Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Infect Immun ; 92(8): e0052023, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39016553

RESUMEN

Bordetella pertussis is a Gram-negative bacterium that is the causative agent of the respiratory disease known as pertussis. Since the switch to the acellular vaccines of DTaP and Tap, pertussis cases in the US have risen and cyclically fallen. We have observed that mRNA pertussis vaccines are immunogenic and protective in mice. Here, we further evaluated the pertussis toxoid mRNA antigen and refined the formulation based on optimal pertussis toxin neutralization in vivo. We next evaluated the mRNA pertussis vaccine in Sprague-Dawley rats using an aerosol B. pertussis challenge model paired with whole-body plethysmography to monitor coughing and respiratory function. Female Sprague-Dawley rats were primed and boosted with either commercially available vaccines (DTaP or wP-DTP), an mRNA-DTP vaccine, or mock-vaccinated. The mRNA-DTP vaccine was immunogenic in rats and induced antigen-specific IgG antibodies comparable to DTaP. Rats were then aerosol challenged with a streptomycin-resistant emerging clinical isolate D420Sm1. Bacterial burden was assessed at days 1 and 9 post-challenge, and the mRNA vaccine reduced burden equal to both DTaP and wP-DTP. Whole-body plethysmography revealed that mRNA-DTP vaccinated rats were well protected against coughing which was comparable to the non-challenged group. These data suggest that an mRNA-DTP vaccine is immunogenic in rats and provides protection against aerosolized B. pertussis challenge in Sprague-Dawley rats.


Asunto(s)
Bordetella pertussis , Ratas Sprague-Dawley , Tos Ferina , Animales , Tos Ferina/prevención & control , Tos Ferina/inmunología , Femenino , Ratas , Bordetella pertussis/inmunología , Bordetella pertussis/genética , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Vacuna contra Difteria, Tétanos y Tos Ferina/inmunología , Vacuna contra Difteria, Tétanos y Tos Ferina/administración & dosificación , Inmunoglobulina G/sangre , Vacunas de ARNm , Inmunización
2.
Infect Immun ; 92(8): e0027024, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39023271

RESUMEN

Bordetella pertussis, the bacterium responsible for whooping cough, remains a significant public health challenge despite the existing licensed pertussis vaccines. Current acellular pertussis vaccines, though having favorable reactogenicity and efficacy profiles, involve complex and costly production processes. In addition, acellular vaccines have functional challenges such as short-lasting duration of immunity and limited antigen coverage. Filamentous hemagglutinin (FHA) is an adhesin of B. pertussis that is included in all multivalent pertussis vaccine formulations. Antibodies to FHA have been shown to prevent bacterial attachment to respiratory epithelial cells, and T cell responses to FHA facilitate cell-mediated immunity. In this study, FHA's mature C-terminal domain (MCD) was evaluated as a novel vaccine antigen. MCD was conjugated to virus-like particles via SpyTag-SpyCatcher technology. Prime-boost vaccine studies were performed in mice to characterize immunogenicity and protection against the intranasal B. pertussis challenge. MCD-SpyVLP was more immunogenic than SpyTag-MCD antigen alone, and in Tohama I strain challenge studies, improved protection against challenge was observed in the lungs at day 3 and in the trachea and nasal wash at day 7 post-challenge. Furthermore, a B. pertussis strain encoding genetically inactivated pertussis toxin was used to evaluate MCD-SpyVLP vaccine immunity. Mice vaccinated with MCD-SpyVLP had significantly lower respiratory bacterial burden at both days 3 and 7 post-challenge compared to mock-vaccinated animals. Overall, these data support the use of SpyTag-SpyCatcher VLPs as a platform for use in vaccine development against B. pertussis and other pathogens.


Asunto(s)
Adhesinas Bacterianas , Anticuerpos Antibacterianos , Bordetella pertussis , Vacuna contra la Tos Ferina , Vacunas de Partículas Similares a Virus , Tos Ferina , Animales , Bordetella pertussis/inmunología , Ratones , Tos Ferina/prevención & control , Tos Ferina/inmunología , Vacuna contra la Tos Ferina/inmunología , Vacuna contra la Tos Ferina/administración & dosificación , Anticuerpos Antibacterianos/inmunología , Adhesinas Bacterianas/inmunología , Adhesinas Bacterianas/genética , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Femenino , Ratones Endogámicos BALB C , Factores de Virulencia de Bordetella/inmunología , Infecciones del Sistema Respiratorio/prevención & control , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/microbiología
3.
Infect Immun ; 92(3): e0022323, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38323817

RESUMEN

The protection afforded by acellular pertussis vaccines wanes over time, and there is a need to develop improved vaccine formulations. Options to improve the vaccines involve the utilization of different adjuvants and administration via different routes. While intramuscular (IM) vaccination provides a robust systemic immune response, intranasal (IN) vaccination theoretically induces a localized immune response within the nasal cavity. In the case of a Bordetella pertussis infection, IN vaccination results in an immune response that is similar to natural infection, which provides the longest duration of protection. Current acellular formulations utilize an alum adjuvant, and antibody levels wane over time. To overcome the current limitations with the acellular vaccine, we incorporated a novel TLR4 agonist, BECC438b, into both IM and IN acellular formulations to determine its ability to protect against infection in a murine airway challenge model. Following immunization and challenge, we observed that DTaP + BECC438b reduced bacterial burden within the lung and trachea for both administration routes when compared with mock-vaccinated and challenged (MVC) mice. Interestingly, IN administration of DTaP + BECC438b induced a Th1-polarized immune response, while IM vaccination polarized toward a Th2 immune response. RNA sequencing analysis of the lung demonstrated that DTaP + BECC438b activates biological pathways similar to natural infection. Additionally, IN administration of DTaP + BECC438b activated the expression of genes involved in a multitude of pathways associated with the immune system. Overall, these data suggest that BECC438b adjuvant and the IN vaccination route can impact efficacy and responses of pertussis vaccines in pre-clinical mouse models.


Asunto(s)
Vacunas contra Difteria, Tétanos y Tos Ferina Acelular , Tos Ferina , Animales , Ratones , Tos Ferina/prevención & control , Receptor Toll-Like 4 , Vacuna contra la Tos Ferina , Vacuna contra Difteria, Tétanos y Tos Ferina , Bordetella pertussis , Adyuvantes Inmunológicos , Inmunidad , Anticuerpos Antibacterianos
4.
BMC Vet Res ; 20(1): 281, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951863

RESUMEN

The aim of this research was to estimate the immunopotentiation effect of brown algae Padina boergesenii water extract on Nile tilapia, Oreochromis niloticus through resistance to Pseudomonas putida infection. Gas Chromatography Mass Spectrometry was utilized to characterize the seaweed phytoconstituents. One hundred and twenty-six fish were divided in triplicates into two equal groups corresponding to two diet variants that used to feed Nile tilapia for 20 successive days: a basal (control), and P. boergesenii water extract supplemented group. Fish samples were collected at 10-days intervals throughout the experiment. Serum biochemical constituents, total antioxidant capacity (TAC), and some immune related genes expression of the spleen and intestinal tissues of experimental fish were studied, as well as histological examination of fish immune tissues. Moreover, following 20 days of feeding, the susceptibility of Nile tilapia to P. putida infection was evaluated to assess the protective effect of the used extract. The findings indicated that the studied parameters were significantly increased, and the best immune response profiles were observed in fish fed P. boergesenii water extract for 20 successive days. A bacterial challenge experiment using P. putida resulted in higher survival within the supplemented fish group than the control. Thus, the lowered post-challenge mortality of the fish may be related to the protection provided by the stimulation of the innate immune system, reduced oxidative stress by higher activity of TAC, and elevated levels of expression of iterleukin-1beta (IL-1ß), beta-defensin (ß-defensin), and natural killer-lysin (NKl). Moreover, the constituents of the extract used showed potential protective activity for histological features of the supplemented fish group when compared to the control. Collectively, this study presents a great insight on the protective role of P. boergesenii water extract as an additive in Nile tilapia feed which suggests its potential for improving the immune response against P. putida infection.


Asunto(s)
Alimentación Animal , Cíclidos , Suplementos Dietéticos , Enfermedades de los Peces , Infecciones por Pseudomonas , Pseudomonas putida , Animales , Pseudomonas putida/efectos de los fármacos , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , Alimentación Animal/análisis , Infecciones por Pseudomonas/veterinaria , Infecciones por Pseudomonas/tratamiento farmacológico , Phaeophyceae/química , Dieta/veterinaria , Resistencia a la Enfermedad/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/administración & dosificación
5.
Aquat Toxicol ; 272: 106981, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38843740

RESUMEN

The increasing release of engineered nanoparticles (ENPs) in aquatic ecosystems stresses the need for stringent investigations of nanoparticle mixture toxicity towards aquatic organisms. Here, the individual and combined immunotoxicity of two of the most consumed ENPs, the ZnO and the TiO2 ones, was investigated on rainbow trout juveniles (Oncorhynchus mykiss). Fish were exposed to environmentally realistic concentrations (21 and 210 µg L-1 for the ZnO and 210 µg L-1 for the TiO2) for 28 days, and then challenged with the pathogenic bacterium, Aeromonas salmonicida achromogenes. Antioxidant and innate immune markers were assessed before and after the bacterial infection. None of the experimental conditions affected the basal activity of the studied innate immune markers and the redox balance. However, following the bacterial infection, the expression of genes coding for pro and anti-inflammatory cytokines (il1ß and il10), as well as innate immune compounds (mpo) were significantly reduced in fish exposed to the mixture. Conversely, exposure to ZnO NPs alone seemed to stimulate the immune response by enhancing the expression of the IgM and c3 genes for instance. Overall, our results suggest that even though the tested ENPs at their environmental concentration do not strongly affect basal immune functions, their mixture may alter the development of the immune response when the organism is exposed to a pathogen by interfering with the inflammatory response.


Asunto(s)
Aeromonas salmonicida , Infecciones por Bacterias Gramnegativas , Oncorhynchus mykiss , Titanio , Contaminantes Químicos del Agua , Óxido de Zinc , Animales , Aeromonas salmonicida/efectos de los fármacos , Óxido de Zinc/toxicidad , Oncorhynchus mykiss/inmunología , Oncorhynchus mykiss/microbiología , Titanio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/inmunología , Inmunidad Innata/efectos de los fármacos , Nanopartículas/toxicidad , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Nanopartículas del Metal/toxicidad , Citocinas/genética , Citocinas/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-38489116

RESUMEN

Fish protein hydrolysate (FPH) has shown immense potential as a dietary protein supplement and immunostimulant in aquaculture, especially in Nile tilapia production. Four isoproteic diets (30% crude protein) were prepared by including FPH at varying percentages (0%, 0.5%, 1%, and 2%). Nile tilapia fed with FPH diets for 90 days, and their growth performance, feed utilization, blood biochemistry, liver and gut morphology, and resistance against Streptococcus iniae were investigated. The findings revealed that diets physical attributes such as pellet durability index and water stability were remarkably (p < 0.05) varied between experimental diet groups. Furthermore, the test diets were more palatable when FPH was included at 1% and 2%. Fish that were fed with a 2% FPH-treated diet had significantly (p < 0.05) greater growth indices than other treatments. Additionally, their feed utilization was significantly (p < 0.05) improved. The experimental diets and intestinal total bacteria count (TBC) exhibited a rising trend with FPH levels, where the 2% FPH-treated diet recorded the highest TBC. Neutrophil (109/L), lymphocyte (109/L), eosinophil (109/L), and red blood cell(1012/L) counts were significantly (p < 0.05) higher in the 2% FPH-treated group, while the white blood cell (109/L), and basophil (109/L) counts were not influenced by the FPH inclusion. Moreover, the FPH-treated groups displayed lower creatinine, bilirubin, and urea levels than the control. The histological examination demonstrated that themid-intestine of 2% FPH-fed Nile tilapia had an unbroken epithelial wall, more villi with frequent distribution of goblet cells, wider tunica muscularis, and stronger stratum compactum bonding than other treatments. Additionally, this group exhibited more nuclei and erythrocytes and less vacuolar cytoplasm in liver than their counterparts. Nile tilapia that were given a diet containing 2% FPH had significantly (p < 0.05) higher resistance (83.33%) to S. iniae during the bacterial challenge test. A significant (p < 0.05) enhancement in farm economic efficiency was observed in the higher inclusion of FPH in diets. In summary, 2% FPH supplementation in Nile tilapia diets improved their growth performance, feed utilization, health status, disease resistance, and farm economic efficiency.

7.
Virology ; 597: 110153, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38941745

RESUMEN

Gammaherpesviruses are ubiquitous, lifelong pathogens associated with multiple cancers that infect over 95% of the adult population. Increases in viral reactivation, due to stress and other unknown factors impacting the immune response, frequently precedes lymphomagenesis. One potential stressor that could promote viral reactivation and increase viral latency would be the myriad of infections from bacterial and viral pathogens that we experience throughout our lives. Using murine gammaherpesvirus 68 (MHV68), a mouse model of gammaherpesvirus infection, we examined the impact of bacterial challenge on gammaherpesvirus infection. We challenged MHV68 infected mice during the establishment of latency with nontypeable Haemophilus influenzae (NTHi) to determine the impact of bacterial infection on viral reactivation and latency. Mice infected with MHV68 and then challenged with NTHi, saw increases in viral reactivation and viral latency. These data support the hypothesis that bacterial challenge can promote gammaherpesvirus reactivation and latency establishment, with possible consequences for viral lymphomagenesis.


Asunto(s)
Infecciones por Haemophilus , Haemophilus influenzae , Infecciones por Herpesviridae , Activación Viral , Latencia del Virus , Animales , Haemophilus influenzae/fisiología , Ratones , Infecciones por Herpesviridae/virología , Infecciones por Haemophilus/microbiología , Infecciones por Haemophilus/virología , Gammaherpesvirinae/fisiología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Rhadinovirus/fisiología , Femenino
8.
Sci Rep ; 14(1): 15442, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965312

RESUMEN

The human intestinal tract is colonized with microorganisms, which present a diverse array of immunological challenges. A number of antimicrobial mechanisms have evolved to cope with these challenges. A key defense mechanism is the expression of inducible antimicrobial peptides (AMPs), such as beta-defensins, which rapidly inactivate microorganisms. We currently have a limited knowledge of mechanisms regulating the inducible expression of AMP genes, especially factors from the host required in these regulatory mechanisms. To identify the host factors required for expression of the beta-defensin-2 gene (HBD2) in intestinal epithelial cells upon a bacterial challenge, we performed a RNAi screen using a siRNA library spanning the whole human genome. The screening was performed in duplicate to select the strongest 79 and 110 hit genes whose silencing promoted or inhibited HBD2 expression, respectively. A set of 57 hits selected among the two groups of genes was subjected to a counter-screening and a subset was subsequently validated for its impact onto HBD2 expression. Among the 57 confirmed hits, we brought out the TLR5-MYD88 signaling pathway, but above all new signaling proteins, epigenetic regulators and transcription factors so far unrevealed in the HBD2 regulatory circuits, like the GATA6 transcription factor involved in inflammatory bowel diseases. This study represents a significant step toward unveiling the key molecular requirements to promote AMP expression in human intestinal epithelial cells, and revealing new potential targets for the development of an innovative therapeutic strategy aiming at stimulating the host AMP expression, at the era of antimicrobial resistance.


Asunto(s)
Células Epiteliales , Mucosa Intestinal , beta-Defensinas , Humanos , beta-Defensinas/metabolismo , beta-Defensinas/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Transducción de Señal , Regulación de la Expresión Génica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Interferencia de ARN
9.
Acta amaz ; 46(1): 99-106, jan./mar. 2016. tab
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1455279

RESUMEN

In fish farmings, diseases can be reduced by using immunostimulants. The aim of this study was to evaluate the immunostimulant potential of Mentha piperita in tambaqui fed with 0, 0.5, 1.0 and 1.5% of oil per kg of commercial fish feed. The fish were inoculated with Aeromonas hydrophila to challenge them. Hematological and biochemical parameters were determined after 30 days of feeding and seven days after the challenge. There was no mortality and M. piperita oil did not influence fish production parameters. However, blood hemoglobin concentration (Hb) increased in the fish fed with 0.5 and 1.5% of oil per kg of diet; albumin increased in those fed with 1.0%; cholesterol increased in all groups with oil; and triglycerides increased in those fed with 0.5%. After the bacterial challenge, the fish showed decreases in Hb when fed with diet enriched with 1.5% oil per kg of diet, in mean corpuscular volume with 1.0% and in mean corpuscular hemoglobin concentration with 0 and 1.5%. Protein levels increased in groups with 0 and 1.5% of oil and albumin when fed with 0 and 1.0%; cholesterol levels increased in the control group; and high levels of triglycerides were observed in the groups with 0, 0.5 and 1.5%. Thus, M. piperita essential oil promoted hematological alterations in tambaqui and can be recommended in diets containing up to 1.0% per kg, because of the minimal physiological modifications caused. However, additional studies are necessary to obtain more information regarding to the physiological effects of this immunostimulant.


Em pisciculturas, doenças podem ser minimizadas com o uso de imunoestimulantes. O objetivo deste estudo foi avaliar o potencial imunoestimulante do óleo essencial de Mentha piperita na dieta de tambaqui com dietas contendo 0; 0,5; 1,0; 1,5% de inclusão do óleo por kg de ração comercial para peixes. Os tambaquis foram desafiados com a bactéria Aeromonas hydrophila. Hematologia e bioquímica dos tambaquis foram determinados após 30 dias de alimentação e sete dias do desafio. Não houve mortalidade dos peixes durante o experimento, sendo que o óleo não influenciou os parâmetros produtivos dos peixes. Entretanto, a concentração de hemoglobina (Hb) aumentou em peixes alimentados com 0,5 e 1,5% de óleo por kg de dieta; a albumina aumentou em 1,0%; o colesterol aumentou em todos os grupos com óleo; e triglicérides em 0,5% por kg de dieta. Após desafio bacteriano ocorreram diminuições da Hb nos peixes alimentados com 1,5% de óleo; do volume corpuscular médio com 1,0%; e da concentração de hemoglobina corpuscular média com 0 e 1,5%. Níveis aumentados de proteína nos grupos 0 e 1,5%; da albumina em 0 e 1,0%; do colesterol no controle; e dos triglicérides em 0, 0,5 e 1,5% de óleo na dieta. Assim o óleo essencial de M. piperita na dieta promoveu alterações hematológicas e pode ser recomendado seu uso em inclusões de até 1,0% por kg da dieta de tambaqui, devido às mínimas alterações fisiológicas causadas. Entretanto, estudos adicionais são necessários, de modo a obter informações sobre os efeitos fisiológicos deste imunoestimulante.


Asunto(s)
Animales , Aeromonas hydrophila , Characidae/sangre , Dieta/veterinaria , Mentha piperita/química , Aceites Volátiles , Productos Biológicos , Sistema Inmunológico , Suplementos Dietéticos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda