIVs), high mortality occurred during incursions in commercially farmed common pheasants (Phasianus colchicus). Two pheasant farms, affected separately by H5N8 and H5N1 subtypes, included adjacently housed red-legged partridges (Alectoris rufa), which appeared to be unaffected. Despite extensive ongoing epizootics, H5Nx HPAIV partridge outbreaks were not reported during 2020-2021 and 2021-2022 in the UK, so it is postulated that partridges are more resistant to HPAIV infection than other gamebirds. To assess this, pathogenesis and both intra- and inter-species transmission of UK pheasant-origin H5N8-2021 and H5N1-2021 HPAIVs were investigated. Onward transmission to chickens was also assessed to better understand the risk of spread from gamebirds to other commercial poultry sectors. A lower infectious dose was required to infect pheasants with H5N8-2021 compared to H5N1-2021. However, HPAIV systemic dissemination to multiple organs within pheasants was more rapid following infection with H5N1-2021 than H5N8-2021, with the former attaining generally higher viral RNA levels in tissues. Intraspecies transmission to contact pheasants was successful for both viruses and associated with viral environmental contamination, while interspecies transmission to a first chicken-contact group was also efficient. However, further onward transmission to additional chicken contacts was only achieved with H5N1-2021. Intra-partridge transmission was only successful when high-dose H5N1-2021 was administered, while partridges inoculated with H5N8-2021 failed to shed and transmit, although extensive tissue tropism was observed for both viruses. Mortalities among infected partridges featured a longer incubation period compared to that in pheasants, for both viruses. Therefore, the susceptibility of different gamebird species and pathogenicity outcomes to the ongoing H5Nx clade 2.3.4.4b HPAIVs varies, but pheasants represent a greater likelihood of H5Nx HPAIV introduction into galliforme poultry settings. Consequently, viral maintenance within gamebird populations and risks to poultry species warrant enhanced investigation.


Asunto(s)
Galliformes , Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N8 del Virus de la Influenza A , Virus de la Influenza A , Animales , Virulencia , Pollos
6.
J Virol ; 97(11): e0090623, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37843369

RESUMEN

IMPORTANCE: It is well known that influenza A viruses (IAV) initiate host cell infection by binding to sialic acid, a sugar molecule present at the ends of various sugar chains called glycoconjugates. These sugar chains can vary in chain length, structure, and composition. However, it remains unknown if IAV strains preferentially bind to sialic acid on specific glycoconjugate type(s) for host cell infection. Here, we utilized CRISPR gene editing to abolish sialic acid on different glycoconjugate types in human lung cells, and evaluated human versus avian IAV infections. Our studies show that both human and avian IAV strains can infect human lung cells by utilizing any of the three major sialic acid-containing glycoconjugate types, specifically N-glycans, O-glycans, and glycolipids. Interestingly, simultaneous elimination of sialic acid on all three major glycoconjugate types in human lung cells dramatically decreased human IAV infection, yet had little effect on avian IAV infection. These studies show that avian IAV strains effectively utilize other less prevalent glycoconjugates for infection, whereas human IAV strains rely on a limited repertoire of glycoconjugate types. The remarkable ability of avian IAV strains to utilize diverse glycoconjugate types may allow for easy transmission into new host species.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Pulmón , Receptores de Superficie Celular , Animales , Humanos , Proteínas Portadoras/metabolismo , Glicoconjugados/metabolismo , Virus de la Influenza A/metabolismo , Pulmón/virología , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/metabolismo , Azúcares/metabolismo , Gripe Aviar/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Virales/metabolismo
7.
Virol J ; 21(1): 85, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600529

RESUMEN

BACKGROUND: Avian influenza viruses (AIVs) constitute significant zoonotic pathogens encompassing a broad spectrum of subtypes. Notably, the H4 subtype of AIVs has a pronounced ability to shift hosts. The escalating prevalence of the H4 subtype heightens the concern for its zoonotic potential, signaling an urgent need for vigilance. METHODS: During the period from December 2021 to November 2023, we collected AIV-related environmental samples and assessed them using a comprehensive protocol that included nucleic acid testing, gene sequencing, isolation culture, and resequencing. RESULTS: In this study, a total of 934 environmental samples were assessed, revealing a remarkably high detection rate (43.66%, 289/662) of AIV in the live poultry market. Notably, the H4N1 subtype AIV (cs2301) was isolated from the live poultry market and its complete genome sequence was successfully determined. Subsequent analysis revealed that cs2301, resulting from a reassortment event between wild and domesticated waterfowl, exhibits multiple mutations and demonstrates potential for host transfer. CONCLUSIONS: Our research once again demonstrates the significant role of wild and domesticated waterfowl in the reassortment process of avian influenza virus, enriching the research on the H4 subtype of AIV, and emphasizing the importance of proactive monitoring the environment related to avian influenza virus.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Gripe Aviar/epidemiología , Filogenia , Virus de la Influenza A/genética , Aves de Corral , China/epidemiología
8.
J Gen Virol ; 104(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37351928

RESUMEN

During the 2020/21 winter season, 29 and 10 H5N8 high pathogenicity avian influenza viruses (HPAIVs) were isolated from environmental water and wild birds, respectively, in Kagoshima prefecture, Japan. Furthermore, seven subtypes of low pathogenicity avian influenza viruses (LPAIVs) were also isolated; H1N1, H2N9, H3N2, H3N6, H3N8, H4N6, and H6N6 subtypes. While the H5 hemagglutinin (HA) genes of the G1 cluster were isolated throughout the winter season, those of the G2 cluster were also detected in late winter, suggesting that H5 HPAIVs possessing H5 HA genes from the two different clusters were individually introduced into Kagoshima prefecture. Intriguingly, genetic constellations revealed that the H5N8 HPAIVs could be classified into six genotypes, including four previously reported genotypes (E1, E2, E3, and E7), and two new genotypes (tentatively named E8 and E9). The PB1 and PA gene segments of genotypes E8 and E9 shared high similarity with those of LPAIVs, whereas the remaining gene segments were close to those of genotype E1. Furthermore, LPAIVs whose PA gene segment was close to that of genotype E9 were isolated from the environmental water. Overall, we revealed that various HPAIV genotypes circulated in Kagoshima prefecture during the 2020/21 winter season. This study highlights the importance of monitoring both HPAIV and LPAIV to better understand AIV ecology in migratory waterfowl populations.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H3N8 del Virus de la Influenza A , Subtipo H5N8 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Japón , Estaciones del Año , Subtipo H3N2 del Virus de la Influenza A , Animales Salvajes , Gripe Aviar/epidemiología , Virus de la Influenza A/genética , Genotipo , Filogenia
9.
J Virol ; 96(5): e0185621, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35019727

RESUMEN

An H7N9 low-pathogenicity avian influenza virus (LPAIV) emerged in 2013 through genetic reassortment between H9N2 and other LPAIVs circulating in birds in China. This virus causes inapparent clinical disease in chickens, but zoonotic transmission results in severe and fatal disease in humans. To examine a natural reassortment scenario between H7N9 and G1 lineage H9N2 viruses predominant in the Indian subcontinent, we performed an experimental coinfection of chickens with A/Anhui/1/2013/H7N9 (Anhui/13) virus and A/Chicken/Pakistan/UDL-01/2008/H9N2 (UDL/08) virus. Plaque purification and genotyping of the reassortant viruses shed via the oropharynx of contact chickens showed H9N2 and H9N9 as predominant subtypes. The reassortant viruses shed by contact chickens also showed selective enrichment of polymerase genes from H9N2 virus. The viable "6+2" reassortant H9N9 (having nucleoprotein [NP] and neuraminidase [NA] from H7N9 and the remaining genes from H9N2) was successfully shed from the oropharynx of contact chickens, plus it showed an increased replication rate in human A549 cells and a significantly higher receptor binding to α2,6 and α2,3 sialoglycans compared to H9N2. The reassortant H9N9 virus also had a lower fusion pH, replicated in directly infected ferrets at similar levels compared to H7N9 and transmitted via direct contact. Ferrets exposed to H9N9 via aerosol contact were also found to be seropositive, compared to H7N9 aerosol contact ferrets. To the best of our knowledge, this is the first study demonstrating that cocirculation of H7N9 and G1 lineage H9N2 viruses could represent a threat for the generation of novel reassortant H9N9 viruses with greater virulence in poultry and a zoonotic potential. IMPORTANCE We evaluated the consequences of reassortment between the H7N9 and the contemporary H9N2 viruses of the G1 lineage that are enzootic in poultry across the Indian subcontinent and the Middle East. Coinfection of chickens with these viruses resulted in the emergence of novel reassortant H9N9 viruses with genes derived from both H9N2 and H7N9 viruses. The "6+2" reassortant H9N9 (having NP and NA from H7N9) virus was shed from contact chickens in a significantly higher proportion compared to most of the reassortant viruses, showed significantly increased replication fitness in human A549 cells, receptor binding toward human (α2,6) and avian (α2,3) sialic acid receptor analogues, and the potential to transmit via contact among ferrets. This study demonstrated the ability of viruses that already exist in nature to exchange genetic material, highlighting the potential emergence of viruses from these subtypes with zoonotic potential.


Asunto(s)
Coinfección , Subtipo H7N9 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Virus Reordenados , Animales , Pollos , Coinfección/veterinaria , Hurones , Humanos , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/virología , Gripe Humana , Filogenia , Aves de Corral , Virus Reordenados/genética , Virus Reordenados/patogenicidad
10.
Mol Pharm ; 20(3): 1613-1623, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36795759

RESUMEN

Chinese yam polysaccharides (CYPs) have received wide attention for their immunomodulatory activity. Our previous studies had discovered that the Chinese yam polysaccharide PLGA-stabilized Pickering emulsion (CYP-PPAS) can serve as an efficient adjuvant to trigger powerful humoral and cellular immunity. Recently, positively charged nano-adjuvants are easily taken up by antigen-presenting cells, potentially resulting in lysosomal escape, the promotion of antigen cross-presentation, and the induction of CD8 T-cell response. However, reports on the practical application of cationic Pickering emulsions as adjuvants are very limited. Considering the economic damage and public-health risks caused by the H9N2 influenza virus, it is urgent to develop an effective adjuvant for boosting humoral and cellular immunity against influenza virus infection. Here, we applied polyethyleneimine-modified Chinese yam polysaccharide PLGA nanoparticles as particle stabilizers and squalene as the oil core to fabricate a positively charged nanoparticle-stabilized Pickering emulsion adjuvant system (PEI-CYP-PPAS). The cationic Pickering emulsion of PEI-CYP-PPAS was utilized as an adjuvant for the H9N2 Avian influenza vaccine, and the adjuvant activity was compared with the Pickering emulsion of CYP-PPAS and the commercial adjuvant (aluminum adjuvant). The PEI-CYP-PPAS, with a size of about 1164.66 nm and a ζ potential of 33.23 mV, could increase the H9N2 antigen loading efficiency by 83.99%. After vaccination with Pickering emulsions based on H9N2 vaccines, PEI-CYP-PPAS generated higher HI titers and stronger IgG antibodies than CYP-PPAS and Alum and increased the immune organ index of the spleen and bursa of Fabricius without immune organ injury. Moreover, treatment with PEI-CYP-PPAS/H9N2 induced CD4+ and CD8+ T-cell activation, a high lymphocyte proliferation index, and increased cytokine expression of IL-4, IL-6, and IFN-γ. Thus, compared with the CYP-PPAS and aluminum adjuvant, the cationic nanoparticle-stabilized vaccine delivery system of PEI-CYP-PPAS was an effective adjuvant for H9N2 vaccination to elicit powerful humoral and cellular immune responses.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Vacunas contra la Influenza , Nanopartículas , Animales , Pollos , Aluminio/farmacología , Emulsiones/farmacología , Antígenos , Inmunidad Celular , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Adyuvantes Inmunológicos , Polisacáridos/farmacología
11.
BMC Genomics ; 23(1): 579, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35953803

RESUMEN

BACKGROUND: Sequencing viruses in many specimens is hindered by excessive background material from hosts, microbiota, and environmental organisms. Consequently, enrichment of target genomic material is necessary for practical high-throughput viral genome sequencing. Hybridization probes are widely used for enrichment in many fields, but their application to viral sequencing faces a major obstacle: it is difficult to design panels of probe oligo sequences that broadly target many viral taxa due to their rapid evolution, extensive diversity, and genetic hypervariability. To address this challenge, we created ProbeTools, a package of bioinformatic tools for generating effective viral capture panels, and for assessing coverage of target sequences by probe panel designs in silico. In this study, we validated ProbeTools by designing a panel of 3600 probes for subtyping the hypervariable haemagglutinin (HA) and neuraminidase (NA) genome segments of avian-origin influenza A viruses (AIVs). Using in silico assessment of AIV reference sequences and in vitro capture on egg-cultured viral isolates, we demonstrated effective performance by our custom AIV panel and ProbeTools' suitability for challenging viral probe design applications. RESULTS: Based on ProbeTool's in silico analysis, our panel provided broadly inclusive coverage of 14,772 HA and 11,967 NA reference sequences. For each reference sequence, we calculated the percentage of nucleotide positions covered by our panel in silico; 90% of HA and NA references sequences had at least 90.8 and 95.1% of their nucleotide positions covered respectively. We also observed effective in vitro capture on a representative collection of 23 egg-cultured AIVs that included isolates from wild birds, poultry, and humans and representatives from all HA and NA subtypes. Forty-two of forty-six HA and NA segments had over 98.3% of their nucleotide positions significantly enriched by our custom panel. These in vitro results were further used to validate ProbeTools' in silico coverage assessment algorithm; 89.2% of in silico predictions were concordant with in vitro results. CONCLUSIONS: ProbeTools generated an effective panel for subtyping AIVs that can be deployed for genomic surveillance, outbreak prevention, and pandemic preparedness. Effective probe design against hypervariable AIV targets also validated ProbeTools' design and coverage assessment algorithms, demonstrating their suitability for other challenging viral capture applications.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Genómica , Humanos , Gripe Aviar/genética , Neuraminidasa/genética , Nucleótidos , Filogenia
12.
J Virol ; 94(20)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32727875

RESUMEN

H9N2 avian influenza viruses (AIVs) circulate in poultry throughout much of Asia, the Middle East, and Africa. These viruses cause huge economic damage to poultry production systems and pose a zoonotic threat both in their own right and in the generation of novel zoonotic viruses, for example, H7N9. In recent years, it has been observed that H9N2 viruses have further adapted to gallinaceous poultry, becoming more highly transmissible and causing higher morbidity and mortality. Here, we investigate the molecular basis for this increased virulence, comparing a virus from the 1990s and a contemporary field strain. The modern virus replicated to higher titers in various systems, and this difference mapped to a single amino acid polymorphism at position 26 of the endonuclease domain shared by the PA and PA-X proteins. This change was responsible for increased replication and higher morbidity and mortality rates along with extended tissue tropism seen in chickens. Although the PA K26E change correlated with increased host cell shutoff activity of the PA-X protein in vitro, it could not be overridden by frameshift site mutations that block PA-X expression and therefore increased PA-X activity could not explain the differences in replication phenotype. Instead, this indicates that these differences are due to subtle effects on PA function. This work gives insight into the ongoing evolution and poultry adaptation of H9N2 and other avian influenza viruses and helps us understand the striking morbidity and mortality rates in the field, as well as the rapidly expanding geographical range seen in these viruses.IMPORTANCE Avian influenza viruses, such as H9N2, cause huge economic damage to poultry production worldwide and are additionally considered potential pandemic threats. Understanding how these viruses evolve in their natural hosts is key to effective control strategies. In the Middle East and South Asia, an older H9N2 virus strain has been replaced by a new reassortant strain with greater fitness. Here, we take representative viruses and investigate the genetic basis for this "fitness." A single mutation in the virus was responsible for greater fitness, enabling high growth of the contemporary H9N2 virus in cells, as well as in chickens. The genetic mutation that modulates this change is within the viral PA protein, a part of the virus polymerase gene that contributes to viral replication as well as to virus accessory functions-however, we find that the fitness effect is specifically due to changes in the protein polymerase activity.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , ARN Polimerasa Dependiente del ARN , Proteínas Virales , Tropismo Viral , Animales , Pollos , Perros , Células HEK293 , Humanos , Subtipo H9N2 del Virus de la Influenza A/patogenicidad , Subtipo H9N2 del Virus de la Influenza A/fisiología , Gripe Aviar/genética , Gripe Aviar/metabolismo , Gripe Aviar/patología , Células de Riñón Canino Madin Darby , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/metabolismo , Enfermedades de las Aves de Corral/patología , Enfermedades de las Aves de Corral/virología , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
13.
Virol J ; 18(1): 91, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33931074

RESUMEN

BACKGROUND: H5-subtype highly pathogenic (HP) avian influenza viruses (AIVs) cause high mortality in domestic birds and sporadic infections in humans with a frequently fatal outcome, while H5N1 viruses have pandemic potential. Due to veterinary and public health significance, these HPAIVs, as well as low pathogenicity (LP) H5-subtype AIVs having a propensity to mutate into HP viruses, are under epidemiologic surveillance and must be reported to the World Organization for Animal Health (OIE). Our previous work provided a unique panel of 6 different monoclonal antibodies (mAbs) against H5 hemagglutinin (HA), which meets the demand for high-specificity tools for monitoring AIV infection and vaccination in poultry. In this study, we selected one of these mAbs to develop an epitope-blocking (EB) ELISA for detecting H5 subtype-specific antibodies in chicken sera (H5 EB-ELISA). METHODS: In the H5 EB-ELISA, H5 HA protein produced in a baculovirus-expression vector system was employed as a coating antigen, and the G-7-27-18 mAb was employed as a blocking antibody. The performance characteristics of the assay were evaluated by testing 358 sera from nonimmunized chickens and chickens immunized with AIVs of the H1-H16 subtypes or recombinant H5 HA antigen to obtain the reference and experimental antisera, respectively. The samples were classified as anti-H5 HA positive or negative based on the results of the hemagglutination inhibition (HI) assay, the gold standard in subtype-specific serodiagnosis. RESULTS: The H5 EB-ELISA correctly discriminated between the anti-H5 HA negative sera, including those against the non-H5 subtype AIVs, and sera positive for antibodies against the various-origin H5 HAs. Preliminary validation showed 100% analytical and 97.6% diagnostic specificities of the assay and 98.0% and 99.1% diagnostic sensitivities when applied to detect the anti-H5 HA antibodies in the reference and experimental antisera, respectively. CONCLUSIONS: The H5 EB-ELISA performed well in terms of diagnostic estimates. Thus, further optimization and validation work using a larger set of chicken sera and receiver operating characteristic (ROC) analysis are warranted. Moreover, the present assay provides a valuable basis for developing multispecies screening tests for birds or diagnostic tests for humans.


Asunto(s)
Anticuerpos Antivirales/inmunología , Ensayo de Inmunoadsorción Enzimática , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Anticuerpos Monoclonales/inmunología , Pollos/inmunología , Epítopos , Sueros Inmunes/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Gripe Aviar/diagnóstico
14.
BMC Vet Res ; 17(1): 200, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34049549

RESUMEN

BACKGROUND: Highly pathogenic avian influenza viruses (HPAIVs) of H5 subtype pose a great threat to the poultry industry and human health. In recent years, H5N6 subtype has rapidly replaced H5N1 as the most predominate HPAIV subtype circulating in domestic poultry in China. In this study, we describe the genetic and phylogenetic characteristics of a prevalent H5N6 strain in Guangdong, China. RESULTS: Nucleotide sequencing identified a H5N6 subtype HPAIV, designated as A/chicken/Dongguan/1101/2019 (DG/19), with a multibasic cleavage site in the hemagglutinin (HA). Phylogenetic analysis revealed DG/19 was a reassortant of H5N1, H5N2, H5N8, and H6N6 subtypes of avian influenza viruses. A number of mammalian adaptive markers such as D36N in the HA were identified. CONCLUSIONS: Our results showed that HPAIV H5N6 strains still emerge in well-managed groups of chicken farms. Considering the increasing prevalence of H5N6 HPAIV, and the fact that H5N6 HPAIVs are well adapted to migratory birds, an enhanced surveillance for the East Asian-Australasian flyway should be undertaken to prevent potential threats to the poultry industry and human health.


Asunto(s)
Pollos/virología , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Gripe Aviar/virología , Animales , China , Genes Virales , Virus de la Influenza A/aislamiento & purificación , Filogenia , Virus Reordenados/clasificación , Virus Reordenados/genética , Virus Reordenados/aislamiento & purificación
15.
BMC Bioinformatics ; 21(1): 316, 2020 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-32682392

RESUMEN

BACKGROUND: The pandemic threat of influenza has attracted great attention worldwide. To assist public health decision-makers, new suites of tools are needed to rapidly process and combine viral information retrieved from public-domain databases for a better risk assessment. RESULTS: Using our recently developed FluConvert and IniFlu software, we automatically processed and rearranged sequence data by standard viral nomenclature, determined the group-related consensus sequences, and identified group-specific polygenic signatures. The software possesses powerful ability to integrate viral, clinical, and epidemiological data. We demonstrated that both multiple basic amino acids at the cleavage site of the HA gene and also at least 11 more evidence-based viral amino acid substitutions present in global highly pathogenic avian influenza H5N2 viruses during the years 2009-2016 that are associated with viral virulence and human infection. CONCLUSIONS: FluConvert and IniFlu are useful to monitor and assess all subtypes of influenza viruses with pandemic potential. These programs are implemented through command-line and user-friendly graphical interfaces, and identify molecular signatures with virological, epidemiological and clinical significance. FluConvert and IniFlu are available at https://apps.flutures.com or https://github.com/chinrur/FluConvert_IniFlu.


Asunto(s)
Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Gripe Aviar/patología , Interfaz Usuario-Computador , Secuencia de Aminoácidos , Animales , Aves , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H5N2 del Virus de la Influenza A/genética , Gripe Aviar/inmunología , Gripe Aviar/virología , Medición de Riesgo , Alineación de Secuencia , Virulencia
16.
Artículo en Inglés | MEDLINE | ID: mdl-32284377

RESUMEN

Attention has been paid to H5N6 highly pathogenic avian influenza virus (HPAIV) because of its heavy burden on the poultry industry and human mortality. Since an influenza A virus carrying N6 neuraminidase (NA) has never spread in humans, the potential for H5N6 HPAIV to cause disease in humans and the efficacy of antiviral drugs against the virus need to be urgently assessed. We used nonhuman primates to elucidate the pathogenesis of H5N6 HPAIV as well as to determine the efficacy of antiviral drugs against the virus. H5N6 HPAIV infection led to high fever in cynomolgus macaques. The lung injury caused by the virus was severe, with diffuse alveolar damage and neutrophil infiltration. In addition, an increase in interferon alpha (IFN-α) showed an inverse correlation with virus titers during the infection process. Oseltamivir was effective for reducing H5N6 HPAIV propagation, and continuous treatment with peramivir reduced virus propagation and the severity of symptoms in the early stage. This study also showed pathologically severe lung injury states in cynomolgus macaques infected with H5N6 HPAIV, even in those that received early antiviral drug treatments, indicating the need for close monitoring and further studies on virus pathogenicity and new antiviral therapies.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Gripe Humana/tratamiento farmacológico , Neuraminidasa , Filogenia , Primates
17.
BMC Infect Dis ; 20(1): 648, 2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32883215

RESUMEN

BACKGROUND: Due to the frequent reassortment and zoonotic potential of influenza A viruses, rapid gain of sequence information is crucial. Alongside established next-generation sequencing protocols, the MinION sequencing device (Oxford Nanopore Technologies) has become a serious competitor for routine whole-genome sequencing. Here, we established a novel, rapid and high-throughput MinION multiplexing workflow based on a universal RT-PCR. METHODS: Twelve representative influenza A virus samples of multiple subtypes were universally amplified in a one-step RT-PCR and subsequently sequenced on the MinION instrument in conjunction with a barcoding library preparation kit from the rapid family and the MinIT performing live base-calling. The identical PCR products were sequenced on an IonTorrent platform and, after final consensus assembly, all data was compared for validation. To prove the practicability of the MinION-MinIT method in human and veterinary diagnostics, we sequenced recent and historical influenza strains for further benchmarking. RESULTS: The MinION-MinIT combination generated over two million reads for twelve samples in a six-hour sequencing run, from which a total of 72% classified as quality screened, trimmed and mapped influenza reads to produce full genome sequences. Identities between the datasets of > 99.9% were achieved, with 100% coverage of all segments alongside a sufficient confidence and 4492fold mean depth. From RNA extraction to finished sequences, only 14 h were required. CONCLUSIONS: Overall, we developed and validated a novel and rapid multiplex workflow for influenza A virus sequencing. This protocol suits both clinical and academic settings, aiding in real time diagnostics and passive surveillance.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Virus de la Influenza A/genética , Secuenciación de Nanoporos/métodos , Humanos , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Flujo de Trabajo
18.
Emerg Infect Dis ; 24(12): 2309-2316, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30457545

RESUMEN

We conducted a cross-sectional study in live bird markets (LBMs) in Dhaka and Chittagong, Bangladesh, to estimate the prevalence of avian influenza A(H5) and A(H9) viruses in different types of poultry and environmental areas by using Bayesian hierarchical logistic regression models. We detected these viruses in nearly all LBMs. Prevalence of A(H5) virus was higher in waterfowl than in chickens, whereas prevalence of A(H9) virus was higher in chickens than in waterfowl and, among chicken types, in industrial broilers than in cross-breeds and indigenous breeds. LBMs with >1 wholesaler were more frequently contaminated by A(H5) virus than retail-only LBMs. Prevalence of A(H9) virus in poultry and level of environmental contamination were also higher in LBMs with >1 wholesaler. We found a high level of circulation of both avian influenza viruses in surveyed LBMs. Prevalence was influenced by type of poultry, environmental site, and trading.


Asunto(s)
Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Gripe Aviar/virología , Animales , Bangladesh/epidemiología , Teorema de Bayes , Pollos , Estudios Transversales , Patos , Microbiología Ambiental , Humanos , Virus de la Influenza A/clasificación , Prevalencia , Vigilancia en Salud Pública
19.
Virol J ; 15(1): 164, 2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30355336

RESUMEN

BACKGROUND: The H6N1 subtype of avian influenza viruses (AIVs) can infect people with an influenza-like illness; the H6N1 viruses possess the ability for zoonotic transmission from avians into mammals, and possibly pose a threat to human health. METHODS: In 2017, live poultry markets (LPMs) in Zhejiang Province were surveyed for AIVs. To better understand the genetic relationships between these strains from Eastern China and other AIVs, all gene segments of these strains were sequenced and compared with sequences available in GenBank. In this study, we analyzed the receptor-binding specificity, antigenic characteristics, and pathogenicity of these two H6N1 viruses. RESULTS: In 2017, two H6N1 AIVs were isolated from chickens during surveillance for AIVs in LPMs in Eastern China. Phylogenetic analysis showed that these strains shared genetic characteristics from H6, H10, H1, and H4 AIVs found in ducks and wild birds in East Asia. These AIV strains were able to replicate in mice without prior adaptation. CONCLUSIONS: In this study, we report the discovery of new strains of H6N1 viruses from chickens with novel gene reassortments. Our results suggest that these chickens play an important role generating novel reassortments in AIVs, and emphasize the need for continued surveillance of AIV strains circulating in poultry.


Asunto(s)
Pollos/virología , Virus de la Influenza A/inmunología , Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Virus Reordenados/inmunología , Virus Reordenados/patogenicidad , Células A549 , Animales , China/epidemiología , Perros , Femenino , Genoma Viral , Humanos , Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Filogenia , ARN Viral/genética , Virus Reordenados/genética , Virus Reordenados/aislamiento & purificación
20.
J Infect Dis ; 216(suppl_4): S555-S559, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28934456

RESUMEN

Recently, novel highly pathogenic avian influenza H5Nx viruses (clade 2.3.4.4) caused outbreaks in US poultry. We evaluated the potential of a stockpiled A(H5N1) A/Anhui/1/2005 (clade 2.3.4) vaccine to elicit cross-reactive antibody responses to these emerging viruses. Sera from subjects who received 2 doses of MF59-adjuvanted A/Anhui/1/2005, or 1 dose of MF59-adjuvanted A/Anhui/1/2005 following priming with a clade 1 vaccine were characterized by microneutralization assays and modified hemagglutination inhibition (HI) assays. Only heterologous prime-boost vaccination induced modest cross-reactive HI antibody responses to H5Nx viruses. Heterologous prime-boost may provide a more effective vaccination strategy to broaden the antibody responses to emerging viruses.


Asunto(s)
Formación de Anticuerpos , Reacciones Cruzadas , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/prevención & control , Adyuvantes Inmunológicos , Adolescente , Adulto , Anticuerpos Antivirales/sangre , Relación Dosis-Respuesta a Droga , Pruebas de Inhibición de Hemaglutinación , Humanos , Inmunización Secundaria , Vacunas contra la Influenza/administración & dosificación , Persona de Mediana Edad , Ensayos Clínicos Controlados Aleatorios como Asunto , Adulto Joven
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda