RESUMEN
Although combination chemotherapy is widely used for bladder cancer (BC) treatment, the recurrence and progression rates remain high. Therefore, novel therapeutic targets are required. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) contributes to tumourigenesis and immune evasion in several cancers; however, its biological function in BC remains unknown. This study aimed to investigate the expression, prognostic value and protumoural function of MTHFD2 in BC and elucidate the mechanism of programmed death-ligand 1 (PD-L1) upregulation by MTHFD2. An analysis using publicly available databases revealed that a high MTHFD2 expression was correlated with clinical features and a poor prognosis in BC. Furthermore, MTHFD2 promoted the growth, migration, invasion and tumourigenicity and decreased the apoptosis of BC cells in vivo and in vitro. The results obtained from databases showed that MTHFD2 expression was correlated with immune infiltration levels, PD-L1 expression, and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. The expression of MTHFD2, PD-L1 and JAK/STAT signalling pathway-related proteins increased after interferon gamma treatment and decreased after MTHFD2 knockdown. Moreover, addition of a JAK/STAT pathway activator partially reduced the effect of MTHFD2 knockdown on BC cells. Collectively, our findings suggest that MTHFD2 promotes the expression of PD-L1 through the JAK/STAT signalling pathway in BC.
Asunto(s)
Antígeno B7-H1 , Neoplasias de la Vejiga Urinaria , Humanos , Antígeno B7-H1/genética , Transducción de Señal , Quinasas Janus/genética , Factores de Transcripción STAT/genética , Neoplasias de la Vejiga Urinaria/genéticaRESUMEN
BACKGROUND: Better prognostic outcome is closely correlated with early detection of bladder cancer. Current non-invasive urianalysis relies on simultaneously testing multiple methylation markers to achieve relatively high accuracy. Therefore, we have developed an easy-to-use, convenient, and accurate single-target urine-based DNA methylation test for the malignancy. METHODS: By analyzing TCGA data, 344 candidate markers with 424 primer pairs and probe sets synthesized were systematically screened in cancer cell lines, paired tissue specimens, and urine sediments from bladder cancer patients and normal controls. The identified marker was further validated in large case-control cohorts. Wilcoxon rank sum tests and c2 tests were performed to compare methylation levels between case-control groups and correlate methylation levels with demographic and clinical characteristics. In addition, MSP, qMSP, RT-PCR, western blot analysis, and immunohistochemistry were performed to measure levels of DNA methylation, mRNA transcription, and protein expression in cancer cell lines and tissues. RESULTS: A top-performing DMRTA2 marker identified was tested in both discovery and validation sets, showing similar sensitivity and specificity for bladder cancer detection. Overall sensitivity in the aggregate set was 82.9%(179/216). The specificity, from a control group consisting of patients with lithangiuria, prostatoplasia, and prostatitis, is 92.5%(468/506). Notably, the methylation assay had the highest sensitivities for tumors at stages of T1(90.4%) and T2(95.0%) compared with Ta (63.0%), T3(81.8%), and T4(81.8%). Furthermore, the test showed admirable detection rate of 80.0%(24/30) for recurring cancers. While methylation was observed in 39/54(72.2%) urine samples from patients with carcinomas of renal pelvis and ureter, it was detected at extremely low rate of 6.0%(8/133) in kidney and prostate cancers. Compared with SV-HUC-1, the normal bladder epithelial cell line, DMRTA2 was hypermethylated in 8/9 bladder cancer cell lines, consistent with the results of MSP and qMSP, but not correlated with mRNA and protein expression levels in these cell lines. Similarly, DMRTA2 immunostaining was moderate in some tissues but weak in others. Further studies are needed to address functional implications of DMRTA2 hypermethylation. CONCLUSIONS: Our data demonstrated that a single-target DNA methylation signature, mDMRTA2, could be highly effective to detect both primary and recurring bladder cancer via urine samples.
Asunto(s)
Metilación de ADN , Neoplasias de la Vejiga Urinaria , Biomarcadores de Tumor/metabolismo , Femenino , Humanos , Biopsia Líquida , Masculino , ARN Mensajero/metabolismo , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patologíaRESUMEN
Bladder cancer (BC) is the tenth most commonly diagnosed cancer worldwide, and its carcinogenesis mechanism has not been fully elucidated. BC is able to induce natural killer (NK) cell dysfunction and escape immune surveillance. The present study found that exosomes derived from the urinary bladder cancer cell line (T24 cell) contribute in generating NK cell dysfunction by impairing viability, and inhibiting the cytotoxicity of the NK cell on target cells. Meanwhile, T24 cell-derived exosomes inhibited the expression of the important functional receptors NKG2D, NKp30, and CD226 on NK cells as well as the secretion of perforin and granzyme-B. The critical miRNAs with high expression in T24 cell-derived exosomes were identified using high-throughput sequencing. Furthermore, following dual-luciferase reporter assay and transfection experiments, miR-221-5p and miR-186-5p were confirmed as interfering with the stability of the mRNAs of DAP10, CD96, and the perforin gene in NK cells and may be potential targets used in the therapy for BC.
Asunto(s)
Exosomas , MicroARNs , Neoplasias de la Vejiga Urinaria , Humanos , MicroARNs/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo , Exosomas/genética , Exosomas/metabolismo , Células Asesinas Naturales/metabolismo , ARN Mensajero/metabolismo , Proliferación Celular , Línea Celular TumoralRESUMEN
BACKGROUND: Bladder cancer (BC) is a common malignancy neoplasm diagnosed in advanced stages in most cases. It is crucial to screen ideal biomarkers and construct a more accurate prognostic model than conventional clinical parameters. The aim of this research was to develop and validate an mRNA-based signature for predicting the prognosis of patients with bladder cancer. METHODS: The RNA-seq data was downloaded from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were screened in three datasets, and prognostic genes were identified from the training set of TCGA dataset. The common genes between DEGs and prognostic genes were narrowed down to six genes via Least Absolute Shrinkage and Selection Operator (LASSO) regression, and stepwise multivariate Cox regression. Then the gene-based risk score was calculated via Cox coefficient. Time-dependent receiver operating characteristic (ROC) and Kaplan-Meier (KM) survival analysis were used to assess the prognostic power of risk score. Multivariate Cox regression analysis was applied to construct a nomogram. Decision curve analysis (DCA), calibration curves, and time-dependent ROC were performed to assess the nomogram. Finally, functional enrichment of candidate genes was conducted to explore the potential biological pathways of candidate genes. RESULTS: SORBS2, GPC2, SETBP1, FGF11, APOL1, and H1-2 were screened to be correlated with the prognosis of BC patients. A nomogram was constructed based on the risk score, pathological stage, and age. Then, the calibration plots for the 1-, 3-, 5-year OS were predicted well in entire TCGA-BLCA patients. Decision curve analysis (DCA) indicated that the clinical value of the nomogram was higher than the stage model and TNM model in predicting overall survival analysis. The time-dependent ROC curves indicated that the nomogram had higher predictive accuracy than the stage model and risk score model. The AUC of nomogram time-dependent ROC was 0.763, 0.805, and 0.806 for 1-year, 3-year, and 5-year, respectively. Functional enrichment analysis of candidate genes suggested several pathways and mechanisms related to cancer. CONCLUSIONS: In this research, we developed an mRNA-based signature that incorporated clinical prognostic parameters to predict BC patient prognosis well, which may provide a novel prognosis assessment tool for clinical practice and explore several potential novel biomarkers related to the prognosis of patients with BC.
Asunto(s)
Biomarcadores de Tumor , Transcriptoma , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/mortalidad , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Masculino , Mutación , Estadificación de Neoplasias , Nomogramas , Pronóstico , ARN Mensajero , Curva ROC , Reproducibilidad de los Resultados , Neoplasias de la Vejiga Urinaria/patologíaRESUMEN
Bladder cancer (BC) is a common malignancy of the urinary system and a leading cause of death worldwide. In this work, untargeted metabolomic profiling of biological fluids is presented as a non-invasive tool for bladder cancer biomarker discovery as a first step towards developing superior methods for detection, treatment, and prevention well as to further our current understanding of this disease. In this study, urine samples from 24 healthy volunteers and 24 BC patients were subjected to metabolomic profiling using high throughput solid-phase microextraction (SPME) in thin-film format and reversed-phase high-performance liquid chromatography coupled with a Q Exactive Focus Orbitrap mass spectrometer. The chemometric analysis enabled the selection of metabolites contributing to the observed separation of BC patients from the control group. Relevant differences were demonstrated for phenylalanine metabolism compounds, i.e., benzoic acid, hippuric acid, and 4-hydroxycinnamic acid. Furthermore, compounds involved in the metabolism of histidine, beta-alanine, and glycerophospholipids were also identified. Thin-film SPME can be efficiently used as an alternative approach to other traditional urine sample preparation methods, demonstrating the SPME technique as a simple and efficient tool for urinary metabolomics research. Moreover, this study's results may support a better understanding of bladder cancer development and progression mechanisms.
Asunto(s)
Metaboloma , Metabolómica/métodos , Neoplasias de la Vejiga Urinaria/orina , Anciano , Ácido Benzoico/orina , Estudios de Casos y Controles , Cromatografía Liquida , Ácidos Cumáricos/orina , Femenino , Glicerofosfolípidos/orina , Hipuratos/orina , Histidina/orina , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Fenilalanina/metabolismo , Microextracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem , Vejiga Urinaria/metabolismo , Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/patología , beta-Alanina/orinaRESUMEN
Accurate staging of bladder cancer (BC) is critical, with local tumor staging directly influencing management decisions and affecting prognosis. However, clinical staging based on clinical examination, including cystoscopy and transurethral resection of bladder tumor (TURBT), often understages patients compared to final pathology at radical cystectomy and lymph node (LN) dissection, mainly due to underestimation of the depth of local invasion and the presence of LN metastasis. MRI has now become established as the modality of choice for the local staging of BC and can be additionally utilized for the assessment of regional LN involvement and tumor spread to the pelvic bones and upper urinary tract (UUT). The recent development of the Vesical Imaging-Reporting and Data System (VI-RADS) recommendations has led to further improvements in bladder MRI, enabling standardization of image acquisition and reporting. Multiparametric magnetic resonance imaging (mpMRI) incorporating morphological and functional imaging has been proven to further improve the accuracy of primary and recurrent tumor detection and local staging, and has shown promise in predicting tumor aggressiveness and monitoring response to therapy. These sequences can also be utilized to perform radiomics, which has shown encouraging initial results in predicting BC grade and local stage. In this article, the current state of evidence supporting MRI in local, regional, and distant staging in patients with BC is reviewed. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2 J. Magn. Reson. Imaging 2020;52:649-667.
Asunto(s)
Imágenes de Resonancia Magnética Multiparamétrica , Neoplasias de la Vejiga Urinaria , Humanos , Imagen por Resonancia Magnética , Recurrencia Local de Neoplasia , Estadificación de Neoplasias , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , Neoplasias de la Vejiga Urinaria/patologíaRESUMEN
Bladder cancer (BC) is one of the most common neoplastic diseases worldwide. With the highest recurrence rate among all cancers, treatment of BC only improved a little in the last 30 years. Available biomarkers are not sensitive enough for the diagnosis of BC, whereas the standard diagnostic method, cystoscopy, is an invasive test and expensive. Hence, seeking new biomarkers of BC is urgent and challenging. With that order, we screened the overlapped differentially expressed genes (DEGs) of GSE13507 and TCGA BLCA datasets. Subsequent protein-protein interactions network analysis recognized the hub genes among these DEGs. Further functional analysis including Gene Ontology and KEGG pathway analysis and gene set enrichment analysis were processed to investigate the role of these genes and potential underlying mechanisms in BC. Kaplan-Meier analysis and Cox hazard ratio analysis were carried out to clarify the diagnostic and prognostic role of these genes. In conclusion, our present study demonstrated that ACTA2, CDC20, MYH11, TGFB3, TPM1, VIM, and DCN are all potential diagnostic biomarkers for BC. And may also be potential treatment targets for clinical implication in the future.
RESUMEN
Increasing reports indicate that circular RNAs (circRNAs) are very important regulators in human diseases, including cancers. In bladder cancer (BC), several circRNAs have been reported to be involved in tumor progressions, such as circ-ITCH and circTCF25. However, the functions of most circRNAs in BC still remains largely unknown. In this study, we identified a novel circRNA termed as circ-VANGL1 by bioinformatics analysis. We found that circ-VANGL1 was highly expressed in BC tissues compared with adjacent normal tissues. Furthermore, we showed that circ-VANGL1 could serve as a prognostic marker for patients with BC. Through functional experiments, we found that circ-VANGL1 knockdown significantly suppressed BC cell proliferation, cell cycle, migration, and invasion in vitro. Besides, circ-VANGL1 silence inhibited BC cell propagation in vivo. Mechanistically, we identified circ-VANGL1 as a sponge of miR-605-3p which targeted VANGL1 in BC cells. Through repressing miR-605-3p availability, circ-VANGL1 contributes to VANGL1 expression, consequently leading to BC cell proliferation, migration, and invasion. Taken together, our study demonstrated circ-VANGL1/miR-605-3p/VANGL1 as a novel essential signaling pathway involved in BC progression.
Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , MicroARNs/metabolismo , ARN Circular/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Animales , Proteínas Portadoras/genética , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Proteínas de la Membrana/genética , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Persona de Mediana Edad , Invasividad Neoplásica , ARN Circular/genética , Transducción de Señal , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patologíaRESUMEN
Scutellarin, an active component of flavonoid, displays a variety of physiological actions and has been applied for the treatment of diverse diseases including hypertension and cerebral infarction as well as cerebral thrombosis. In recent time, Scutellarin has been demonstrated to possess the anticancer activity. But the biological significance of Scutellarin in bladder cancer (BC) remains to be elucidated. In the current study, we explored the specific effect of Scutellarin on BC progression. We found that Scutellarin inhibited hypoxia-induced BC cell migration and invasion in vitro as well as suppressed hypoxia-induced BC metastasis in vivo. Moreover, Scutellarin significantly reversed hypoxia-promoted epithelial-mesenchymal transition (EMT) in BC cells and the PI3K/Akt and MAPK pathways were implicated in the suppressive effect. Taken together, we suggested the potential value of Scutellarin as a novel anticancer agent for BC treatment.
Asunto(s)
Antineoplásicos/farmacología , Apigenina/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Glucuronatos/farmacología , Neoplasias de la Vejiga Urinaria/patología , Animales , Hipoxia de la Célula/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUNDS/AIMS: Numerous studies have reported that long noncoding RNAs (lncRNAs) play critical roles in the development and progression of bladder cancer (BC). LncRNA snoRNA host gene 6 (SNHG6) is ectopically expressed in tumor tissues of patients with BC and BC cell lines. However, little is known about the molecular mechanism of SNHG6-mediated bladder urothelial carcinoma cell migration and invasion. METHODS: We detected the SNHG6 levels in human BC specimens and cell lines by quantitative real-time polymerase chain reaction and Western blot, and investigated its role in BC using in vitro assays. RESULTS: We showed that overexpression of SNHG6 induced epithelial-mesenchymal transition (EMT) and promoted the migration and invasion capabilities of BC cells. Mechanistically, SNHG6 induced EMT of BC cells by upregulating the expression levels of Snail1/2 and regulated BC cell migration and invasion by tumor suppressive hsa-miR-125b and its target gene NUAK Family Kinase 1 (NUAK1). Furthermore, we found that SNHG6 was positively correlated with Snail1/2 expression, and negatively correlated with hsa-miR-125b expression in BC specimens. Further study showed that SNHG6 repressed hsa-miR-125b expression to upregulate Snail1/2. Conversely, hsa-miR-125b knockdown augmented SNHG6 expression in BC cells. CONCLUSION: Overall, our study demonstrated that SNHG6 promotes BC cell migration and invasion partly via the hsa-miR-125b/Snail1/2/NUAK1 pathway. Therefore, SNHG6 may be a potential prognostic biomarker in BC, and targeting hsa-miR-125b/Snail1/2/NUAK1 axis may be a promising therapeutic approach for BC patients.
Asunto(s)
MicroARNs/metabolismo , Proteínas Quinasas/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Regulación hacia Arriba , Neoplasias de la Vejiga Urinaria/metabolismo , Anciano , Sitios de Unión , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Invasividad Neoplásica , Proteínas Quinasas/genética , ARN Largo no Codificante/genética , Proteínas Represoras/genética , Factores de Transcripción de la Familia Snail/genética , Transfección , Neoplasias de la Vejiga Urinaria/patologíaRESUMEN
As an important chemokine receptor, the role of CCR4 in the progression of bladder cancer (BC) remains unknown. In this study, we have shown that CCR4 expression was upregulated in bladder carcinoma tissues compared with adjacent nontumor tissues. Kaplan-Meier survival analysis revealed that CCR4 expression was an independent prognostic risk factor in BC patients, and the addition of CCL17 induced CCR4 production and promoted migration and invasion of BC cells. In addition, CCR4 knockdown significantly attenuated the migratory and invasive capabilities of BC cells. Mechanistically, CCL17-CCR4 axis is involved in ERK1/2 signaling and could mediate the migration and invasion of BC cells by regulating MMP13 activation. This study suggests that CCR4 might represent a promising prognostic biomarker and a potential therapeutic option for BC.
RESUMEN
Bladder cancer (BC) is one of the most frequent urological malignancies, and its molecular mechanism still remains unclear. Recent studies have revealed that MicroRNA (miRNAs) acted as oncogenes or tumor suppressors in a variety of cancers. MiRNA-96 has been reported to play a significant role in the development and progression of many cancers. In the current study, we found that transforming growth factor (TGF)-ß1 played a significant role in the progression that miR-96 conducted. And TGF-ß1 could also regulate the expression of FOXQ1, which is the target gene of miR-96. Furthermore, miR-96 induced epithelial-mesenchymal transition in BC cells, which is driven by TGF-ß1. In conclusion, our data revealed that miR-96 regulates the progression and epithelial-mesenchymal transition, which is driven by TGF-ß1 in BC cells; it may provide a new thought for the therapy of BC.
Asunto(s)
Factores de Transcripción Forkhead/genética , MicroARNs/genética , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Regiones no Traducidas 3' , Apoptosis , Ciclo Celular , Línea Celular Tumoral , Movimiento Celular , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Factores de Transcripción Forkhead/metabolismo , Humanos , Invasividad Neoplásica , Neoplasias de la Vejiga Urinaria/metabolismoRESUMEN
Variations Improper activation and inappropriate expression of fibroblast growth factor receptors (FGFRs) in cancer suggests that they can act as therapeutic targets. Fibroblast growth factor receptor inhibitors are currently employed in clinical trials of different cancers. Regarding the essence and the importance of the personalized medicine, mainly mirrored by remarkable inter-individual variations in different populations, we aimed to perform a pilot study to address FGFR1 and FGFR3 expression levels and their correlation with the clinicopathological features in Iranian patients with bladder cancer (BC). Paired tumor and adjacent non tumor tissue samples along with their clinico-pathological parameters were obtained from 50 cases diagnosed with BC in different stages and grades. The mRNA expressions of FGFR1 and FGFR3 in tissue samples were determined by real-time polymerase chain reaction (real-time PCR). The expression levels of FGFR3 were significantly higher in tumor tissues when compared to adjacent normal tissues (p = 0.007), regardless of the stages and grades of the tumor. Over expression was associated with cigarette smoking (p = 0.037) and family history for cancer (p = 0.004). Decreased expression of FGFR1 was observed, remarkably evident in high-grade tumors (p = 0.047), while over expression was detected in low-grade samples. This pilot study clearly suggests that in Iranian BC patients FGFR1 and FGFR3 expression patterns are different, and also highly distinctive with regard to the tumor's stage and grade. Such particular expression patterns may indicate their special values to be employed for interventional studies aiming targeted therapy. Further studies with a larger sample size are needed to validate our results.
RESUMEN
Bladder cancer (BC) is the most popular malignant urinary cancer, with the highest incidence and mortality of all genitourinary system tumors worldwide. To date, the molecular regulation of the metastasis of BC remains ill defined. Here, we examined the levels of matrix metallopeptidase 9 (MMP9) and nuclear ß-catenin in the BC specimen. We used lithium chloride (LiCl) to inhibit cytosol ß-catenin phosphorylation and degradation to increase nuclear ß-catenin levels in BC cells. We used IWP-2 to enhance cytosol ß-catenin phosphorylation and degradation to decrease nuclear ß-catenin levels in BC cells. We examined MMP9 levels in these experimental settings by quantitative reverse transcription-PCR (RT-qPCR), Western blot, and ELISA. The cell invasiveness was evaluated by Transwell cell assay. We found significantly higher levels of MMP9 and nuclear ß-catenin in human BC specimen with metastasis, compared to those without metastasis. Moreover, a strong correlation was detected between MMP9 and nuclear ß-catenin. LiCl significantly increased nuclear ß-catenin, resulting in MMP9 activation in BC cells. IWP-2 significantly decreased nuclear ß-catenin, resulting in MMP9 inhibition in BC cells. MMP9 regulated cell invasiveness. Together, these data suggest that the WNT signaling pathway regulates metastasis of BC through activation of MMP9. Therapies targeting the WNT signaling pathway may be a promising treatment for BC.
Asunto(s)
Metaloproteinasa 9 de la Matriz/biosíntesis , Neoplasias de la Vejiga Urinaria/genética , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/biosíntesis , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Cloruro de Litio/administración & dosificación , Metaloproteinasa 9 de la Matriz/genética , Metástasis de la Neoplasia , Fosforilación/efectos de los fármacos , Proteolisis/efectos de los fármacos , Neoplasias de la Vejiga Urinaria/patología , beta Catenina/genéticaRESUMEN
Bladder cancer (BC) is a multifactorial disease with a poorly understood main cause. In this study, we aimed to evaluate the effect of the polymorphisms rs2228611 of the DNMT1 gene and rs1569686 of the DNMT3B gene on the susceptibility to develop Bladder Cancer in the Algerian population. A case-control study design was adopted, with DNA samples of 114 BC patients and 123 healthy controls. We found that the rs2228611 of the DNMT1 gene was strongly associated with an increased risk of BC development under genetic models: Codominant AG vs. GG (OR=2.54, 95% CI=1.21-5.51, adj p=0.015) and dominant AA+AG vs. GG (OR=2.24, 95% CI=1.12-4.60, adj p=0.023). However, no statistically significant association was observed between the rs1569686 of the DNMT3B gene and the predisposition to BC. To the best of our knowledge, this is the first peer-reviewed study to evaluate the effect of the rs2228611 polymorphism on bladder cancer occurrence. Our results suggest that the rs2228611 might be a potential biomarker for BC development risk. Additional studies are needed to validate our findings.
RESUMEN
Background: Solasonine has been demonstrated to exert an inhibitory effect on bladder cancer (BC), but the potential mechanisms remain unclear. Therefore, the aim of this study is to explore the association between microRNAs (miRNAs)-mediated regulation and the anti-tumor activities of solasonine in BC. Methods: MiRNA sequencing was performed to identify the differentially expressed microRNAs (DE-miRNAs) associated with solasonine in BC cells. Functional enrichment analyses of the DE-miRNAs activated and inhibited by solasonine were then conducted. The DE-miRNAs with prognostic value for BC and those differentially expressed in the BC samples were subsequently identified as the hub DE-miRNAs. After identifying the messenger RNAs (mRNAs) that were targeted by the hub DE-miRNAs and those differentially expressed in the BC samples, a protein-protein interaction analysis was performed to identify the core downstream genes, which were then used to construct a solasonine-miRNA-mRNA regulatory network. Results: A total of 27 activated and 19 inhibited solasonine-mediated DE-miRNAs were identified that were found to be associated with several tumor-related biological functions and pathways. After integrating the results of the survival analysis and expression assessment, the following nine hub DE-miRNAs were identified: hsa-miR-127-3p, hsa-miR-450b-5p, hsa-miR-99a-5p, hsa-miR-197-3p, hsa-miR-423-3p, hsa-miR-4326, hsa-miR-625-3p, hsa-miR-625-5p, and hsa-miR-92a-3p. The DE-mRNAs targeted by the hub DE-miRNAs were predicted, and 30 core downstream genes were used to construct the solasonine-miRNA-mRNA regulatory network. miR-450b-5p was shown to be associated with the most mRNAs in this network, which suggests that it plays a crucial role in the solasonine-mediated anti-BC effect. Conclusions: A regulatory network, including solasonine, miRNAs, and mRNAs related to BC, was constructed. This network provides extensive insights into the molecular regulatory mechanisms that underlie the anti-cancer efficacy of solasonine in BC.
RESUMEN
Background: Bladder cancer (BC), as a common type of cancer, has a poor prognosis, also some common invasive prognostic or therapeutic markers are difficult to obtain, which makes further treatment of BC difficult. Glycyl-tRNA synthetase (GARS), as one of the aminoacyl-tRNA synthetases that charge tRNAs with their cognate amino acids, has been identified as a target in many diseases, including tumors. Methods: Bioassay analysis revealed that GARS was in high expression in most cancer tissues. The expression of GARS gene in BC tissues could assess the prognosis of BC patients, and the expression in urinary extracellular vesicles (uEVs) of patients was positively correlated with the expression in tissues. In addition to this, we analyzed GARS-related differential gene expression, copy number variation (CNV) and mutation profiles, potential biological functions, immune cell infiltration and drug sensitivity. In vivo and vitro tumorigenic experiments were performed to validate the function of GARS. Single-cell data were used to further analyze its role in the microenvironment. Results: In our study, we found that GARS was highly expressed in 30 cancer tissues including BC, and high GARS expression was negatively correlated with the prognosis of BC patients. To address this phenomenon, we analyzed the differential genes between high and low GARS groups by enrichment analysis, and identified the biological signaling pathways that were mainly enriched for their functions, and found that the enrichment was found in immune-related signaling pathways and regulation of cell-cell adhesion. Then we found that GARS was positively associated with immune cell infiltration in BC, and some common immune checkpoints were significantly overexpressed in the GARS-high group. Besides, we found that GARS was enriched in myofibroblasts in the tumor microenvironment, and the enrichment was positively correlated with epithelial-mesenchymal transition (EMT)-related genes. This study also showed a positive correlation between GARS and BC RNA stemness. Patients in the GARS-high group had considerably higher rates of P53 and Titin (TTN) mutations than those in the GARS-low group. Drug Sensitivity analysis screened for drugs that were more sensitive to GARS-high patients. Further, we found that knockdown of GARS significantly inhibited the proliferation, migration and invasion ability both in vivo and in vitro. Finally, we found that in patients with high GARS the expression in uEVs was also at a high level. Conclusions: In summary, this study provided evidence that GARS can be used as a prognostic and therapeutic marker for BC, we can detect GARS in uEVs instead of tissue, to provide a new, simple, noninvasive way to obtain prognostic and therapeutic markers for BC patients.
RESUMEN
Objective: Bladder cancer is one of the most prominent malignancies affecting the urinary tract, characterized by a poor prognosis. Our previous research has underscored the pivotal role of m6A methylation in the progression of bladder cancer. Nevertheless, the precise relationship between N6-methyladenosine (m6A) regulation of long non-coding RNA (lncRNA) and bladder cancer remains elusive. Methods: This study harnessed sequencing data and clinical records from 408 bladder cancer patients in the TCGA database. Employing R software, we conducted bioinformatics analysis to establish an m6A-lncRNA co-expression network. Analyzing the differences between high and low-risk groups, particularly at the immunological level, and subsequently investigating the primary regulatory factors of these lncRNA, validating the findings through experiments, and exploring their specific cellular functions. Results: We identified 50 m6A-related lncRNA with prognostic significance through univariate Cox regression analysis. In parallel, we employed a LASSO-Cox regression model to pinpoint 11 lncRNA and calculate risk scores for bladder cancer patients. Based on the median risk score, patients were categorized into low-risk and high-risk groups. The high-risk cohort exhibited notably lower survival rates than their low-risk counterparts. Further analysis pointed to RBM15 and METTL3 as potential master regulators of these m6A-lncRNA. Experimental findings also shed light on the upregulated expression of METTlL3 and RBM15 in bladder cancer, where they contributed to the malignant progression of tumors. The experimental findings demonstrated a significant upregulation of METTL3 and RBM15 in bladder cancer specimens, implicating their contributory role in the oncogenic progression. Knockdown of METTL3 and RBM15 resulted in a marked attenuation of tumor cell proliferation, invasion, and migration, which was concomitant with a downregulation in the cellular m6A methylation status. Moreover, these results revealed that RBM15 and METTL3 function in a synergistic capacity, positing their involvement in cancer promotion via the upregulation of m6A modifications in long non-coding RNAs. Additionally, this study successfully developed an N-methyl-N-nitrosourea (MNU)-induced rat model of in situ bladder carcinoma, confirming the elevated expression of RBM15 and METTL3, which paralleled the overexpression of m6A-related- lncRNAs observed in bladder cancer cell lines. This congruence underscores the potential utility of these molecular markers in in vivo models that mirror human malignancies. Conclusion: This study not only offers novel molecular targets,but also enriches the research on m6A modification in bladder cancer, thereby facilitating its clinical translation.
RESUMEN
Background: Bladder cancer (BC) is a urological tumor which can be associated with a poor prognosis. Aging is a crucial factor in cancer development, but the role and prognostic value of aging-related genes (ARGs) in BC are unclear. Methods: In this study, with reference to The Cancer Genome Atlas (TCGA) database, a 5-gene signature model was constructed for the analysis of BC prognosis, immune microenvironment, and immunotherapy response. Least absolute shrinkage and selection operator (LASSO) and univariate Cox regression analyses were applied. Results: There was significant heterogeneity in the genetic variation and expression profiles of ARGs in BC. Striking variations were revealed in survival outcomes between high- and low-risk groups by Kaplan-Meier curves. The majority of samples of cases in the high-risk group belonged to the middle and late stage of the tumor and had a higher abundance of immune infiltration and immune checkpoint expression, and better immunotherapeutic effects. Conclusions: The risk score model of ARGs achieved more satisfactory results in the prediction of prognosis, clinical characteristics, immune infiltration, tumor mutational load, and immunotherapy in BC patients with good stability and reproducibility, offering innovative approaches and orientations for the diagnosis and treatment of patients with BC in the future.
RESUMEN
Bladder Cancer (BC) is a common disease that comes with a high risk of morbidity, death, and expense. Primary risk factors for BC include exposure to carcinogens in the workplace or the environment, particularly tobacco. There are several difficulties, such as the requirement for a qualified expert in BC classification. The Parrot Optimizer (PO), is an optimization method inspired by key behaviors observed in trained Pyrrhura Molinae parrots, but the PO algorithm becomes stuck in sub-regions, has less accuracy, and a high error rate. So, an Improved variant of the PO (IPO) algorithm was developed using a combination of two strategies: (1) Mirror Reflection Learning (MRL) and (2) Bernoulli Maps (BMs). Both strategies improve optimization performance by avoiding local optimums and striking a compromise between convergence speed and solution diversity. The performance of the proposed IPO is evaluated against eight other competitor algorithms in terms of statistical convergence and other metrics according to Friedman's test and Bonferroni-Dunn test on the IEEE Congress on Evolutionary Computation conducted in 2022 (CEC 2022) test suite functions and nine BC datasets from official repositories. The IPO algorithm ranked number one in best fitness and is more optimal than the other eight MH algorithms for CEC 2022 functions. The proposed IPO algorithm was integrated with the Support Vector Machine (SVM) classifier termed (IPO-SVM) approach for bladder cancer classification purposes. Nine BC datasets were then used to confirm the effectiveness of the proposed IPO algorithm. The experiments show that the IPO-SVM approach outperforms eight recently proposed MH algorithms. Using the nine BC datasets, IPO-SVM achieved an Accuracy (ACC) of 84.11%, Sensitivity (SE) of 98.10%, Precision (PPV) of 95.59%, Specificity (SP) of 95.98%, and F-score (F1) of 94.15%. This demonstrates how the proposed IPO approach can help to classify BCs effectively. The open-source codes are available at https://www.mathworks.com/matlabcentral/fileexchange/169846-an-efficient-improved-parrot-optimizer.