Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Cell ; 184(9): 2302-2315.e12, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33838112

RESUMEN

By following up the gut microbiome, 51 human phenotypes and plasma levels of 1,183 metabolites in 338 individuals after 4 years, we characterize microbial stability and variation in relation to host physiology. Using these individual-specific and temporally stable microbial profiles, including bacterial SNPs and structural variations, we develop a microbial fingerprinting method that shows up to 85% accuracy in classifying metagenomic samples taken 4 years apart. Application of our fingerprinting method to the independent HMP cohort results in 95% accuracy for samples taken 1 year apart. We further observe temporal changes in the abundance of multiple bacterial species, metabolic pathways, and structural variation, as well as strain replacement. We report 190 longitudinal microbial associations with host phenotypes and 519 associations with plasma metabolites. These associations are enriched for cardiometabolic traits, vitamin B, and uremic toxins. Finally, mediation analysis suggests that the gut microbiome may influence cardiometabolic health through its metabolites.


Asunto(s)
Bacterias/genética , Proteínas Bacterianas/metabolismo , Microbioma Gastrointestinal , Metaboloma , Metagenoma , Microbiota , Adulto , Anciano , Anciano de 80 o más Años , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Proteínas Bacterianas/genética , Farmacorresistencia Microbiana , Heces/microbiología , Femenino , Inestabilidad Genómica , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Adulto Joven
2.
Cell ; 172(5): 1038-1049.e10, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29456081

RESUMEN

ß-lactam antibiotics inhibit bacterial cell wall assembly and, under classical microbiological culture conditions that are generally hypotonic, induce explosive cell death. Here, we show that under more physiological, osmoprotective conditions, for various Gram-positive bacteria, lysis is delayed or abolished, apparently because inhibition of class A penicillin-binding protein leads to a block in autolytic activity. Although these cells still then die by other mechanisms, exogenous lytic enzymes, such as lysozyme, can rescue viability by enabling the escape of cell wall-deficient "L-form" bacteria. This protective L-form conversion was also observed in macrophages and in an animal model, presumably due to the production of host lytic activities, including lysozyme. Our results demonstrate the potential for L-form switching in the host environment and highlight the unexpected effects of innate immune effectors, such as lysozyme, on antibiotic activity. Unlike previously described dormant persisters, L-forms can continue to proliferate in the presence of antibiotic.


Asunto(s)
Antibacterianos/farmacología , Formas L/efectos de los fármacos , Muramidasa/metabolismo , beta-Lactamas/farmacología , Animales , Bacillus subtilis/efectos de los fármacos , Bacteriólisis/efectos de los fármacos , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Hidrolasas/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Viabilidad Microbiana/efectos de los fármacos , Osmorregulación/efectos de los fármacos , Penicilina G/farmacología , Proteínas de Unión a las Penicilinas , Peptidoglicano/metabolismo , Profagos/efectos de los fármacos , Células RAW 264.7
3.
Proc Natl Acad Sci U S A ; 119(45): e2105458119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322728

RESUMEN

Despite dramatic advances in genomics, connecting genotypes to phenotypes is still challenging. Sexual genetics combined with linkage analysis is a powerful solution to this problem but generally unavailable in bacteria. We build upon a strong negative selection system to invent mass allelic exchange (MAE), which enables hybridization of arbitrary (including pathogenic) strains of Escherichia coli. MAE reimplements the natural phenomenon of random cross-overs, enabling classical linkage analysis. We demonstrate the utility of MAE with virulence-related gain-of-function screens, discovering that transfer of a single operon from a uropathogenic strain is sufficient for enabling a commensal E. coli to form large intracellular bacterial collections within bladder epithelial cells. MAE thus enables assaying natural allelic variation in E. coli (and potentially other bacteria), complementing existing loss-of-function genomic techniques.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Escherichia coli Uropatógena/genética , Infecciones Urinarias/microbiología , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Virulencia/genética , Factores de Virulencia/genética
4.
Clin Microbiol Rev ; 36(1): e0006019, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36475874

RESUMEN

Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that can cause severe invasive infections upon ingestion with contaminated food. Clinically, listerial disease, or listeriosis, most often presents as bacteremia, meningitis or meningoencephalitis, and pregnancy-associated infections manifesting as miscarriage or neonatal sepsis. Invasive listeriosis is life-threatening and a main cause of foodborne illness leading to hospital admissions in Western countries. Sources of contamination can be identified through international surveillance systems for foodborne bacteria and strains' genetic data sharing. Large-scale whole genome studies have increased our knowledge on the diversity and evolution of L. monocytogenes, while recent pathophysiological investigations have improved our mechanistic understanding of listeriosis. In this article, we present an overview of human listeriosis with particular focus on relevant features of the causative bacterium, epidemiology, risk groups, pathogenesis, clinical manifestations, and treatment and prevention.


Asunto(s)
Bacteriemia , Listeria monocytogenes , Listeriosis , Embarazo , Femenino , Recién Nacido , Humanos , Listeriosis/epidemiología , Listeriosis/microbiología , Listeriosis/prevención & control , Listeria monocytogenes/genética , Factores de Riesgo , Microbiología de Alimentos
5.
J Biol Chem ; 299(5): 103003, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36775125

RESUMEN

DNA gyrase is an essential nucleoprotein motor present in all bacteria and is a major target for antibiotic treatment of Mycobacterium tuberculosis (MTB) infection. Gyrase hydrolyzes ATP to add negative supercoils to DNA using a strand passage mechanism that has been investigated using biophysical and biochemical approaches. To analyze the dynamics of substeps leading to strand passage, single-molecule rotor bead tracking (RBT) has been used previously to follow real-time supercoiling and conformational transitions in Escherichia coli (EC) gyrase. However, RBT has not yet been applied to gyrase from other pathogenically relevant bacteria, and it is not known whether substeps are conserved across evolutionarily distant species. Here, we compare gyrase supercoiling dynamics between two evolutionarily distant bacterial species, MTB and EC. We used RBT to measure supercoiling rates, processivities, and the geometries and transition kinetics of conformational states of purified gyrase proteins in complex with DNA. Our results show that E. coli and MTB gyrases are both processive, with the MTB enzyme displaying velocities ∼5.5× slower than the EC enzyme. Compared with EC gyrase, MTB gyrase also more readily populates an intermediate state with DNA chirally wrapped around the enzyme, in both the presence and absence of ATP. Our substep measurements reveal common features in conformational states of EC and MTB gyrases interacting with DNA but also suggest differences in populations and transition rates that may reflect distinct cellular needs between these two species.


Asunto(s)
Girasa de ADN , Escherichia coli , Mycobacterium tuberculosis , Adenosina Trifosfato/metabolismo , ADN , Girasa de ADN/química , Girasa de ADN/metabolismo , ADN Superhelicoidal , Escherichia coli/enzimología , Escherichia coli/metabolismo , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/metabolismo , Simulación de Dinámica Molecular
6.
J Biol Chem ; 299(7): 104944, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37343703

RESUMEN

The Gram-positive bacterium Bacillus subtilis can utilize several proteinogenic and non-proteinogenic amino acids as sources of carbon, nitrogen, and energy. The utilization of the amino acids arginine, citrulline, and ornithine is catalyzed by enzymes encoded in the rocABC and rocDEF operons and by the rocG gene. The expression of these genes is controlled by the alternative sigma factor SigL. RNA polymerase associated with this sigma factor depends on ATP-hydrolyzing transcription activators to initiate transcription. The RocR protein acts as a transcription activator for the roc genes. However, the details of amino acid metabolism via this pathway are unknown. Here, we investigated the contributions of all enzymes of the Roc pathway to the degradation of arginine, citrulline, and ornithine. We identified the previously uncharacterized RocB protein as responsible for the conversion of citrulline to ornithine. In vitro assays with the purified enzyme suggest that RocB acts as a manganese-dependent N-carbamoyl-L-ornithine hydrolase that cleaves citrulline to form ornithine and carbamate. Moreover, the molecular effector that triggers transcription activation by RocR has not been unequivocally identified. Using a combination of transcription reporter assays and biochemical experiments, we demonstrate that ornithine is the molecular inducer of RocR activity. Taken together, our work suggests that binding of ATP to RocR triggers its hexamerization, and binding of ornithine then allows ATP hydrolysis and activation of roc gene transcription. Thus, ornithine is the central molecule of the roc degradative pathway as it is the common intermediate of arginine and citrulline degradation and the molecular effector of RocR.


Asunto(s)
Arginina , Bacillus subtilis , Ornitina , Factor sigma , Adenosina Trifosfato/metabolismo , Arginina/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citrulina/metabolismo , Ornitina/metabolismo , Factor sigma/metabolismo , Factores de Transcripción/metabolismo
7.
Mol Microbiol ; 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37712143

RESUMEN

Drugs intended to target mammalian cells can have broad off-target effects on the human gut microbiota with potential downstream consequences for drug efficacy and side effect profiles. Yet, despite a rich literature on antibiotic resistance, we still know very little about the mechanisms through which commensal bacteria evade non-antibiotic drugs. Here, we focus on statins, one of the most prescribed drug types in the world and an essential tool in the prevention and treatment of high circulating cholesterol levels. Prior work in humans, mice, and cell culture support an off-target effect of statins on human gut bacteria; however, the genetic determinants of statin sensitivity remain unknown. We confirmed that simvastatin inhibits the growth of diverse human gut bacterial strains grown in communities and in pure cultures. Drug sensitivity varied between phyla and was dose-dependent. We selected two representative simvastatin-sensitive species for more in-depth analysis: Eggerthella lenta (phylum: Actinobacteriota) and Bacteroides thetaiotaomicron (phylum: Bacteroidota). Transcriptomics revealed that both bacterial species upregulate genes in response to simvastatin that alter the cell membrane, including fatty acid biogenesis (E. lenta) and drug efflux systems (B. thetaiotaomicron). Transposon mutagenesis identified a key efflux system in B. thetaiotaomicron that enables growth in the presence of statins. Taken together, these results emphasize the importance of the bacterial cell membrane in countering the off-target effects of host-targeted drugs. Continued mechanistic dissection of the various mechanisms through which the human gut microbiota evades drugs will be essential to understand and predict the effects of drug administration in human cohorts and the potential downstream consequences for health and disease.

8.
J Biol Chem ; 298(4): 101752, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35189142

RESUMEN

RNA polymerase (RNAP) binding protein A (RbpA) is essential for mycobacterial viability and regulates transcription initiation by increasing the stability of the RNAP-promoter open complex (RPo). RbpA consists of four domains: an N-terminal tail (NTT), a core domain (CD), a basic linker, and a sigma interaction domain. We have previously shown that truncation of the RbpA NTT and CD increases RPo stabilization by RbpA, implying that these domains inhibit this activity of RbpA. Previously published structural studies showed that the NTT and CD are positioned near multiple RNAP-σA holoenzyme functional domains and predict that the RbpA NTT contributes specific amino acids to the binding site of the antibiotic fidaxomicin (Fdx), which inhibits the formation of the RPo complex. Furthermore, deletion of the NTT results in decreased Mycobacterium smegmatis sensitivity to Fdx, but whether this is caused by a loss in Fdx binding is unknown. We generated a panel of rbpA mutants and found that the RbpA NTT residues predicted to directly interact with Fdx are partially responsible for RbpA-dependent Fdx activity in vitro, while multiple additional RbpA domains contribute to Fdx activity in vivo. Specifically, our results suggest that the RPo-stabilizing activity of RbpA decreases Fdx activity in vivo. In support of the association between RPo stability and Fdx activity, we find that another factor that promotes RPo stability in bacteria, CarD, also impacts to Fdx sensitivity. Our findings highlight how RbpA and other factors may influence RNAP dynamics to affect Fdx sensitivity.


Asunto(s)
Fidaxomicina , Mycobacterium smegmatis , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Fidaxomicina/farmacología , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/genética , Regiones Promotoras Genéticas , Factor sigma/metabolismo
9.
J Biol Chem ; 298(2): 101560, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34990713

RESUMEN

Pseudomonas aeruginosa is an opportunistic human pathogen and a leading cause of chronic infection in the lungs of individuals with cystic fibrosis. After colonization, P. aeruginosa often undergoes a phenotypic conversion to mucoidy, characterized by overproduction of the alginate exopolysaccharide. This conversion is correlated with poorer patient prognoses. The majority of genes required for alginate synthesis, including the alginate lyase, algL, are located in a single operon. Previous investigations of AlgL have resulted in several divergent hypotheses regarding the protein's role in alginate production. To address these discrepancies, we determined the structure of AlgL and, using multiple sequence alignments, identified key active site residues involved in alginate binding and catalysis. In vitro enzymatic analysis of active site mutants highlights R249 and Y256 as key residues required for alginate lyase activity. In a genetically engineered P. aeruginosa strain where alginate biosynthesis is under arabinose control, we found that AlgL is required for cell viability and maintaining membrane integrity during alginate production. We demonstrate that AlgL functions as a homeostasis enzyme to clear the periplasmic space of accumulated polymer. Constitutive expression of the AlgU/T sigma factor mitigates the effects of an algL deletion during alginate production, suggesting that an AlgU/T-regulated protein or proteins can compensate for an algL deletion. Together, our study demonstrates the role of AlgL in alginate biosynthesis, explains the discrepancies observed previously across other P. aeruginosa ΔalgL genetic backgrounds, and clarifies the existing divergent data regarding the function of AlgL as an alginate degrading enzyme.


Asunto(s)
Alginatos , Periplasma , Polisacárido Liasas , Pseudomonas aeruginosa , Alginatos/química , Alginatos/metabolismo , Proteínas Bacterianas/metabolismo , Ácido Glucurónico/química , Ácido Glucurónico/genética , Ácidos Hexurónicos/química , Homeostasis , Humanos , Periplasma/enzimología , Periplasma/metabolismo , Polímeros/metabolismo , Polisacárido Liasas/metabolismo , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/metabolismo
10.
J Biol Chem ; 298(5): 101859, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35337802

RESUMEN

Oxidation of malate to oxaloacetate, catalyzed by either malate dehydrogenase (Mdh) or malate quinone oxidoreductase (Mqo), is a critical step of the tricarboxylic acid cycle. Both Mqo and Mdh are found in most bacterial genomes, but the level of functional redundancy between these enzymes remains unclear. A bioinformatic survey revealed that Mqo was not as widespread as Mdh in bacteria but that it was highly conserved in mycobacteria. We therefore used mycobacteria as a model genera to study the functional role(s) of Mqo and its redundancy with Mdh. We deleted mqo from the environmental saprophyte Mycobacterium smegmatis, which lacks Mdh, and found that Mqo was essential for growth on nonfermentable carbon sources. On fermentable carbon sources, the Δmqo mutant exhibited delayed growth and lowered oxygen consumption and secreted malate and fumarate as terminal end products. Furthermore, heterologous expression of Mdh from the pathogenic species Mycobacterium tuberculosis shortened the delayed growth on fermentable carbon sources and restored growth on nonfermentable carbon sources at a reduced growth rate. In M. tuberculosis, CRISPR interference of either mdh or mqo expression resulted in a slower growth rate compared to controls, which was further inhibited when both genes were knocked down simultaneously. These data reveal that exergonic Mqo activity powers mycobacterial growth under nonenergy limiting conditions and that endergonic Mdh activity complements Mqo activity, but at an energetic cost for mycobacterial growth. We propose Mdh is maintained in slow-growing mycobacterial pathogens for use under conditions such as hypoxia that require reductive tricarboxylic acid cycle activity.


Asunto(s)
Malato Deshidrogenasa , Malatos , Oxidorreductasas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Ciclo del Ácido Cítrico , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Malatos/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Ácido Oxaloacético/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo
11.
Anaerobe ; 82: 102760, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37451427

RESUMEN

OBJECTIVES: Many bacterial species naturally take up DNA from their surroundings and recombine it into their chromosome through homologous gene transfer (HGT) to aid in survival and gain advantageous functions. Herein we present the first characterization of Type IV pili facilitated natural competence in Fusobacterium nucleatum, which is a Gram-negative, anaerobic bacterium that participates in a range of infections and diseases including periodontitis, preterm birth, and cancer. METHODS: Here we used bioinformatics on multiple Fusobacterium species, as well as molecular genetics to characterize natural competence in strain F. nucleatum subsp. nucleatum ATCC 23726. RESULTS: We bioinformatically identified components of the Type IV conjugal pilus machinery and show this is a conserved system within the Fusobacterium genus. We next validate Type IV pili in natural competence in F. nucleatum ATCC 23726 and show that gene deletions in key components of pilus deployment (pilQ) and cytoplasmic DNA import (comEC) abolish DNA uptake and chromosomal incorporation. We next show that natural competence may require native F. nucleatum DNA methylation to bypass restriction modification systems and allow subsequent genomic homologous recombination. CONCLUSIONS: In summary, this proof of principle study provides the first characterization of natural competence in Fusobacterium nucleatum and highlights the potential to exploit this DNA import mechanism as a genetic tool to characterize virulence mechanisms of an opportunistic oral pathogen.


Asunto(s)
Infecciones por Fusobacterium , Nacimiento Prematuro , Recién Nacido , Humanos , Femenino , Fusobacterium nucleatum/metabolismo , Composición de Base , Análisis de Secuencia de ADN , Filogenia , ARN Ribosómico 16S , Fusobacterium , ADN Bacteriano/genética , Infecciones por Fusobacterium/microbiología
12.
J Bacteriol ; 204(12): e0027922, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36326270

RESUMEN

Bacterial restriction-modification (R-M) systems are a first-line immune defense against foreign DNA from viruses and other bacteria. While R-M systems are critical in maintaining genome integrity, R-M nucleases unfortunately present significant barriers to targeted genetic modification. Bacteria of the genus Fusobacterium are oral, Gram-negative, anaerobic, opportunistic pathogens that are implicated in the progression and severity of multiple cancers and tissue infections, yet our understanding of their direct roles in disease have been severely hindered by their genetic recalcitrance. Here, we demonstrate a path to overcome these barriers in Fusobacterium by using native DNA methylation as a host mimicry strategy to bypass R-M system cleavage of transformed plasmid DNA. We report the identification, characterization, and successful use of Fusobacterium nucleatum type II and III DNA methyltransferase (MTase) enzymes to produce a multifold increase in gene knockout efficiency in the strain Fusobacterium nucleatum subsp. nucleatum 23726, as well as the first system for efficient gene knockouts and complementations in F. nucleatum subsp. nucleatum 25586. We show plasmid protection can be accomplished in vitro with purified enzymes, as well as in vivo in an Escherichia coli host that constitutively expresses F. nucleatum subsp. nucleatum MTase enzymes. In summary, this proof-of-concept study characterizes specific MTases that are critical for bypassing R-M systems and has enhanced our understanding of enzyme combinations that could be used to genetically modify clinical isolates of Fusobacterium that have thus far been inaccessible to molecular characterization. IMPORTANCE Fusobacterium nucleatum is an oral opportunistic pathogen associated with diseases that include cancer and preterm birth. Our understanding of how this bacterium modulates human disease has been hindered by a lack of genetic systems. Here, we show that F. nucleatum DNA methyltransferase-modified plasmid DNA overcomes the transformation barrier and has allowed the development of a genetic system in a previously inaccessible strain. We present a strategy that could potentially be expanded to enable the genetic modification of highly recalcitrant strains, thereby fostering investigational studies to uncover novel host-pathogen interactions in Fusobacterium.


Asunto(s)
Enzimas de Restricción-Modificación del ADN , Fusobacterium nucleatum , Metiltransferasas , Metilación de ADN , Enzimas de Restricción-Modificación del ADN/genética , Fusobacterium nucleatum/genética , Metiltransferasas/genética
13.
J Biol Chem ; 296: 100451, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33626388

RESUMEN

Deinococcus radiodurans harbors a multipartite ploid genome system consisting of two chromosomes and two plasmids present in multiple copies. How these discrete genome elements are maintained and inherited is not well understood. PprA, a pleiotropic protein involved in radioresistance, has been characterized for its roles in DNA repair, genome segregation, and cell division in this bacterium. Here, we show that PprA regulates ploidy of chromosome I and II and inhibits the activity of drDnaA, the initiator protein in D. radiodurans. We found that pprA deletion resulted in an increased genomic content and ploidy of both the chromosomal elements. Expression of PprA in trans rescued the phenotypes of the pprA mutant. To understand the molecular mechanism underlying these phenotypes, we characterized drDnaA and drDnaB. As expected for an initiator protein, recombinant drDnaA showed sequence-specific interactions with the putative oriC sequence in chromosome I (oriCI). Both drDnaA and drDnaB showed ATPase activity, also typical of initiator proteins, but only drDnaB exhibited 5'→3' dsDNA helicase activity in vitro. drDnaA and drDnaB showed homotypic and heterotypic interactions with each other, which were perturbed by PprA. Interestingly, PprA has inhibited the ATPase activity of drDnaA but showed no effect on the activity of drDnaB. Regulation of chromosome copy number and inhibition of the initiator protein functions by PprA strongly suggest that it plays a role as a checkpoint regulator of the DNA replication initiation in D. radiodurans perhaps through its interaction with the replication initiation machinery.


Asunto(s)
Deinococcus/genética , Deinococcus/metabolismo , Proteínas Bacterianas/metabolismo , División Celular/genética , Segregación Cromosómica , Girasa de ADN/metabolismo , Reparación del ADN/genética , Replicación del ADN/genética , Genoma Bacteriano/genética , Plásmidos/genética , Ploidias , Dominios y Motivos de Interacción de Proteínas , Tolerancia a Radiación
14.
J Biol Chem ; 297(4): 101165, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34487761

RESUMEN

The bacterial insertion sequence (IS) IS26 mobilizes and disseminates antibiotic resistance genes. It differs from bacterial IS that have been studied to date as it exclusively forms cointegrates via either a copy-in (replicative) or a recently discovered targeted conservative mode. To investigate how the Tnp26 transposase recognizes the 14-bp terminal inverted repeats (TIRs) that bound the IS, amino acids in two domains in the N-terminal (amino acids M1-P56) region were replaced. These changes substantially reduced cointegration in both modes. Tnp26 was purified as a maltose-binding fusion protein and shown to bind specifically to dsDNA fragments that included an IS26 TIR. However, Tnp26 with an R49A or a W50A substitution in helix 3 of a predicted trihelical helix-turn-helix domain (amino acids I13-R53) or an F4A or F9A substitution replacing the conserved amino acids in a unique disordered N-terminal domain (amino acids M1-D12) did not bind. The N-terminal M1-P56 fragment also bound to the TIR but only at substantially higher concentrations, indicating that other parts of Tnp26 enhance the binding affinity. The binding site was confined to the internal part of the TIR, and a G to T nucleotide substitution in the TGT at positions 6 to 8 of the TIR that is conserved in most IS26 family members abolished binding of both Tnp26 (M1-M234) and Tnp26 M1-P56 fragment. These findings indicate that the helix-turn-helix and disordered domains of Tnp26 play a role in Tnp26-TIR complex formation. Both domains are conserved in all members of the IS26 family.


Asunto(s)
Elementos Transponibles de ADN , ADN Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Secuencias Repetidas Terminales , Transposasas/química , Sustitución de Aminoácidos , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación Missense , Dominios Proteicos , Transposasas/genética , Transposasas/metabolismo
15.
Mol Biol Evol ; 38(3): 1075-1089, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33118013

RESUMEN

Group II introns are large self-splicing RNA enzymes with a broad but somewhat irregular phylogenetic distribution. These ancient retromobile elements are the proposed ancestors of approximately half the human genome, including the abundant spliceosomal introns and non-long terminal repeat retrotransposons. In contrast to their eukaryotic derivatives, bacterial group II introns have largely been considered as harmful selfish mobile retroelements that parasitize the genome of their host. As a challenge to this view, we recently uncovered a new intergenic trans-splicing pathway that generates an assortment of mRNA chimeras. The ability of group II introns to combine disparate mRNA fragments was proposed to increase the genetic diversity of the bacterial host by shuffling coding sequences. Here, we show that the Ll.LtrB and Ef.PcfG group II introns from Lactococcus lactis and Enterococcus faecalis respectively can both use the intergenic trans-splicing pathway to catalyze the formation of chimeric relaxase mRNAs and functional proteins. We demonstrated that some of these compound relaxase enzymes yield gain-of-function phenotypes, being significantly more efficient than their precursor wild-type enzymes at supporting bacterial conjugation. We also found that relaxase enzymes with shuffled functional domains are produced in biologically relevant settings under natural expression levels. Finally, we uncovered examples of lactococcal chimeric relaxase genes with junctions exactly at the intron insertion site. Overall, our work demonstrates that the genetic diversity generated by group II introns, at the RNA level by intergenic trans-splicing and at the DNA level by recombination, can yield new functional enzymes with shuffled exons, which can lead to gain-of-function phenotypes.


Asunto(s)
Proteínas Bacterianas/genética , Endodesoxirribonucleasas/genética , Enterococcus faecalis/genética , Intrones , Lactococcus lactis/genética , Proteínas Recombinantes de Fusión , Conjugación Genética , Enterococcus faecalis/enzimología , Lactococcus lactis/enzimología
16.
J Bacteriol ; 203(13): e0004621, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33846117

RESUMEN

Vibrio parahaemolyticus cells transit from free-swimming to surface adapted lifestyles, such as swarming colonies and three-dimensional biofilms. These transitions are regulated by sensory modules and regulatory networks that involve the second messenger cyclic diguanylate monophosphate (c-di-GMP). In this work, we show that a previously uncharacterized c-di-GMP phosphodiesterase (VP1881) from V. parahaemolyticus plays an important role in modulating the c-di-GMP pool. We found that the product of VP1881 promotes its own expression when the levels of c-di-GMP are low or when the phosphodiesterase (PDE) is catalytically inactive. This behavior has been observed in a class of c-di-GMP receptors called trigger phosphodiesterases, and hence we named the product of VP1881 TpdA, for trigger phosphodiesterase A. The absence of tpdA showed a negative effect on swimming motility while, its overexpression from an isopropyl-ß-d-thiogalactopyranoside (IPTG)-inducible promoter showed a positive effect on both swimming and swarming motility and a negative effect on biofilm formation. Changes in TpdA abundance altered the expression of representative polar and lateral flagellar genes, as well as that of the biofilm-related gene cpsA. Our results also revealed that autoactivation of the native PtpdA promoter is sufficient to alter c-di-GMP signaling responses such as swarming and biofilm formation in V. parahaemolyticus, an observation that could have important implications in the dynamics of these social behaviors. IMPORTANCE c-di-GMP trigger phosphodiesterases (PDEs) could play a key role in controlling the heterogeneity of biofilm matrix composition, a property that endows characteristics that are potentially relevant for sustaining integrity and functionality of biofilms in a variety of natural environments. Trigger PDEs are not always easy to identify based on their sequence, and hence not many examples of these type of signaling proteins have been reported in the literature. Here, we report on the identification of a novel trigger PDE in V. parahaemolyticus and provide evidence suggesting that its autoactivation could play an important role in the progression of swarming motility and biofilm formation, multicellular behaviors that are important for the survival and dissemination of this environmental pathogen.


Asunto(s)
Biopelículas/crecimiento & desarrollo , GMP Cíclico/análogos & derivados , Hidrolasas Diéster Fosfóricas/metabolismo , Vibrio parahaemolyticus/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , GMP Cíclico/química , GMP Cíclico/genética , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Sistemas de Mensajero Secundario , Vibrio parahaemolyticus/genética
17.
J Biol Chem ; 295(28): 9542-9550, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32430399

RESUMEN

Bacteriophage T7 encodes its own DNA polymerase, the product of gene 5 (gp5). In isolation, gp5 is a DNA polymerase of low processivity. However, gp5 becomes highly processive upon formation of a complex with Escherichia coli thioredoxin, the product of the trxA gene. Expression of a gp5 variant in which aspartate residues in the metal-binding site of the polymerase domain were replaced by alanine is highly toxic to E. coli cells. This toxicity depends on the presence of a functional E. coli trxA allele and T7 RNA polymerase-driven expression but is independent of the exonuclease activity of gp5. In vitro, the purified gp5 variant is devoid of any detectable polymerase activity and inhibited DNA synthesis by the replisomes of E. coli and T7 in the presence of thioredoxin by forming a stable complex with DNA that prevents replication. On the other hand, the highly homologous Klenow fragment of DNA polymerase I containing an engineered gp5 thioredoxin-binding domain did not exhibit toxicity. We conclude that gp5 alleles encoding inactive polymerases, in combination with thioredoxin, could be useful as a shutoff mechanism in the design of a bacterial cell-growth system.


Asunto(s)
Bacteriófago T7 , Replicación del ADN , ADN Viral , ADN Polimerasa Dirigida por ADN , Proteínas de Escherichia coli , Escherichia coli , Tiorredoxinas , Bacteriófago T7/enzimología , Bacteriófago T7/genética , ADN Viral/biosíntesis , ADN Viral/química , ADN Viral/genética , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/virología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Dominios Proteicos , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
18.
J Biol Chem ; 295(50): 17083-17099, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33033071

RESUMEN

Reactive oxygen species (ROS) are an unavoidable host environmental cue for intracellular pathogens such as Mycobacterium tuberculosis and Mycobacterium bovis; however, the signaling pathway in mycobacteria for sensing and responding to environmental stress remains largely unclear. Here, we characterize a novel CmtR-Zur-ESX3-Zn2+ regulatory pathway in M. bovis that aids mycobacterial survival under oxidative stress. We demonstrate that CmtR functions as a novel redox sensor and that its expression can be significantly induced under H2O2 stress. CmtR can physically interact with the negative regulator Zur and de-represses the expression of the esx-3 operon, which leads to Zn2+ accumulation and promotion of reactive oxygen species detoxication in mycobacterial cells. Zn2+ can also act as an effector molecule of the CmtR regulator, using which the latter can de-repress its own expression for further inducing bacterial antioxidant adaptation. Consistently, CmtR can induce the expression of EsxH, a component of esx-3 operon involved in Zn2+ transportation that has been reported earlier, and inhibit phagosome maturation in macrophages. Lastly, CmtR significantly contributes to bacterial survival in macrophages and in the lungs of infected mice. Our findings reveal the existence of an antioxidant regulatory pathway in mycobacteria and provide novel information on stress-triggered gene regulation and its association with host-pathogen interaction.


Asunto(s)
Proteínas Bacterianas/metabolismo , Viabilidad Microbiana , Mycobacterium bovis/metabolismo , Estrés Oxidativo , Factores de Transcripción/metabolismo , Zinc/metabolismo , Proteínas Bacterianas/genética , Mycobacterium bovis/genética , Factores de Transcripción/genética
19.
J Biol Chem ; 295(27): 8999-9011, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32385111

RESUMEN

Ribosome profiling (RIBO-Seq) has improved our understanding of bacterial translation, including finding many unannotated genes. However, protocols for RIBO-Seq and corresponding data analysis are not yet standardized. Here, we analyzed 48 RIBO-Seq samples from nine studies of Escherichia coli K12 grown in lysogeny broth medium and particularly focused on the size-selection step. We show that for conventional expression analysis, a size range between 22 and 30 nucleotides is sufficient to obtain protein-coding fragments, which has the advantage of removing many unwanted rRNA and tRNA reads. More specific analyses may require longer reads and a corresponding improvement in rRNA/tRNA depletion. There is no consensus about the appropriate sequencing depth for RIBO-Seq experiments in prokaryotes, and studies vary significantly in total read number. Our analysis suggests that 20 million reads that are not mapping to rRNA/tRNA are required for global detection of translated annotated genes. We also highlight the influence of drug-induced ribosome stalling, which causes bias at translation start sites. The resulting accumulation of reads at the start site may be especially useful for detecting weakly expressed genes. As different methods suit different questions, it may not be possible to produce a "one-size-fits-all" ribosome profiling data set. Therefore, experiments should be carefully designed in light of the scientific questions of interest. We propose some basic characteristics that should be reported with any new RIBO-Seq data sets. Careful attention to the factors discussed should improve prokaryotic gene detection and the comparability of ribosome profiling data sets.


Asunto(s)
Bacterias/genética , Ribosomas/genética , Análisis de Secuencia de ARN/métodos , Biología Computacional/métodos , Perfil Genético , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Anotación de Secuencia Molecular/métodos , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , ARN Ribosómico/metabolismo
20.
J Biol Chem ; 295(2): 301-313, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31753921

RESUMEN

Lyme disease, also known as Lyme borreliosis, is the most common tick-transmitted disease in the Northern Hemisphere. The disease is caused by the bacterial spirochete Borrelia burgdorferi and other related Borrelia species. One of the many fascinating features of this unique pathogen is an elaborate system for antigenic variation, whereby the sequence of the surface-bound lipoprotein VlsE is continually modified through segmental gene conversion events. This perpetual changing of the guard allows the pathogen to remain one step ahead of the acquired immune response, enabling persistent infection. Accordingly, the vls locus is the most evolutionarily diverse genetic element in Lyme disease-causing borreliae. Small stretches of information are transferred from a series of silent cassettes in the vls locus to generate an expressed mosaic vlsE gene version that contains genetic information from several different silent cassettes, resulting in ∼1040 possible vlsE sequences. Yet, despite its extreme evolutionary flexibility, the locus has rigidly conserved structural features. These include a telomeric location of the vlsE gene, an inverse orientation of vlsE and the silent cassettes, the presence of nearly perfect inverted repeats of ∼100 bp near the 5' end of vlsE, and an exceedingly high concentration of G runs in vlsE and the silent cassettes. We discuss the possible roles of these evolutionarily conserved features, highlight recent findings from several studies that have used next-generation DNA sequencing to unravel the switching process, and review advances in the development of a mini-vls system for genetic manipulation of the locus.


Asunto(s)
Variación Antigénica , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Borrelia burgdorferi/inmunología , Lipoproteínas/inmunología , Enfermedad de Lyme/inmunología , Animales , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Borrelia burgdorferi/química , Borrelia burgdorferi/genética , Borrelia burgdorferi/fisiología , Sitios Genéticos , Interacciones Huésped-Patógeno , Humanos , Inmunidad , Lipoproteínas/química , Lipoproteínas/genética , Modelos Moleculares , Mutación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda