Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 706
Filtrar
1.
Cell ; 185(21): 3896-3912.e22, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36167070

RESUMEN

Olfactory sensory neurons (OSNs) convert the stochastic choice of one of >1,000 olfactory receptor (OR) genes into precise and stereotyped axon targeting of OR-specific glomeruli in the olfactory bulb. Here, we show that the PERK arm of the unfolded protein response (UPR) regulates both the glomerular coalescence of like axons and the specificity of their projections. Subtle differences in OR protein sequences lead to distinct patterns of endoplasmic reticulum (ER) stress during OSN development, converting OR identity into distinct gene expression signatures. We identify the transcription factor Ddit3 as a key effector of PERK signaling that maps OR-dependent ER stress patterns to the transcriptional regulation of axon guidance and cell-adhesion genes, instructing targeting precision. Our results extend the known functions of the UPR from a quality-control pathway that protects cells from misfolded proteins to a sensor of cellular identity that interprets physiological states to direct axon wiring.


Asunto(s)
Axones/metabolismo , Estrés del Retículo Endoplásmico , Receptores Odorantes , Animales , Ratones , Bulbo Olfatorio , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Factores de Transcripción/metabolismo
2.
Development ; 151(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38095299

RESUMEN

Binocular vision requires the segregation of retinal ganglion cell (RGC) axons extending from the retina into the ipsilateral and contralateral optic tracts. RGC axon segregation occurs at the optic chiasm, which forms at the ventral diencephalon midline. Using expression analyses, retinal explants and genetically modified mice, we demonstrate that CXCL12 (SDF1) is required for axon segregation at the optic chiasm. CXCL12 is expressed by the meninges bordering the optic pathway, and CXCR4 by both ipsilaterally and contralaterally projecting RGCs. CXCL12 or ventral diencephalon meninges potently promoted axon outgrowth from both ipsilaterally and contralaterally projecting RGCs. Further, a higher proportion of axons projected ipsilaterally in mice lacking CXCL12 or its receptor CXCR4 compared with wild-type mice as a result of misrouting of presumptive contralaterally specified RGC axons. Although RGCs also expressed the alternative CXCL12 receptor ACKR3, the optic chiasm developed normally in mice lacking ACKR3. Our data support a model whereby meningeal-derived CXCL12 helps drive axon growth from CXCR4-expressing RGCs towards the diencephalon midline, enabling contralateral axon growth. These findings further our understanding of the molecular and cellular mechanisms controlling optic pathway development.


Asunto(s)
Quiasma Óptico , Células Ganglionares de la Retina , Animales , Ratones , Axones/metabolismo , Diencéfalo , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Vías Visuales
3.
Development ; 151(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38345254

RESUMEN

EphB1 is required for proper guidance of cortical axon projections during brain development, but how EphB1 regulates this process remains unclear. We show here that EphB1 conditional knockout (cKO) in GABAergic cells (Vgat-Cre), but not in cortical excitatory neurons (Emx1-Cre), reproduced the cortical axon guidance defects observed in global EphB1 KO mice. Interestingly, in EphB1 cKOVgat mice, the misguided axon bundles contained co-mingled striatal GABAergic and somatosensory cortical glutamatergic axons. In wild-type mice, somatosensory axons also co-fasciculated with striatal axons, notably in the globus pallidus, suggesting that a subset of glutamatergic cortical axons normally follows long-range GABAergic axons to reach their targets. Surprisingly, the ectopic axons in EphB1 KO mice were juxtaposed to major blood vessels. However, conditional loss of EphB1 in endothelial cells (Tie2-Cre) did not produce the axon guidance defects, suggesting that EphB1 in GABAergic neurons normally promotes avoidance of these ectopic axons from the developing brain vasculature. Together, our data reveal a new role for EphB1 in GABAergic neurons to influence proper cortical glutamatergic axon guidance during brain development.


Asunto(s)
Orientación del Axón , Células Endoteliales , Animales , Ratones , Axones/fisiología , Neuronas GABAérgicas , Ratones Noqueados , Proteínas Tirosina Quinasas Receptoras , Receptor EphB1/metabolismo
4.
Mol Cell ; 73(3): 474-489.e5, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30595434

RESUMEN

Local translation is rapidly regulated by extrinsic signals during neural wiring, but its control mechanisms remain elusive. Here we show that the extracellular cue Sema3A induces an initial burst in local translation that precisely controls phosphorylation of the translation initiation factor eIF2α via the unfolded protein response (UPR) kinase PERK. Strikingly, in contrast to canonical UPR signaling, Sema3A-induced eIF2α phosphorylation bypasses global translational repression and underlies an increase in local translation through differential activity of eIF2B mediated by protein phosphatase 1. Ultrasensitive proteomics analysis of axons reveals 75 proteins translationally controlled via the Sema3A-p-eIF2α pathway. These include proteostasis- and actin cytoskeleton-related proteins but not canonical stress markers. Finally, we show that PERK signaling is needed for directional axon migration and visual pathway development in vivo. Thus, our findings reveal a noncanonical eIF2 signaling pathway that controls selective changes in axon translation and is required for neural wiring.


Asunto(s)
Factor 2B Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Neurogénesis , Células Ganglionares de la Retina/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Axones/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2B Eucariótico de Iniciación/genética , Femenino , Masculino , Neurogénesis/efectos de los fármacos , Fosforilación , Mapas de Interacción de Proteínas , Proteómica/métodos , Células Ganglionares de la Retina/efectos de los fármacos , Semaforina-3A/metabolismo , Semaforina-3A/farmacología , Transducción de Señal , Técnicas de Cultivo de Tejidos , Xenopus laevis/embriología , Xenopus laevis/metabolismo , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
5.
Semin Cell Dev Biol ; 156: 219-227, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-37537116

RESUMEN

The vagus nerve, with its myriad constituent axon branches and innervation targets, has long been a model of anatomical complexity in the nervous system. The branched architecture of the vagus nerve is now appreciated to be highly organized around the topographic and/or molecular identities of the neurons that innervate each target tissue. However, we are only just beginning to understand the developmental mechanisms by which heterogeneous vagus neuron identity is specified, patterned, and used to guide the axons of particular neurons to particular targets. Here, we summarize our current understanding of the complex topographic and molecular organization of the vagus nerve, the developmental basis of neuron specification and patterned axon guidance that supports this organization, and the regenerative mechanisms that promote, or inhibit, the restoration of vagus nerve organization after nerve damage. Finally, we highlight key unanswered questions in these areas and discuss potential strategies to address these questions.


Asunto(s)
Axones , Neuronas , Neuronas/fisiología , Axones/fisiología , Nervio Vago , Regeneración Nerviosa
6.
J Cell Sci ; 137(1)2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38197773

RESUMEN

Direct binding of netrin receptors with dynamic microtubules (MTs) in the neuronal growth cone plays an important role in netrin-mediated axon guidance. However, how netrin-1 (NTN1) regulates MT dynamics in axon turning remains a major unanswered question. Here, we show that the coupling of netrin-1 receptor DCC with tau (MAPT)-regulated MTs is involved in netrin-1-promoted axon attraction. Tau directly interacts with DCC and partially overlaps with DCC in the growth cone of primary neurons. Netrin-1 induces this interaction and the colocalization of DCC and tau in the growth cone. The netrin-1-induced interaction of tau with DCC relies on MT dynamics and TUBB3, a highly dynamic ß-tubulin isotype in developing neurons. Netrin-1 increased cosedimentation of DCC with tau and TUBB3 in MTs, and knockdown of either tau or TUBB3 mutually blocked this effect. Downregulation of endogenous tau levels by tau shRNAs inhibited netrin-1-induced axon outgrowth, branching and commissural axon attraction in vitro, and led to defects in spinal commissural axon projection in vivo. These findings suggest that tau is a key MT-associated protein coupling DCC with MT dynamics in netrin-1-promoted axon attraction.


Asunto(s)
Axones , Conos de Crecimiento , Netrina-1 , Neuronas , Microtúbulos
7.
Development ; 150(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36897571

RESUMEN

Hormone secretion from pancreatic islets is essential for glucose homeostasis, and loss or dysfunction of islet cells is a hallmark of type 2 diabetes. Maf transcription factors are crucial for establishing and maintaining adult endocrine cell function. However, during pancreas development, MafB is not only expressed in insulin- and glucagon-producing cells, but also in Neurog3+ endocrine progenitor cells, suggesting additional functions in cell differentiation and islet formation. Here, we report that MafB deficiency impairs ß cell clustering and islet formation, but also coincides with loss of neurotransmitter and axon guidance receptor gene expression. Moreover, the observed loss of nicotinic receptor gene expression in human and mouse ß cells implied that signaling through these receptors contributes to islet cell migration/formation. Inhibition of nicotinic receptor activity resulted in reduced ß cell migration towards autonomic nerves and impaired ß cell clustering. These findings highlight a novel function of MafB in controlling neuronal-directed signaling events required for islet formation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Ratones , Adulto , Animales , Humanos , Glucagón/genética , Glucagón/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Islotes Pancreáticos/metabolismo , Insulina/metabolismo , Páncreas/metabolismo , Factor de Transcripción MafB/genética , Factor de Transcripción MafB/metabolismo
8.
Development ; 150(7)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37014062

RESUMEN

In the polarity/protrusion model of growth cone repulsion from UNC-6/netrin, UNC-6 first polarizes the growth cone of the VD motor neuron axon via the UNC-5 receptor, and then regulates protrusion asymmetrically across the growth cone based on this polarity. UNC-6 stimulates protrusion dorsally through the UNC-40/DCC receptor, and inhibits protrusion ventrally through UNC-5, resulting in net dorsal growth. Previous studies showed that UNC-5 inhibits growth cone protrusion via the flavin monooxygenases and potential destabilization of F-actin, and via UNC-33/CRMP and restriction of microtubule plus-end entry into the growth cone. We show that UNC-5 inhibits protrusion through a third mechanism involving TOM-1/tomosyn. A short isoform of TOM-1 inhibited protrusion downstream of UNC-5, and a long isoform had a pro-protrusive role. TOM-1/tomosyn inhibits formation of the SNARE complex. We show that UNC-64/syntaxin is required for growth cone protrusion, consistent with a role of TOM-1 in inhibiting vesicle fusion. Our results are consistent with a model whereby UNC-5 utilizes TOM-1 to inhibit vesicle fusion, resulting in inhibited growth cone protrusion, possibly by preventing the growth cone plasma membrane addition required for protrusion.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Conos de Crecimiento/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Axones/metabolismo , Netrinas/metabolismo , Proteínas Portadoras/metabolismo , Receptores de Netrina/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Moléculas de Adhesión Celular/metabolismo
9.
Development ; 150(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37756604

RESUMEN

KIF5C is a kinesin-1 heavy chain that has been associated with neurodevelopmental disorders. Although the roles of kinesin-1 in axon transport are well known, little is known about how it regulates axon targeting. We report that UNC-116/KIF5C functions with the NEKL-3/NEK6/7 kinase to promote axon targeting in Caenorhabditis elegans. Loss of UNC-116 causes the axon to overshoot its target and UNC-116 gain-of-function causes premature axon termination. We find that loss of the UNC-16/JIP3 kinesin-1 cargo adaptor disrupts axon termination, but loss of kinesin-1 light chain function does not affect axon termination. Genetic analysis indicates that UNC-16 functions with the NEKL-3 kinase to promote axon termination. Consistent with this observation, imaging experiments indicate that loss of UNC-16 and UNC-116 disrupt localization of NEKL-3 in the axon. Moreover, genetic interactions suggest that NEKL-3 promotes axon termination by functioning with RPM-1, a ubiquitin ligase that regulates microtubule stability in the growth cone. These observations support a model where UNC-116 functions with UNC-16 to promote localization of NEKL-3 in the axon. NEKL-3, in turn, functions with the RPM-1 ubiquitin ligase to promote axon termination.


Asunto(s)
Proteínas de Caenorhabditis elegans , Animales , Proteínas de Caenorhabditis elegans/genética , Cinesinas/genética , Axones/fisiología , Caenorhabditis elegans , Ligasas , Ubiquitinas , Factores de Intercambio de Guanina Nucleótido/genética
10.
Development ; 150(15)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37526651

RESUMEN

The Netrin receptor Dcc and its Drosophila homolog Frazzled play crucial roles in diverse developmental process, including axon guidance. In Drosophila, Fra regulates midline axon guidance through a Netrin-dependent and a Netrin-independent pathway. However, what molecules regulate these distinct signaling pathways remain unclear. To identify Fra-interacting proteins, we performed affinity purification mass spectrometry to establish a neuronal-specific Fra interactome. In addition to known interactors of Fra and Dcc, including Netrin and Robo1, our screen identified 85 candidate proteins, the majority of which are conserved in humans. Many of these proteins are expressed in the ventral nerve cord, and gene ontology, pathway analysis and biochemical validation identified several previously unreported pathways, including the receptor tyrosine phosphatase Lar, subunits of the COP9 signalosome and Rho-5, a regulator of the metalloprotease Tace. Finally, genetic analysis demonstrates that these genes regulate axon guidance and may define as yet unknown signaling mechanisms for Fra and its vertebrate homolog Dcc. Thus, the Fra interactome represents a resource to guide future functional studies.


Asunto(s)
Proteínas de Drosophila , Receptores de Superficie Celular , Animales , Humanos , Receptores de Superficie Celular/metabolismo , Proteínas de Drosophila/metabolismo , Receptores de Netrina/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Axones/metabolismo , Orientación del Axón , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Drosophila/metabolismo , Netrinas/metabolismo , Netrina-1/metabolismo , Proteínas Tirosina Fosfatasas Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Similares a Receptores/metabolismo
11.
Development ; 150(19)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37747104

RESUMEN

During neural circuit formation, axons navigate from one intermediate target to the next, until they reach their final target. At intermediate targets, axons switch from being attracted to being repelled by changing the guidance receptors on the growth cone surface. For smooth navigation of the intermediate target and the continuation of their journey, the switch in receptor expression has to be orchestrated in a precisely timed manner. As an alternative to changes in expression, receptor function could be regulated by phosphorylation of receptors or components of signaling pathways. We identified Cables1 as a linker between floor-plate exit of commissural axons, regulated by Slit/Robo signaling, and the rostral turn of post-crossing axons, regulated by Wnt/Frizzled signaling. Cables1 localizes ß-catenin, phosphorylated at tyrosine 489 by Abelson kinase, to the distal axon, which in turn is necessary for the correct navigation of post-crossing commissural axons in the developing chicken spinal cord.


Asunto(s)
Orientación del Axón , Axones , Orientación del Axón/fisiología , Axones/metabolismo , Conos de Crecimiento , Médula Espinal/metabolismo , Vía de Señalización Wnt , Animales , Pollos
12.
Circ Res ; 134(7): 913-930, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38414132

RESUMEN

BACKGROUND: Recently shown to regulate cardiac development, the secreted axon guidance molecule SLIT3 maintains its expression in the postnatal heart. Despite its known expression in the cardiovascular system after birth, SLIT3's relevance to cardiovascular function in the postnatal state remains unknown. As such, the objectives of this study were to determine the postnatal myocardial sources of SLIT3 and to evaluate its functional role in regulating the cardiac response to pressure overload stress. METHODS: We performed in vitro studies on cardiomyocytes and myocardial tissue samples from patients and performed in vivo investigation with SLIT3 and ROBO1 (roundabout homolog 1) mutant mice undergoing transverse aortic constriction to establish the role of SLIT3-ROBO1 in adverse cardiac remodeling. RESULTS: We first found that SLIT3 transcription was increased in myocardial tissue obtained from patients with congenital heart defects that caused ventricular pressure overload. Immunostaining of hearts from WT (wild-type) and reporter mice revealed that SLIT3 is secreted by cardiac stromal cells, namely fibroblasts and vascular mural cells, within the heart. Conditioned media from cardiac fibroblasts and vascular mural cells both stimulated cardiomyocyte hypertrophy in vitro, an effect that was partially inhibited by an anti-SLIT3 antibody. Also, the N-terminal, but not the C-terminal, fragment of SLIT3 and the forced overexpression of SLIT3 stimulated cardiomyocyte hypertrophy and the transcription of hypertrophy-related genes. We next determined that ROBO1 was the most highly expressed roundabout receptor in cardiomyocytes and that ROBO1 mediated SLIT3's hypertrophic effects in vitro. In vivo, Tcf21+ fibroblast and Tbx18+ vascular mural cell-specific knockout of SLIT3 in mice resulted in decreased left ventricular hypertrophy and cardiac fibrosis after transverse aortic constriction. Furthermore, α-MHC+ cardiomyocyte-specific deletion of ROBO1 also preserved left ventricular function and abrogated hypertrophy, but not fibrosis, after transverse aortic constriction. CONCLUSIONS: Collectively, these results indicate a novel role for the SLIT3-ROBO1-signaling axis in regulating postnatal cardiomyocyte hypertrophy induced by pressure overload.


Asunto(s)
Miocitos Cardíacos , Proteínas del Tejido Nervioso , Animales , Humanos , Ratones , Cardiomegalia/genética , Cardiomegalia/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Fibrosis , Hipertrofia Ventricular Izquierda/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Remodelación Ventricular
13.
J Neurosci ; 44(11)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38479812

RESUMEN

The axon is a neuronal structure capable of processing, encoding, and transmitting information. This assessment contrasts with a limiting, but deeply rooted, perspective where the axon functions solely as a transmission cable of somatodendritic activity, sending signals in the form of stereotypical action potentials. This perspective arose, at least partially, because of the technical difficulties in probing axons: their extreme length-to-diameter ratio and intricate growth paths preclude the study of their dynamics through traditional techniques. Recent findings are challenging this view and revealing a much larger repertoire of axonal computations. Axons display complex signaling processes and structure-function relationships, which can be modulated via diverse activity-dependent mechanisms. Additionally, axons can exhibit patterns of activity that are dramatically different from those of their corresponding soma. Not surprisingly, many of these recent discoveries have been driven by novel technology developments, which allow for in vitro axon electrophysiology with unprecedented spatiotemporal resolution and signal-to-noise ratio. In this review, we outline the state-of-the-art in vitro toolset for axonal electrophysiology and summarize the recent discoveries in axon function it has enabled. We also review the increasing repertoire of microtechnologies for controlling axon guidance which, in combination with the available cutting-edge electrophysiology and imaging approaches, have the potential for more controlled and high-throughput in vitro studies. We anticipate that a larger adoption of these new technologies by the neuroscience community will drive a new era of experimental opportunities in the study of axon physiology and consequently, neuronal function.


Asunto(s)
Axones , Neuronas , Axones/fisiología , Potenciales de Acción/fisiología , Fenómenos Electrofisiológicos , Electrofisiología
14.
Semin Cell Dev Biol ; 140: 35-53, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35710759

RESUMEN

The establishment of neuronal connectivity relies on the microtubule (MT) cytoskeleton, which provides mechanical support, roads for axonal transport and mediates signalling events. Fine-tuned spatiotemporal regulation of MT functions by tubulin post-translational modifications and MT-associated proteins is critical for the coarse wiring and subsequent refinement of neuronal connectivity. The defective regulation of these processes causes a wide range of neurodevelopmental disorders associated with connectivity defects. This review focuses on recent studies unravelling how MT composition, post-translational modifications and associated proteins influence MT functions in axon guidance and/or pruning to build functional neuronal circuits. We here summarise experimental evidence supporting the key role of this network as a driving force for growth cone steering and branch-specific axon elimination. We further provide a global overview of the MT-interactors that tune developing axon behaviours, with a special emphasis on their emerging versatility in the regulation of MT dynamics/structure. Recent studies establishing the key and highly selective role of the tubulin code in the regulation of MT functions in axon pathfinding are also reported. Finally, our review highlights the emerging molecular links between these MT regulation processes and guidance signals that wire the nervous system.


Asunto(s)
Orientación del Axón , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Axones/metabolismo
15.
Semin Cell Dev Biol ; 140: 72-81, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35810068

RESUMEN

Neural networks are constructed through the development of robust axonal projections from individual neurons, which ultimately establish connections with their targets. In most animals, developing axons assemble in bundles to navigate collectively across various areas within the central nervous system or the periphery, before they separate from these bundles in order to find their specific targets. These processes, called fasciculation and defasciculation respectively, were thought for many years to be controlled chemically: while guidance cues may attract or repulse axonal growth cones, adhesion molecules expressed at the surface of axons mediate their fasciculation. Recently, an additional non-chemical parameter, the mechanical longitudinal tension of axons, turned out to play a role in axon fasciculation and defasciculation, through zippering and unzippering of axon shafts. In this review, we present an integrated view of the currently known chemical and mechanical control of axon:axon dynamic interactions. We highlight the facts that the decision to cross or not to cross another axon depends on a combination of chemical, mechanical and geometrical parameters, and that the decision to fasciculate/defasciculate through zippering/unzippering relies on the balance between axon:axon adhesion and their mechanical tension. Finally, we speculate about possible functional implications of zippering-dependent axon shaft fasciculation, in the collective migration of axons, and in the sorting of subpopulations of axons.


Asunto(s)
Fasciculación Axonal , Fasciculación , Animales , Axones/fisiología , Neuronas , Sistema Nervioso Central
16.
Trends Biochem Sci ; 45(1): 6-12, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31704057

RESUMEN

Netrin is a prototypical axon guidance cue. Structural studies have revealed how netrin interacts with the deleted in colorectal cancer (DCC) receptor, other receptors, and co-factors for signaling. Recently, genetic studies suggested that netrin is involved in neuronal haptotaxis, which requires a reversible adhesion process. Structural data indicate that netrin can also mediate trans-adhesion between apposing cells decorated with its receptors on the condition that the auxiliary guidance cue draxin is present. Here, we propose that netrin is involved in conditional adhesion, a reversible and localized process that can contribute to cell adhesion and migration. We suggest that netrin-mediated adhesion and signaling are linked, and that local environmental factors in the ventricular zone, the floor plate, or other tissues coordinate its function.


Asunto(s)
Receptor DCC/metabolismo , Netrinas/metabolismo , Transducción de Señal , Animales , Adhesión Celular , Receptor DCC/química , Humanos , Netrinas/química , Netrinas/genética
17.
Genesis ; 62(2): e23594, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38590146

RESUMEN

During development of the nervous system, neurons connect to one another in a precisely organized manner. Sensory systems provide a good example of this organization, whereby the composition of the outside world is represented in the brain by neuronal maps. Establishing correct patterns of neural circuitry is crucial, as inaccurate map formation can lead to severe disruptions in sensory processing. In rodents, olfactory stimuli modulate a wide variety of behaviors essential for survival. The formation of the olfactory glomerular map is dependent on molecular cues that guide olfactory receptor neuron axons to broad regions of the olfactory bulb and on cell adhesion molecules that promote axonal sorting into specific synaptic units in this structure. Here, we demonstrate that the cell adhesion molecule Amigo1 is expressed in a subpopulation of olfactory receptor neurons, and we investigate its role in the precise targeting of olfactory receptor neuron axons to the olfactory bulb using a genetic loss-of-function approach in mice. While ablation of Amigo1 did not lead to alterations in olfactory sensory neuron axonal targeting, our experiments revealed that the presence of a neomycin resistance selection cassette in the Amigo1 locus can lead to off-target effects that are not due to loss of Amigo1 expression, including unexpected altered gene expression in olfactory receptor neurons and reduced glomerular size in the ventral region of the olfactory bulb. Our results demonstrate that insertion of a neomycin selection cassette into the mouse genome can have specific deleterious effects on the development of the olfactory system and highlight the importance of removing antibiotic resistance cassettes from genetic loss-of-function mouse models when studying olfactory system development.


Asunto(s)
Neuronas Receptoras Olfatorias , Animales , Ratones , Neuronas Receptoras Olfatorias/metabolismo , Mucosa Olfatoria , Bulbo Olfatorio , Axones/metabolismo , Expresión Génica
18.
Genesis ; 62(1): e23586, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38593162

RESUMEN

Neural activity influences every aspect of nervous system development. In olfactory systems, sensory neurons expressing the same odorant receptor project their axons to stereotypically positioned glomeruli, forming a spatial map of odorant receptors in the olfactory bulb. As individual odors activate unique combinations of glomeruli, this map forms the basis for encoding olfactory information. The establishment of this stereotypical olfactory map requires coordinated regulation of axon guidance molecules instructed by spontaneous activity. Recent studies show that sensory experiences also modify innervation patterns in the olfactory bulb, especially during a critical period of the olfactory system development. This review examines evidence in the field to suggest potential mechanisms by which various aspects of neural activity regulate axon targeting. We also discuss the precise functions served by neural plasticity during the critical period.


Asunto(s)
Neuronas Receptoras Olfatorias , Receptores Odorantes , Animales , Neuronas Receptoras Olfatorias/metabolismo , Bulbo Olfatorio/fisiología , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Axones/metabolismo , Mamíferos
19.
J Neurosci ; 43(32): 5769-5778, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37344233

RESUMEN

Semaphorins and Plexins form ligand/receptor pairs that are crucial for a wide range of developmental processes from cell proliferation to axon guidance. The ability of semaphorins to act both as signaling receptors and ligands yields a multitude of responses. Here, we describe a novel role for Semaphorin-6D (Sema6D) and Plexin-A1 in the positioning and targeting of retinogeniculate axons. In Plexin-A1 or Sema6D mutant mice of either sex, the optic tract courses through, rather than along, the border of the dorsal lateral geniculate nucleus (dLGN), and some retinal axons ectopically arborize adjacent and lateral to the optic tract rather than defasciculating and entering the target region. We find that Sema6D and Plexin-A1 act together in a dose-dependent manner, as the number of the ectopic retinal projections is altered in proportion to the level of Sema6D or Plexin-A1 expression. Moreover, using retinal in utero electroporation of Sema6D or Plexin-A1 shRNA, we show that Sema6D and Plexin-A1 are both required in retinal ganglion cells for axon positioning and targeting. Strikingly, nonelectroporated retinal ganglion cell axons also mistarget in the tract region, indicating that Sema6D and Plexin-A1 can act non-cell-autonomously, potentially through axon-axon interactions. These data provide novel evidence for a dose-dependent and non-cell-autonomous role for Sema6D and Plexin-A1 in retinal axon organization in the optic tract and dLGN.SIGNIFICANCE STATEMENT Before innervating their central brain targets, retinal ganglion cell axons fasciculate in the optic tract and then branch and arborize in their target areas. Upon deletion of the guidance molecules Plexin-A1 or Semaphorin-6D, the optic tract becomes disorganized near and extends within the dorsal lateral geniculate nucleus. In addition, some retinal axons form ectopic aggregates within the defasciculated tract. Sema6D and Plexin-A1 act together as a receptor-ligand pair in a dose-dependent manner, and non-cell-autonomously, to produce this developmental aberration. Such a phenotype highlights an underappreciated role for axon guidance molecules in tract cohesion and appropriate defasciculation near, and arborization within, targets.


Asunto(s)
Células Ganglionares de la Retina , Semaforinas , Animales , Ratones , Axones/fisiología , Ligandos , Células Ganglionares de la Retina/metabolismo , Semaforinas/genética , Semaforinas/metabolismo
20.
J Neurosci ; 43(32): 5753-5768, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37344234

RESUMEN

Axon fasciculation is thought to be a critical step in neural circuit formation and function. Recent studies have revealed various molecular mechanisms that underlie axon fasciculation; however, the impacts of axon fasciculation, and its corollary, defasciculation, on neural circuit wiring remain unclear. Corticospinal (CS) neurons in the sensorimotor cortex project axons to the spinal cord to control skilled movements. In rodents, the axons remain tightly fasciculated in the brain and traverse the dorsal funiculus of the spinal cord. Here we show that plexinA1 (PlexA1) and plexinA3 (PlexA3) receptors are expressed by CS neurons, whereas their ligands, semaphorin-5A (Sema5A) and semaphorin-5B (Sema5B) are expressed in the medulla at the decussation site of CS axons to inhibit premature defasciculation of these axons. In the absence of Sema5A/5B-PlexA1/A3 signaling, some CS axons are prematurely defasciculated in the medulla of the brainstem, and those defasciculated CS axons aberrantly transverse in the spinal gray matter instead of the spinal dorsal funiculus. In the absence of Sema5A/Sema5B-PlexA1/A3 signaling, CS axons, which would normally innervate the lumbar spinal cord, are unbundled in the spinal gray matter, and prematurely innervate the cervical gray matter with reduced innervation of the lumbar gray matter. In both Sema5A/5B and PlexA1/A3 mutant mice (both sexes), stimulation of the hindlimb motor cortex aberrantly evokes robust forelimb muscle activation. Finally, Sema5A/5B and PlexA1/A3 mutant mice show deficits in skilled movements. These results suggest that proper fasciculation of CS axons is required for appropriate neural circuit wiring and ultimately affect the ability to perform skilled movements.SIGNIFICANCE STATEMENT Axon fasciculation is believed to be essential for neural circuit formation and function. However, whether and how defects in axon fasciculation affect the formation and function of neural circuits remain unclear. Here we examine whether the transmembrane proteins semaphorin-5A (Sema5A) and semaphorin-5B (Sema5B), and their receptors, plexinA1 (PlexA1) and plexinA3 (PlexA3) play roles in the development of corticospinal circuits. We find that Sema5A/Sema5B and PlexA1/A3 are required for proper axon fasciculation of corticospinal neurons. Furthermore, Sema5A/5B and PlexA1/A3 mutant mice show marked deficits in skilled motor behaviors. Therefore, these results strongly suggest that proper corticospinal axon fasciculation is required for the appropriate formation and functioning of corticospinal circuits in mice.


Asunto(s)
Semaforinas , Femenino , Masculino , Ratones , Animales , Semaforinas/metabolismo , Fasciculación Axonal , Neuronas/metabolismo , Axones/fisiología , Médula Espinal/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda