Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Am J Bot ; 111(7): e16362, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38943238

RESUMEN

PREMISE: Theory predicts and empirical studies have shown that ecologically manipulated communities with high species diversity are resistant to invasion, but do these predictions and results hold true when applied to highly competitive invaders in natural communities? Few studies of diversity-mediated invasion resistance have measured both invasion resistance and invader impact in the same study. METHODS: We used a two-year field experiment to test: (1) diversity-mediated competitive resistance to patch expansion by the grass, Microstegium vimineum; and (2) the competitive effect of M. vimineum on resident plant diversity. We examined responses of M. vimineum to two native plant density-reduction treatments that had opposite effects on species diversity: (1) reducing species richness via the removal of rare species; and (2) reducing dominance by reducing the density of the dominant resident species. We examined the effects of M. vimineum reduction by pre-emergent herbicide on resident diversity in the second year of the study. RESULTS: Neither rare species removal nor dominant species reduction significantly increased M. vimineum density (relative growth rate). The pre-emergent herbicide dramatically reduced M. vimineum in year 2 of the study, but not most resident plants, which were perennials and indirectly benefited from the herbicide at a more productive site, presumably due to reduced competition from M. vimineum. CONCLUSIONS: Diversity-mediated resistance did not effectively deter invasion by a highly competitive invader. In the case of M. vimineum and at more productive sites, it would appear that nearly complete removal of this invader is necessary to preserve plant species diversity.


Asunto(s)
Biodiversidad , Herbicidas , Especies Introducidas , Herbicidas/farmacología , Poaceae/fisiología , Poaceae/crecimiento & desarrollo
2.
Oecologia ; 205(1): 13-25, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38758233

RESUMEN

A fundamental question in invasive plant ecology is whether invasive and native plants have different ecological roles. Differences in functional traits have been explored, but we lack a comparison of the factors affecting the spread of co-occurring natives and invasives. Some have proposed that to succeed, invasives would colonize a wider variety of sites, would disperse farther, or would be better at colonizing sites with more available light and soil nutrients than natives. We examined patterns of spread over 70 years in a regenerating forest in Connecticut, USA, where both native and invasive species acted as colonizers. We compared seven invasive and 19 native species in the characteristics of colonized plots, variation in these characteristics, and the importance of site variables for colonization. We found little support for the hypotheses that invasive plants succeed by dispersing farther than native plants or by having a broader range of site tolerances. Colonization by invasives was also not more dependent on light than colonization by natives. Like native understory species, invasive plants spread into closed-canopy forest and species-rich communities despite earlier predictions that these communities would resist invasion. The biggest differences were that soil nitrate and the initial land cover being open field increased the odds of colonization for most invasives but only for some natives. In large part, though, the spread of native and invasive plants was affected by similar factors.


Asunto(s)
Bosques , Especies Introducidas , Connecticut , Suelo , Plantas , Ecosistema
3.
Ecol Appl ; 33(8): e2819, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36793187

RESUMEN

Understanding the mechanisms underlying the invasion success or failure of alien species can help to predict future invasions and cope with the invaders. The biotic resistance hypothesis posits that diverse communities are more resistant to invasion. While many studies have examined this hypothesis, the majority of them have focused on the relationship between alien and native species richness in plant communities, and results have often been inconsistent. In southern China, many rivers have been invaded by alien fish species, providing an opportunity to test the resistance of native fish communities to alien fish invasions. Using survey data for 60,155 freshwater fish collected from five main rivers of southern China for 3 years, we assessed the relationships between native fish richness and the richness and biomass of alien fishes at river and reach spatial scales, respectively. Based on two manipulative experiments, we further examined the impact of native fish richness on habitat selection and the reproductive ability of an exotic model species Coptodon zillii. We found no apparent relationship between alien and native fish richness, whereas the biomass of alien fish significantly decreased with increasing native fish richness. In experiments, C. zillii preferred to invade those habitats that had low native fish richness, given evenly distributed food resources; reproduction of C. zillii was strongly depressed by a native carnivorous fish Channa maculata. Together, our results indicate that native fish diversity can continue to provide biotic resistance to alien fish species in terms of limiting their growth, habitat selection, and reproduction when these aliens have successfully invaded southern China. We thus advocate for fish biodiversity conservation, especially for key species, to mitigate against the population development and ecological impact of alien fish species.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Biomasa , Especies Introducidas , Peces , Fertilidad , China
4.
Environ Monit Assess ; 195(8): 985, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488362

RESUMEN

Planorbella trivolvis (ramshorn snail) is one of India's most extensively sold exotic aquarium pet snails. The unintentional or deliberate release of P. trivolvis may result in the colonisation and establishment as an invasive snail in freshwater ecosystems. However, the successful invasion of P. trivolvis will depend on several abiotic and biotic factors of the concerned freshwater ecosystem. We have assessed the possibility of overcoming the opposing factors in P. trivolvis invasion through laboratory-based experiments and examined the effects of household-derived pollutants on egg hatchability, adult survivability and fecundity, and temperature (15 to 35 °C) on growth, sexual maturity, and reproduction. Additionally, we have evaluated the potential of native predators as biotic resistance to invasion by prey-choice experiment. The results indicated that egg hatchability, adult survivability, and fecundity were reduced with increasing pollutant concentration. However, the same traits did not differ from a native freshwater snail, Indoplanorbis exustus. The fecundity of P. trivolvis increased with increasing body size, but no considerable differences at different temperature levels suggest a wide range of adaptation to temperature. Faster growth and the requirement of comparatively few days to attain sexual maturity were observed in the higher temperatures. The native predators, Glossiphonia weberi and Diplonychus rusticus, avoided P. trivolvis as prey over the alternative prey snails in most instances, suggesting the masking of biotic resistance against the colonisation. Our observations indicate that the chance dispersal of P. trivolvis from household or commercial aquaria may lead to a possible invasion of freshwater ecosystems under suitable conditions.


Asunto(s)
Ecosistema , Contaminantes Ambientales , Animales , Monitoreo del Ambiente , India , Caracoles
5.
Ecol Lett ; 25(3): 661-672, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35199921

RESUMEN

Biological invasions pose one of the most severe environmental challenges of the twenty-first century. A longstanding idea is that invasion risk is predictable based on the phylogenetic distance - and hence ecological resemblance - between non-native and native species. However, current evidence is contradictory. To explain these mixed results, it has been proposed that the effect is scale-dependent, with invasion inhibited by phylogenetic similarity at small spatial scales but enhanced at larger scales. Analyzing invasion outcomes in a global sample of bird communities, we find no evidence to support this hypothesis. Instead, our results suggest that invaders are locally more successful in the presence of closely related and ecologically similar species, at least in human-altered environments where the majority of invasions have occurred. Functional trait analyses further confirm that the ecological niches of invaders are phylogenetically conserved, supporting the notion that successful invasion in the presence of close relatives is driven by shared adaptations to the types of niches available in novel environments.


Asunto(s)
Ciudadanía , Ecosistema , Adaptación Fisiológica , Animales , Aves , Humanos , Especies Introducidas , Filogenia
6.
Ecol Lett ; 25(11): 2525-2539, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36209457

RESUMEN

As invasive species spread, the ability of local communities to resist invasion depends on the strength of biotic interactions. Evolutionarily unused to the invader, native predators or herbivores may be initially wary of consuming newcomers, allowing them to proliferate. However, these relationships may be highly dynamic, and novel consumer-resource interactions could form as familiarity grows. Here, we explore the development of effective biotic resistance towards a highly invasive alga using multiple space-for-time approaches. We show that the principal native Mediterranean herbivore learns to consume the invader within less than a decade. At recently invaded sites, the herbivore actively avoided the alga, shifting to distinct preference and high consumptions at older sites. This rapid strengthening of the interaction contributed to the eventual collapse of the alga after an initial dominance. Therefore, our results stress the importance of conserving key native populations to allow communities to develop effective resistance mechanisms against invaders.


Asunto(s)
Herbivoria , Especies Introducidas , Ecosistema , Plantas , Animales
7.
Ecol Lett ; 25(4): 778-789, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34972253

RESUMEN

Elton's biotic resistance hypothesis, which posits that diverse communities should be more resistant to biological invasions, has received considerable experimental support. However, it remains unclear whether such a negative diversity-invasibility relationship would persist under anthropogenic environmental change. By using the common ragweed (Ambrosia artemisiifolia) as a model invader, our 4-year grassland experiment demonstrated consistently negative relationships between resident species diversity and community invasibility, irrespective of nitrogen addition, a result further supported by a meta-analysis. Importantly, our experiment showed that plant diversity consistently resisted invasion simultaneously through increased resident biomass, increased trait dissimilarity among residents, and increased community-weighted means of resource-conservative traits that strongly resist invasion, pointing to the importance of both trait complementarity and sampling effects for invasion resistance even under resource enrichment. Our study provides unique evidence that considering species' functional traits can help further our understanding of biotic resistance to biological invasions in a changing environment.


Asunto(s)
Especies Introducidas , Nitrógeno , Biodiversidad , Biomasa , Ecosistema , Plantas
8.
Ecol Appl ; 32(8): e2697, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35731934

RESUMEN

Specialized natural enemies have long been used to implement the biological control of invasive insects. Although research tracking populations following biological control introductions has traditionally focused on the impact of the introduced agent, recent studies and reviews have reflected an appreciation of the complex interactions of the introduced specialist agents with native generalist natural enemies. These interactions can be neutral, antagonistic, or complementary. Here we studied the invasive defoliator winter moth (Operophtera brumata) in the Northeast USA to investigate the role of native, generalist pupal predators along with the introduced, host-specific parasitoid Cyzenis albicans. Prior research in Canada has shown that predation of winter moth pupae from native generalists increased after C. albicans was established as a biological control agent. To explain this phenomenon, the following hypotheses were suggested: (H1 ) parasitoids suppress the winter moth population to a density that can be maintained by generalist predators, (H2 ) unparasitized pupae are preferred by predators and therefore experience higher mortality rates, or (H3 ) C. albicans sustains higher predator populations throughout the year more effectively than winter moth alone. We tested these hypotheses by deploying winter moth pupae over 6 years spanning 2005 to 2017 and by modeling pupal predation rates as a function of winter moth density and C. albicans establishment. We also compared predation rates of unparasitized and parasitized pupae and considered additional mortality by a native pupal parasitoid. We found support for the first hypothesis; we detected both temporal and spatial density dependence, but only in the latter years of the study when winter moth densities were low. We found no evidence for the latter two hypotheses. Our findings suggest that pupal predators have a regulatory effect on winter moth populations only after populations have been reduced, presumably by the introduction of the host-specific parasitoid C. albicans.


Asunto(s)
Mariposas Nocturnas , Animales , Insectos , Conducta Predatoria , Estaciones del Año , Bosques
9.
Oecologia ; 200(1-2): 221-230, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36153377

RESUMEN

Sicyos angulatus is a serious threat to riverine ecosystem functions and services worldwide. Here, we studied the effect of species identity and diversity on biotic resistance to S. angulatus under two different soil nutrient levels (unfertilized vs. fertilized). Soil nutrient levels showed no significant effect on invasion by S. angulatus in the control treatment, where intervention by native plants was absent. Species identity of native plants and its interaction with soil nutrient levels had a significant effect on biotic resistance to S. angulatus. For instance, Pennisetum alopecuroides and Lespedeza cuneata best resisted invasion in fertilized soil, whereas Lespedeza bicolor and Lactuca indica best resisted invasion in unfertilized soil. In addition, a mixture of four plant species resisted invasion equally as well as the monoculture of a species in unfertilized soil, whereas the mixed treatment resisted invasion much better in fertilized soil compared with unfertilized soil. Structural equation modeling revealed that species identity and diversity as well as fertilizer application significantly influenced biotic resistance to S. angulatus invasion, while soil nutrients did not influence invasion success directly. Based on these results, we strongly suggest sowing seed mixtures of various species after eradicating S. angulatus plants to prevent re-invasion. Overall, these results demonstrate how native plants rely on resource availability to resist colonization by an invasive plant, such as S. angulatus. This information can be used for the development of improved guidelines for plant restoration and invasive species control.


Asunto(s)
Especies Introducidas , Suelo , Ecosistema , Fertilizantes , Nutrientes , Plantas , Suelo/química
10.
Oecologia ; 199(3): 661-669, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35781744

RESUMEN

In Patagonia (Argentina) two non-native vespid wasps became established in the last decades. Vespula germanica was first detected in 1980, while V. vulgaris arrived some 30 years later. Both species can have a strong negative impact on agro-industrial economic activities, the natural environment, and outdoor human activities. Biological invasions may be influenced negatively by the degree of interaction with the resident native community and alien species already present. The sequential arrival and coexistence of Vespula wasps in Argentina for several years allows us to understand key questions of invasion ecology. Additionally, recognizing the outcome of the invasion by vespids in Patagonia, a region lacking native social wasps, may help plan species-focused mitigation and control strategies. We explored the role of competition in terms of invasion success, and the strategies that promote coexistence. Two possible scenarios, using niche overlap indices and isocline equations, were proposed to determine competition coefficients. Using a simple mathematical modeling framework, based on field collected data, we show that food resources do not play a central role in competitive interaction. The competition coefficients obtained from the equations were different from those inferred from the overlap indices (0.53 and 0.54-0.076 and 0.197, respectively). Together, these findings suggest that no matter the arrival order, V. vulgaris, always reaches higher densities than V. germanica when both species invade new regions. Our work contributes to further our understanding on the worldwide invasion processes deployed by these two eusocial insects.


Asunto(s)
Avispas , Animales , Argentina , Especies Introducidas , Modelos Teóricos
11.
Proc Natl Acad Sci U S A ; 116(15): 7382-7386, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30910953

RESUMEN

Nonnative pests often cause cascading ecological impacts, leading to detrimental socioeconomic consequences; however, how plant diversity may influence insect and disease invasions remains unclear. High species diversity in host communities may promote pest invasions by providing more niches (i.e., facilitation), but it can also diminish invasion success because low host dominance may make it more difficult for pests to establish (i.e., dilution). Most studies to date have focused on small-scale, experimental, or individual pest/disease species, while large-scale empirical studies, especially in natural ecosystems, are extremely rare. Using subcontinental-level data, we examined the role of tree diversity on pest invasion across the conterminous United States and found that the tree-pest diversity relationships are hump-shaped. Pest diversity increases with tree diversity at low tree diversity (because of facilitation or amplification) and is reduced at higher tree diversity (as a result of dilution). Thus, tree diversity likely regulates forest pest invasion through both facilitation and dilution that operate simultaneously, but their relative strengths vary with overall diversity. Our findings suggest the role of native species diversity in regulating nonnative pest invasions.


Asunto(s)
Biodiversidad , Bosques , Interacciones Huésped-Parásitos , Insectos/fisiología , Modelos Biológicos , Animales , Estados Unidos
12.
Ecol Lett ; 24(8): 1732-1734, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33987924

RESUMEN

Beaury et al. (2020) attempt to address the scale dependence of evidence for biotic resistance by including environmental covariates that can account for total species richness. However, this approach will incorrectly estimate relationships, driven by the accuracy of the covariates rather than the true relationship between native and exotic species.


Asunto(s)
Biodiversidad , Especies Introducidas
13.
Ecol Lett ; 24(8): 1735-1737, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34142422

RESUMEN

When analyzing biotic resistance/diversity-invasibility, including predictors of species richness may result in a false negative correlation between native and non-native richness. However, reanalysis of vegetation surveys shows that the negative effect of native richness is statistically significant whether or not predictors of species richness are included.


Asunto(s)
Biodiversidad , Especies Introducidas , Ecosistema
14.
Oecologia ; 196(3): 607-618, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33616724

RESUMEN

The biotic resistance hypothesis asserts that native species may hinder the invasion of exotic species, which can occur either directly or indirectly by influencing interactions between exotic and local species. Aphid-tending ants may play a key role in the indirect biotic resistance to plant invasion. Ants may protect aphids, thus increasing their negative effect on exotic plants, but may also deter chewing herbivores, thus benefiting exotic plants. We studied native aphid-tending ants (Dorymyrmex tener, Camponotus distinguendus, and Dorymyrmex richteri) on exotic nodding thistles (Carduus thoermeri), which are attacked by thistle aphids (Brachycaudus cardui) and thistle-head weevils (Rhinocyllus conicus). We evaluated the impact of ants, aphids, and weevils on thistle seed set. We compared ant species aggressiveness towards aphid predators and weevils and performed ant-exclusion experiments to determine the effects of ants on aphid predators and weevils. We analysed whether ant species affected thistle seed set through their effects on aphids and/or weevils. The ant D. tener showed the most aggressive behaviour towards aphid predators and weevils. Further, D. tener successfully removed aphid predators from thistles but did not affect weevils. Excluding D. tener from thistles increased seed set. Analyses supported a negative indirect pathway between the aggressive D. tener and thistle seed set through aphid populations, while the other ant species showed no indirect effects on thistle reproduction. Therefore, aggressive aphid-tending ants may enhance biotic resistance by increasing aphid infestation on exotic invasive plants. This study highlights the importance of indirect biotic resistance in modulating the success of invasive species.


Asunto(s)
Hormigas , Áfidos , Animales , Herbivoria , Plantas , Semillas , Simbiosis
15.
Oecologia ; 195(4): 1031-1040, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33710449

RESUMEN

Competition exerted by native plant communities is an important component of biotic resistance against the spread and impact of non-indigenous plant species in novel habitats. However, how the role of biotic resistance varies along environmental gradients to delay invasions is less clear. We conducted two field experiments to determine how competition from native communities affects colonization of a recognized invader of grasslands, Hieracium pilosella L., in the Fuegian steppe along different environmental gradients at regional and landscape scale. We assessed the role of competition on invader survival and growth along a climate gradient at regional scale (4.7-6.6 °C and 270-450 mm year-1), and across four major plant communities (i.e. meadows, grasslands, scrublands, and heathlands) along a topographic catena. At regional scale, the climate gradient showed a 33% reduction in H. pilosella survival at the coldest and wettest extreme, while reduced its biomass in 41% at the warmest and driest site, in the opposite extreme of the gradient. Competition caused a 34% decrease of the invader biomass, similarly along the climate gradient. At landscape scale, the topographic gradient had a stronger effect on invader survival reaching a 67% reduction in lowland meadows due to flooding events, while competition reduced in 29-39% the invader biomass only in grasslands or scrublands with negligible effects on low-resource heathlands. These results suggest that biotic resistance plays a significant and similar role along the climate gradient to delay invasion at regional scale, but at landscape scale is only determinant for rich-resource communities in absence of abiotic stresses.


Asunto(s)
Clima , Ecosistema , Biomasa , Cambio Climático , Plantas
16.
Ecol Lett ; 23(3): 476-482, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31875651

RESUMEN

The biotic resistance hypothesis predicts that diverse native communities are more resistant to invasion. However, past studies vary in their support for this hypothesis due to an apparent contradiction between experimental studies, which support biotic resistance, and observational studies, which find that native and non-native species richness are positively related at broad scales (small-scale studies are more variable). Here, we present a novel analysis of the biotic resistance hypothesis using 24 456 observations of plant richness spanning four community types and seven ecoregions of the United States. Non-native plant occurrence was negatively related to native plant richness across all community types and ecoregions, although the strength of biotic resistance varied across different ecological, anthropogenic and climatic contexts. Our results strongly support the biotic resistance hypothesis, thus reconciling differences between experimental and observational studies and providing evidence for the shared benefits between invasive species management and native biodiversity conservation.


Asunto(s)
Biodiversidad , Ecosistema , Ecología , Especies Introducidas , Plantas , Estados Unidos
17.
Ecol Lett ; 23(6): 1024-1033, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32249475

RESUMEN

Recent studies demonstrate that by focusing on traits linked to fundamental plant life-history trade-offs, ecologists can begin to predict plant community structure at global scales. Yet, consumers can strongly affect plant communities, and means for linking consumer effects to key plant traits and community assembly processes are lacking. We conducted a global literature review and meta-analysis to evaluate whether seed size, a trait representing fundamental life-history trade-offs in plant offspring investment, could predict post-dispersal seed predator effects on seed removal and plant recruitment. Seed size predicted small mammal seed removal rates and their impacts on plant recruitment consistent with optimal foraging theory, with intermediate seed sizes most strongly impacted globally - for both native and exotic plants. However, differences in seed size distributions among ecosystems conditioned seed predation patterns, with relatively large-seeded species most strongly affected in grasslands (smallest seeds), and relatively small-seeded species most strongly affected in tropical forests (largest seeds). Such size-dependent seed predation has profound implications for coexistence among plants because it may enhance or weaken opposing life-history trade-offs in an ecosystem-specific manner. Our results suggest that seed size may serve as a key life-history trait that can integrate consumer effects to improve understandings of plant coexistence.


Asunto(s)
Ecosistema , Dispersión de Semillas , Animales , Mamíferos , Plantas , Conducta Predatoria , Semillas
18.
Proc Biol Sci ; 287(1927): 20192945, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32396806

RESUMEN

The strength of biotic interactions within an ecological community affects the susceptibility of the community to invasion by introduced taxa. In microbial communities, cross-feeding is a widespread type of biotic interaction that has the potential to affect community assembly and stability. Yet, there is little understanding of how the presence of cross-feeding within a community affects invasion risk. Here, I develop a metabolite-explicit model where native microbial taxa interact through both cross-feeding and competition for metabolites. I use this model to study how the strength of biotic interactions, especially cross-feeding, influence whether an introduced taxon can join the community. I found that stronger cross-feeding and competition led to much lower invasion risk, as both types of biotic interactions lead to greater metabolite scarcity for the invader. I also evaluated the impact of a successful invader on community composition and structure. The effect of invaders on the native community was greatest at intermediate levels of cross-feeding; at this 'critical' level of cross-feeding, successful invaders generally cause decreased diversity, decreased productivity, greater metabolite availability, and decreased quantities of metabolites exchanged among taxa. Furthermore, these changes resulting from a successful primary invader made communities further susceptible to future invaders. The increase in invasion risk was greatest when the network of metabolite exchange between taxa was minimally redundant. Thus, this model demonstrates a case of invasional meltdown that is mediated by initial invaders disrupting the metabolite exchange networks of the native community.


Asunto(s)
Ecosistema , Especies Introducidas , Microbiota , Biota
19.
Glob Chang Biol ; 26(5): 3079-3090, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31994234

RESUMEN

Abiotic environmental change, local species extinctions and colonization of new species often co-occur. Whether species colonization is driven by changes in abiotic conditions or reduced biotic resistance will affect community functional composition and ecosystem management. We use a grassland experiment to disentangle effects of climate warming and community diversity on plant species colonization. Community diversity had dramatic impacts on the biomass, richness and traits of plant colonists. Three times as many species colonized the monocultures than the high diversity 17 species communities (~30 vs. 10 species), and colonists collectively produced 10 times as much biomass in the monocultures than the high diversity communities (~30 vs. 3 g/m2 ). Colonists with resource-acquisitive strategies (high specific leaf area, light seeds, short heights) accrued more biomass in low diversity communities, whereas species with conservative strategies accrued most biomass in high diversity communities. Communities with higher biomass of resident C4 grasses were more resistant to colonization by legume, nonlegume forb and C3 grass colonists, but not by C4 grass colonists. Compared with effects of diversity, 6 years of 3°C-above-ambient temperatures had little impact on plant colonization. Warmed subplots had ~3 fewer colonist species than ambient subplots and selected for heavier seeded colonists. They also showed diversity-dependent changes in biomass of C3 grass colonists, which decreased under low diversity and increased under high diversity. Our findings suggest that species colonization is more strongly affected by biotic resistance from residents than 3°C of climate warming. If these results were extended to invasive species management, preserving community diversity should help limit plant invasion, even under climate warming.


Asunto(s)
Biodiversidad , Ecosistema , Biomasa , Especies Introducidas , Poaceae
20.
Front Zool ; 17: 13, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411270

RESUMEN

BACKGROUND: Non-native species are often introduced in cities, where they take advantage of microclimatic conditions, resources provided by humans, and competitor/predator release to establish and proliferate. However, native communities in the surrounding rural or natural areas usually halt their spread through biotic resistance, mainly via top-down regulative processes (predation pressure). Here, we show an unusual commensal interaction between exotic and native bird species that favours the spread of the former from urban to rural habitats. RESULTS: We show how Monk parakeets Myiopsitta monachus, an invasive species often introduced in cities worldwide, associated for breeding with a much larger, native species (the white stork Ciconia ciconia) to reduce predation risk in central Spain, thus allowing their colonization of rural areas. Parakeets selected stork nests close to conspecifics and where breeding raptors were less abundant. Parakeets always flushed when raptors approached their nests when breeding alone, but stayed at their nests when breeding in association with storks. Moreover, when storks abandoned a nest, parakeets abandoned it in the following year, suggesting that storks actually confer protection against predators. CONCLUSIONS: Our results show how a protective-nesting association between invasive and native species can counteract biotic resistance to allow the spread of an invasive species across non-urban habitats, where they may become crop pests. Monk parakeet populations are now growing exponentially in several cities in several Mediterranean countries, where they coexist with white storks. Therefore, management plans should consider this risk of spread into rural areas and favour native predators as potential biological controllers.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda