Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Molecules ; 27(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36144828

RESUMEN

Salvianic acid A (SAA), as the main bioactive component of the traditional Chinese herb Salvia miltiorrhiza, has important application value in the treatment of cardiovascular diseases. In this study, a two-step bioprocess for the preparation of SAA from l-DOPA was developed. In the first step, l-DOPA was transformed to 3,4-dihydroxyphenylalanine (DHPPA) using engineered Escherichia coli cells expressing membrane-bound L-amino acid deaminase from Proteus vulgaris. After that, the unpurified DHPPA was directly converted into SAA by permeabilized recombinant E. coli cells co-expressing d-lactate dehydrogenase from Pediococcus acidilactici and formate dehydrogenase from Mycobacterium vaccae N10. Under optimized conditions, 48.3 mM of SAA could be prepared from 50 mM of l-DOPA, with a yield of 96.6%. Therefore, the bioprocess developed here was not only environmentally friendly, but also exhibited excellent production efficiency and, thus, is promising for industrial SAA production.


Asunto(s)
Escherichia coli , Levodopa , Biocatálisis , Escherichia coli/genética , Formiato Deshidrogenasas , Ácidos Fenilpirúvicos
2.
Circulation ; 140(5): 390-404, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31311300

RESUMEN

BACKGROUND: Modeling of human arrhythmias with induced pluripotent stem cell-derived cardiomyocytes has focused on single-cell phenotypes. However, arrhythmias are the emergent properties of cells assembled into tissues, and the impact of inherited arrhythmia mutations on tissue-level properties of human heart tissue has not been reported. METHODS: Here, we report an optogenetically based, human engineered tissue model of catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited arrhythmia caused by mutation of the cardiac ryanodine channel and triggered by exercise. We developed a human induced pluripotent stem cell-derived cardiomyocyte-based platform to study the tissue-level properties of engineered human myocardium. We investigated pathogenic mechanisms in CPVT by combining this novel platform with genome editing. RESULTS: In our model, CPVT tissues were vulnerable to developing reentrant rhythms when stimulated by rapid pacing and catecholamine, recapitulating hallmark features of the disease. These conditions elevated diastolic Ca2+ levels and increased temporal and spatial dispersion of Ca2+ wave speed, creating a vulnerable arrhythmia substrate. Using Cas9 genome editing, we pinpointed a single catecholamine-driven phosphorylation event, ryanodine receptor-serine 2814 phosphorylation by Ca2+/calmodulin-dependent protein kinase II, that is required to unmask the arrhythmic potential of CPVT tissues. CONCLUSIONS: Our study illuminates the molecular and cellular pathogenesis of CPVT and reveals a critical role of calmodulin-dependent protein kinase II-dependent reentry in the tissue-scale mechanism of this disease. We anticipate that this approach will be useful for modeling other inherited and acquired cardiac arrhythmias.


Asunto(s)
Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología , Taquicardia Ventricular/patología , Taquicardia Ventricular/fisiopatología , Ingeniería de Tejidos/métodos , Potenciales de Acción/fisiología , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/química , Miocitos Cardíacos/química , Optogenética/métodos
3.
Adv Exp Med Biol ; 1102: 81-95, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30382570

RESUMEN

In the modern era of next-generation genomics and Fourth Industrial Revolution, there is a growing demand for translational research that brings about not only impactful research but also potential commercialisation of R- and D-based products. Advancement of metabolic engineering and synthetic biology has put forward a viable and innovative biotechnological platform for bioproduct development especially using microbial chassis. In this chapter, readers will be introduced on the concepts of metabolic engineering, synthetic biology and microbial chassis and the applications of these biological engineering (BioE) components in the advancement of industrial and agricultural biotechnology. Main strategies in employing BioE platform are discussed especially for waste bioconversion and value-added product development. More importantly, this chapter will also discuss current endeavours in integrating systems and synthetic biology for microbial production of natural products by introducing flavonoid biosynthesis genes of Polygonum minus, a medicinally important tropical plant in engineered yeast.


Asunto(s)
Ingeniería Metabólica , Biología Sintética , Biotecnología , Genómica , Investigación Biomédica Traslacional
4.
Comput Chem Eng ; 99: 145-157, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28392606

RESUMEN

Feedback control is widely used in chemical engineering to improve the performance and robustness of chemical processes. Feedback controllers require a 'subtractor' that is able to compute the error between the process output and the reference signal. In the case of embedded biomolecular control circuits, subtractors designed using standard chemical reaction network theory can only realise one-sided subtraction, rendering standard controller design approaches inadequate. Here, we show how a biomolecular controller that allows tracking of required changes in the outputs of enzymatic reaction processes can be designed and implemented within the framework of chemical reaction network theory. The controller architecture employs an inversion-based feedforward controller that compensates for the limitations of the one-sided subtractor that generates the error signals for a feedback controller. The proposed approach requires significantly fewer chemical reactions to implement than alternative designs, and should have wide applicability throughout the fields of synthetic biology and biological engineering.

5.
J Med Biol Eng ; 36(6): 751-754, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28111531

RESUMEN

This special issue of the Journal of Medical and Biological Engineering highlights the field of advanced bioelectronics and bioinformatics. Several papers were considered for this special issue, including those on bioelectronics in wearable and implantable medical devices, such as sensors, and bioinformatics in healthcare, brain cognition, and various neural pathologies. Many investigators contributed original research articles to this issue, demonstrating emerging research fields. More than 20 papers were accepted for publication after a high-quality critical review was conducted, and 14 papers were selected for this special issue. This special issue on bioelectronics and bioinformatics attracted a substantial number of full-paper submissions from many countries. We appreciate the numerous volunteers who helped review the manuscripts. This paper provides a brief review of issues regarding bioelectronics and bioinformatics devices.

6.
ACS Biomater Sci Eng ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940421

RESUMEN

Exosomes are nanoscale membrane bound vesicles secreted by almost all types of cells. Their unique attributes, such as minimal immunogenicity and compatibility with biological systems, make them novel carriers for drug delivery. These native exosomes harbor proteins, nucleic acids, small molecule compounds, and fluorogenic agents. Moreover, through a combination of chemical and bioengineering methodologies, exosomes are tailored to transport precise therapeutic payloads to designated cells or tissues. In this review, we summarize the strategies for exosome modification and drug loading modalities in engineered exosomes. In addition, we provide an overview of the advances in the use of engineered exosomes for targeted drug delivery. Lastly, we discuss the merits and limitations of chemically engineered versus bioengineered exosome-mediated target therapies. These insights offer additional options for refining engineered exosomes in pharmaceutical development and hold promise for expediting the successful translation of engineered exosomes from the bench to the bedside.

7.
Biochim Biophys Acta Rev Cancer ; 1879(4): 189112, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761983

RESUMEN

The field of bacteria-based cancer therapy, which focuses on the key role played by the prevalence of bacteria, specifically in tumors, in controlling potential targets for cancer therapy, has grown enormously over the past few decades. In this review, we discuss, for the first time, the global cancer situation and the timeline for using bacteria in cancer therapy. We also explore how interdisciplinary collaboration has contributed to the evolution of bacteria-based cancer therapies. Additionally, we address the challenges that need to be overcome for bacteria-based cancer therapy to be accepted in clinical trials and the latest advancements in the field. The groundbreaking technologies developed through bacteria-based cancer therapy have opened up new therapeutic strategies for a wide range of therapeutics in cancer.


Asunto(s)
Bacterias , Neoplasias , Humanos , Neoplasias/terapia , Bacterias/genética , Animales
8.
Synth Syst Biotechnol ; 8(2): 302-313, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37122957

RESUMEN

The past 50 years have witnessed a massive expansion in the demand and application of pesticides. However, pesticides are difficult to be completely degraded without intervention hence the pesticide residue could pose a persistent threat to non-target organisms in many aspects. To aim at the problem of the abuse of pesticide products and excessive pesticide residues in the environment, chemical and biological degradation methods are widely developed but are scaled and insufficient to solve such a pollution. In recent years, bio-degradative tools instructed by synthetic biological principles have been further studied and have paved a way for pesticide degradation. Combining the customized design strategy and standardized assembly mode, the engineering bacteria for multi-dimensional degradation has become an effective tool for pesticide residue degradation. This review introduces the mechanisms and hazards of different pesticides, summarizes the methods applied in the degradation of pesticide residues, and discusses the advantages, applications, and prospects of synthetic biology in degrading pesticide residues.

9.
Biomolecules ; 13(1)2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36671488

RESUMEN

Ovarian cancer (OC) is a disease of major concern with a survival rate of about 40% at five years. This is attributed to the lack of visible and reliable symptoms during the onset of the disease, which leads over 80% of patients to be diagnosed at advanced stages. This implies that metastatic activity has advanced to the peritoneal cavity. It is associated with both genetic and phenotypic heterogeneity, which considerably increase the risks of relapse and reduce the survival rate. To understand ovarian cancer pathophysiology and strengthen the ability for drug screening, further development of relevant in vitro models that recapitulate the complexity of OC microenvironment and dynamics of OC cell population is required. In this line, the recent advances of tridimensional (3D) cell culture and microfluidics have allowed the development of highly innovative models that could bridge the gap between pathophysiology and mechanistic models for clinical research. This review first describes the pathophysiology of OC before detailing the engineering strategies developed to recapitulate those main biological features.


Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/metabolismo , Técnicas de Cultivo de Célula , Microambiente Tumoral
10.
Plants (Basel) ; 11(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35270097

RESUMEN

Maize is one of the leading food crops and its kernel is rich in starch, lipids, protein and other energy substances. In addition, maize kernels also contain many trace elements that are potentially beneficial to human health, such as vitamins, minerals and other secondary metabolites. However, gene resources that could be applied for nutrient improvement are limited in maize. In this review, we summarized 107 genes that are associated with nutrient content from different plant species and identified 246 orthologs from the maize genome. In addition, we constructed physical maps and performed a detailed expression pattern analysis for the 246 maize potential gene resources. Combining expression profiles and their potential roles in maize nutrient improvement, genetic engineering by editing or ectopic expression of these genes in maize are expected to improve resistant starch, oil, essential amino acids, vitamins, iron, zinc and anthocyanin levels of maize grains. Thus, this review provides valuable gene resources for maize nutrient improvement.

11.
Front Surg ; 9: 988843, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311952

RESUMEN

Skin tissue regeneration and repair is a complex process involving multiple cell types, and current therapies are limited to promoting skin wound healing. Mesenchymal stromal cells (MSCs) have been proven to enhance skin tissue repair through their multidifferentiation and paracrine effects. However, there are still difficulties, such as the limited proliferative potential and the biological processes that need to be strengthened for MSCs in wound healing. Recently, three-dimensional (3D) bioprinting has been applied as a promising technology for tissue regeneration. 3D-bioprinted MSCs could maintain a better cell ability for proliferation and expression of biological factors to promote skin wound healing. It has been reported that 3D-bioprinted MSCs could enhance skin tissue repair through anti-inflammatory, cell proliferation and migration, angiogenesis, and extracellular matrix remodeling. In this review, we will discuss the progress on the effect of MSCs and 3D bioprinting on the treatment of skin tissue regeneration, as well as the perspective and limitations of current research.

12.
Protein Sci ; 30(1): 160-167, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33047381

RESUMEN

Optimizing synthetic biological systems, for example novel metabolic pathways, becomes more complicated with more protein components. One method of taming the complexity and allowing more rapid optimization is engineering external control into components. Pharmacology is essentially the science of controlling proteins using (mainly) small molecules, and a great deal of information, spread between different databases, is known about structural interactions between these ligands and their target proteins. In principle, protein engineers can use an inverse pharmacological approach to include drug response in their design, by identifying ligand-binding domains from natural proteins that are amenable to being included in a designed protein. In this context, "amenable" means that the ligand-binding domain is in a relatively self-contained subsequence of the parent protein, structurally independent of the rest of the molecule so that its function should be retained in another context. The SynPharm database is a tool, built on to the Guide to Pharmacology database and connected to various structural databases, to help protein engineers identify ligand-binding domains suitable for transfer. This article describes the tool, and illustrates its use in seeking candidate domains for transfer. It also briefly describes already-published proof-of-concept studies in which the CRISPR effectors Cas9 and Cpf1 were placed separately under the control of tamoxifen and mefipristone, by including ligand-binding domains of the Estrogen Receptor and Progesterone Receptor in modified versions of Cas9 and Cpf1. The advantages of drug control or the rival protein-control technology of optogenetics, for different purposes and in different situations, are also briefly discussed.


Asunto(s)
Bases de Datos Farmacéuticas , Bases de Datos de Proteínas , Ingeniería de Proteínas , Proteínas/química , Proteínas/genética , Ligandos , Dominios Proteicos
13.
Trends Biotechnol ; 38(3): 241-253, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31653446

RESUMEN

Biological engineering has unprecedented potential to solve society's most pressing challenges. Engineering approaches must consider complex technical, economic, and social factors. This requires methods that confer gene/pathway-level functionality and organism-level robustness in rapid and cost-effective ways. This article compares foundational engineering approaches - bottom-up, gene-targeted engineering, and top-down, whole-genome engineering - and identifies significant complementarity between them. Cases drawn from engineering Saccharomyces cerevisiae exemplify the synergy of a combined approach. Indeed, multimodal engineering streamlines strain development by leveraging the complementarity of whole-genome and gene-targeted engineering to overcome the gap in design knowledge that restricts rational design. As biological engineers target more complex systems, this dual-track approach is poised to become an increasingly important tool to realize the promise of synthetic biology.


Asunto(s)
Ingeniería Genética/métodos , Microorganismos Modificados Genéticamente/genética , Biología Sintética/métodos , Genoma Microbiano , Microbiología Industrial/métodos , Microorganismos Modificados Genéticamente/metabolismo , Saccharomyces cerevisiae/genética
14.
Appl Biosaf ; 24(2): 64-71, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36033940

RESUMEN

Introduction: The international synthetic biology competition iGEM (formally known as the international Genetically Engineered Machines competition) has a dedicated biosafety and biosecurity program. Method: A review of specific elements of the program and a series of concrete examples illustrate how experiences in implementing the program have helped improved policy, including an increasing diversity of sources for genetic parts and organisms, keeping pace with technical developments, considering pathways toward future environmental release, addressing antimicrobial resistance, and testing the efficacy of current biosecurity arrangements. Results: iGEM's program is forward-leaning, in that it addresses both traditional (pathogen-based) and emerging risks both in terms of new technologies and new risks. It is integrated into the technical work of the competition-with clearly described roles and responsibilities for all members of the community. It operates throughout the life cycle of projects-from project design to future application. It makes use of specific tools to gather and review biosafety and biosecurity information, making it easier for those planning and conducting science and engineering to recognize potential risks and match them with appropriate risk management approaches, as well as for specialists to review this information to identify gaps and strengthen plans. Discussion: Integrating an increasingly adaptive risk management approach has allowed iGEM's biosafety and biosecurity program to become comprehensive, be cross-cutting, and cover the competition's life cycle.

15.
Trends Biotechnol ; 37(10): 1042-1050, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31054854

RESUMEN

Future manufacturing will focus on new, improved products as well as on new and enhanced production methods. Recent biotechnological and scientific advances, such as CRISPR/Cas and various omic technologies, pave the way to exciting novel biotechnological research, development, and commercialization of new sustainable products. Rigorous mathematical descriptions of microbial cells and consortia thereof will enable deeper biological understanding and lead to powerful in silico cellular models. Biological engineering, namely model-based design together with synthetic biology, will accelerate the construction of robust and high-performing microorganisms. Using these organisms, and ambitions towards zero-concepts with respect to emissions and excess resources in bioprocess engineering, industrial biotechnology is expected to become highly integrated into sustainable generations of technology systems.


Asunto(s)
Biotecnología/métodos , Investigación/tendencias , Biocombustibles , Ingeniería Genética/métodos , Tecnología Química Verde , Microbiología Industrial/métodos , Ingeniería Metabólica/métodos , Consorcios Microbianos/fisiología , Reciclaje
16.
J Mol Biol ; 431(2): 391-400, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30448232

RESUMEN

We have developed a genetic circuit in Escherichia coli that can be used to select for protein-protein interactions of different strengths by changing antibiotic concentrations in the media. The genetic circuit links protein-protein interaction strength to ß-lactamase activity while simultaneously imposing tuneable positive and negative selection pressure for ß-lactamase activity. Cells only survive if they express interacting proteins with affinities that fall within set high- and low-pass thresholds; i.e. the circuit therefore acts as a bandpass filter for protein-protein interactions. We show that the circuit can be used to recover protein-protein interactions of desired affinity from a mixed population with a range of affinities. The circuit can also be used to select for inhibitors of protein-protein interactions of defined strength.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Mapas de Interacción de Proteínas/genética , Ingeniería de Proteínas/métodos , beta-Lactamasas/genética
17.
ACS Synth Biol ; 8(5): 1001-1009, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-30925042

RESUMEN

Recent advances in synthetic biology have resulted in biological technologies with the potential to reshape the way we understand and treat human disease. Educating students about the biology and ethics underpinning these technologies is critical to empower them to make informed future policy decisions regarding their use and to inspire the next generation of synthetic biologists. However, hands-on, educational activities that convey emerging synthetic biology topics can be difficult to implement due to the expensive equipment and expertise required to grow living cells. We present BioBits Health, an educational kit containing lab activities and supporting curricula for teaching antibiotic resistance mechanisms and CRISPR-Cas9 gene editing in high school classrooms. This kit links complex biological concepts to visual, fluorescent readouts in user-friendly freeze-dried cell-free reactions. BioBits Health represents a set of educational resources that promises to encourage teaching of cutting-edge, health-related synthetic biology topics in classrooms and other nonlaboratory settings.


Asunto(s)
Ingeniería Genética , Biología Sintética/educación , Sistemas CRISPR-Cas/genética , Sistema Libre de Células , Farmacorresistencia Microbiana/genética , Edición Génica/métodos , Transferencia de Gen Horizontal , Humanos , Imagen Óptica , Biología Sintética/métodos
19.
Psychiatr Clin North Am ; 41(2): 331-339, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29739530

RESUMEN

Neurobiological engineering is the process of making models of brain function and psychoanalytic psychology as these interact in a social environment to hide complexity while remaining true to science. One-fourth of Americans are killed by drugs. The engineering model described is applied to psychodynamic therapy of addicted patients. It helps us understand why addiction is ubiquitous, hostile, malicious, and intractable. Drugs take over the will by changing the ventral tegmental dopaminergic SEEKING system.


Asunto(s)
Conducta Adictiva , Neurobiología , Trastornos Relacionados con Sustancias/psicología , Alcoholismo , Encéfalo/fisiopatología , Sobredosis de Droga , Humanos , Productos de Tabaco/efectos adversos
20.
Curr Drug Deliv ; 14(2): 158-178, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27264726

RESUMEN

Modern Chemical Engineering was born around the end of the 19th century in Great Britain, Germany, and the USA, the most industrialized countries at that time. Milton C. Whitaker, in 1914, affirmed that the difference between Chemistry and Chemical Engineering lies in the capability of chemical engineers to transfer laboratory findings to the industrial level. Since then, Chemical Engineering underwent huge transformations determining the detachment from the original Chemistry nest. The beginning of the sixties of the 20th century saw the development of a new branch of Chemical Engineering baptized Biomedical Engineering by Peppas and Langer and that now we can name Biological Engineering. Interestingly, although Biological Engineering focused on completely different topics from Chemical Engineering ones, it resorted to the same theoretical tools such as, for instance, mass, energy and momentum balances. Thus, the birth of Biological Engineering may be considered as a Darwinian evolution of Chemical Engineering similar to that experienced by mammals which, returning to water, used legs and arms to swim. From 1960 on, Biological Engineering underwent a considerable evolution as witnessed by the great variety of topics covered such as hemodialysis, release of synthetic drugs, artificial organs and, more recently, delivery of small interfering RNAs (siRNA). This review, based on the activities developed in the frame of our PRIN 2010-11 (20109PLMH2) project, tries to recount origins and evolution of Chemical Engineering illustrating several examples of recent and successful applications in the biological field. This, in turn, may stimulate the discussion about the Chemical Engineering students curriculum studiorum update.


Asunto(s)
Ingeniería Biomédica , Ingeniería Química , Animales , Humanos , Preparaciones Farmacéuticas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda