Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Publication year range
1.
Nanotechnology ; 34(37)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37311437

RESUMEN

We systematically investigate the thermoelectric (TE) properties of the Cr-doped blue phosphorene (blue-P) along the armchair and zigzag directions. First, we find the semiconducting band structure of the blue-P will become spin-polarized due to the Cr-doping, and can be seriously changed by the doping concentration. Then we show the Seebeck coefficient, the electronic conductance, the thermal conductance, and the figures of meritZTs are all dependent on the transport directions and doping concentration. However, two pairs of the peaks of the charge and spinZTs can be always observed with the low-height (high-height) pair on the side of the negative (positive) Fermi energy. In addition, at temperature 300 K the extrema of the charge (spin)ZTs of the blue-P along the two directions are kept to be larger than 22 (90) for the different doping concentrations and will be further enhanced at lower temperature. Therefore, we believe the Cr-doped blue-P should be a versatile high-performance TE material which may be used in the fields of the thermorelectrics and spin caloritronics.


Asunto(s)
Electrónica , Temperatura
2.
Sensors (Basel) ; 20(12)2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32604852

RESUMEN

Surface plasmon resonance (SPR) with two-dimensional (2D) materials is proposed to enhance the sensitivity of sensors. A novel Goos-Hänchen (GH) shift sensing scheme based on blue phosphorene (BlueP)/transition metal dichalogenides (TMDCs) and graphene structure is proposed. The significantly enhanced GH shift is obtained by optimizing the layers of BlueP/TMDCs and graphene. The maximum GH shift of the hybrid structure of Ag-Indium tin oxide (ITO)-BlueP/WS2-graphene is -2361λ with BlueP/WS2 four layers and a graphene monolayer. Furthermore, the GH shift can be positive or negative depending on the layer number of BlueP/TMDCs and graphene. For sensing performance, the highest sensitivity of 2.767 × 107λ/RIU is realized, which is 5152.7 times higher than the traditional Ag-SPR structure, 2470.5 times of Ag-ITO, 2159.2 times of Ag-ITO-BlueP/WS2, and 688.9 times of Ag-ITO-graphene. Therefore, such configuration with GH shift can be used in various chemical, biomedical and optical sensing fields.

3.
Small ; 14(50): e1803040, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30371002

RESUMEN

The origin of charge density wave (CDW) observed in low-dimensional systems is, for long, a subject of intensive debate in contemporary condensed matter physics. Specifically, a simple and well established model, namely, the Peierls instability is often (but not always) used to clearly explain CDW states in real systems. Here, first-principles density functional theory calculations are used to show CDW formation at a one-dimensional interface embedded in a lateral heterostructure comprising blue and black phosphorene, even at room temperature. The CDW formation is fully explained by the Peierls mechanism, including a double-periodicity lattice distortion energy lowering and a bandgap opening. The lattice distortion also substantially modifies the band alignment of the heterostructure. Comparison with a freestanding P chain shows that the structural distortion is confined to one dimension within the heterostructures, ruling out competing non-Peierls-type distortions in two dimensions. In addition, similar Peierls-type distortions for other lateral heterostructures are shown by using the example of a graphene-hexagonal boron nitride heterostructure, which may stimulate related studies in different 2D systems. These findings not only shed more light on the Peierls mechanism, but also have important implications for devices based on 2D lateral heterostructures.

4.
Chemphyschem ; 19(5): 612-618, 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29210157

RESUMEN

Van der Waals heterostructures, a new class of materials made of a vertically selective assembly of various 2D monolayers held together by van der Waals forces, have attracted a great deal of attention due to their promise to deliver novel electronic and optoelectronic properties that are not achievable by using individual 2D crystals. Using density functional theory (DFT), it is revealed that van der Waals heterostructures composed of monolayers of hexagonal boron nitride (h-BN) and the latest P allotrope blue phosphorus (blue phosphorene, BlueP) forms a straddling type I band offset for which the band edges exclusively belong to BlueP. This feature enables h-BN to act as a protective coating material to resolve the air instability of BlueP. Furthermore, substitutional doping of C into h-BN (h-BCN) at a suitable concentration induces h-BCN-BlueP into staggered type II band offset. The type II band alignment triggered by the intensified built-in electric field across the sheets implies improved carrier mobility and the suppressed recombination of photogenerated hole pairs. These major benefits can pave the way for the potential functionality of h-BCN-BlueP to be exploited for efficient photovoltaic devices.

5.
J Phys Condens Matter ; 36(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38056009

RESUMEN

Monolayer blue phosphorene (BlueP) has attracted much interest as a potential channel material in electronic devices. Searching for suitable two-dimensional (2D) metal materials to use as electrodes is critical to fabricating high-performance nanoscale channel BlueP-based field effect transistors (FETs). In this paper, we adopted first-principles calculations to explore binding energies, phonon calculations and electronic structures of 2D metal-BlueP heterojunctions, including Ti3C2-, NbTe2-, Ga(110)- and NbS2-BlueP, and thermal stability of Ti3C2-BlueP heterojunction at room temperature. We also used density functional theory coupled with the nonequilibrium Green function method to investigate the transport properties of sub-5 nm BlueP-based FETs with Ti3C2-BlueP electrodes. Our calculated results indicate that Ti3C2-BlueP has excellent thermal stability and may be used as a candidate electrode material for BlueP-based FETs. The double-gate can more effectively improve the device performance compared with the single-gate. The estimated source leakage current of sub-5 nm transistors reaches up to 369µA µm-1, which is expected to meet the requirements of the international technology roadmap for semiconductors for LP (low-power) devices. Our results imply that 2D Ti3C2may act as an appropriate electrode material for LP BlueP-based FETs, thus providing guidance for the design of future short-gate-length BlueP-based FETs.

6.
J Phys Condens Matter ; 35(13)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36693282

RESUMEN

Blue phosphorene is an interesting two-dimensional (2D) material, which has attracted the attention of researchers, due to its affluent physical and chemical properties. In recent years, it was discovered that the intercalation of alkali metals and alkaline earth metals in 2D materials may lead to conventional Bardeen-Cooper-Schrieffer (BCS) superconductivity. In this work, the electronic structure, phonon dispersion, Eliashberg spectral function, electron-phonon coupling (EPC), and the critical temperature of blue phosphorene bilayer intercalated by alkali metals (Li, and K) and alkaline earth metals (Ca, and Sr) for both AB and AC stacking orders are studied using the density functional theory and the density functional perturbation theory, within the generalized gradient approximation with van der Waals correction. The present work shows that the blue phosphorene bilayer is dynamically stable in AB stacking for Li and AC stacking for K, Ca, and Sr, and after intercalation, it transforms from a semiconductor to a metal owing to charge transfer between intercalated atoms and phosphorene. Furthermore, the EPC constant and the critical temperature are higher than those of 2D BCS-type superconductors. They are about 3 and 24.61 K respectively for K-intercalated blue phosphorene bilayer. Thus, our results suggest that blue phosphorene is a good candidate for a superconductor.

7.
ACS Appl Mater Interfaces ; 15(16): 20520-20530, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37040261

RESUMEN

Grain boundaries (GBs) in two-dimensional (2D) materials are known to dramatically impact material properties ranging from the physical, chemical, mechanical, electronic, and optical, to name a few. Predicting a range of physically realistic GB structures for 2D materials is critical to exercising control over their properties. This, however, is nontrivial given the vast structural and configurational (defect) search space between lateral 2D sheets with varying misfits. Here, in a departure from traditional evolutionary search methods, we introduce a workflow that combines the Graph Neural Network (GNN) and an evolutionary algorithm for the discovery and design of novel 2D lateral interfaces. We use a representative 2D material, blue phosphorene (BP), and identify 2D GB structures to test the efficacy of our GNN model. The GNN was trained with a computationally inexpensive machine learning bond order potential (Tersoff formalism) and density functional theory (DFT). Systematic downsampling of the training data sets indicates that our model can predict structural energy under 0.5% mean absolute error with sparse (<2000) DFT generated energy labels for training. We further couple the GNN model with a multiobjective genetic algorithm (MOGA) and demonstrate strong accuracy in the ability of the GNN to predict GBs. Our method is generalizable, is material agnostic, and is anticipated to accelerate the discovery of 2D GB structures.

8.
Front Chem ; 10: 951870, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873045

RESUMEN

Monolayer blue phosphorene (BlueP) systems were investigated under biaxial strain range from -10% to +10%. All these systems exhibit excellent stability, accompanying changes in the electronic and optical properties. BlueP becomes metallic at -10% strain and transforms into a direct semiconductor at 10% strain while maintaining indirect semiconductor behaviors at -8% to +8% strain. The bandgap of BlueP decreases linearly with strain, and tensile strain exhibits a more moderate bandgap modulation than compressive strain. The real part of the dielectric function of BlueP is enhanced under compressive strain, while the optical absorption in the visible and the infrared light regions increases significantly under tensile strain. The maximum absorption coefficient of 0.52 ×105/cm occurs at 530 nm with the 10% strain. Our analysis indicates that the semiconductor-metal transition and the indirect-direct bandgap transition are the competition results of the energy states near the Fermi level under a massive strain. The potent compressive strain leads the p y orbitals of the conduction band to move downward and pass through the Fermi level at the K point. The robust tensile strain guides the energy states at the Γ point to approach the Fermi level and become the band edges. Our results suggest that the energy storage capacity of BlueP can be significantly improved by compressive strain, while the visible light photocatalytic performance is enhanced by tensile strains of less than 8%. Our works provide a reference for the practical applications of BlueP in photocatalyst, photovoltaic cells, and electronic devices.

9.
J Phys Condens Matter ; 34(28)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35443237

RESUMEN

Active enhancement of the optical absorption coefficient to improve the light converting efficiency of thin-film solar cell materials is crucial to develop the next-generation solar cell devices. Here we report first-principles calculations with generalized gradient approximation to study the optoelectronic properties of pristine and divacancy (DV) blue phosphorene (BlueP) thin films under structural deformation. We show that instead of formingsp-like covalent bonds as in the pristine BlueP layer, a DV introduces two particular dangling bonds between the voids. Using a microscopic (non-) affine deformation model, we reveal that the orbital hybridization of these dangling bonds is strongly modified in both the velocity and vorticity directions depending on the type of deformation, creating an effective light trap to enhance the material absorption efficiency. Furthermore, this successful light trap is complemented by a clear signature ofσ+πplasmon when a DV BlueP layer is slightly compressive. These results demonstrate a practical approach to tailor the optoelectronic properties of low-dimensional materials and to pave a novel strategy to design functionalized solar cell devices from the bottom-up with selective defects.

10.
J Phys Condens Matter ; 33(48)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34474401

RESUMEN

Well-designed two-dimensional heterogeneous photocatalysts have attracted significant attention due to the enhancement in visible-light absorption and effective charge separation. In this paper, the electronic and optical properties of g-C3N4/BlueP (blue phosphorene) heterojunction under varying strains were investigated systematically by first-principles calculations. The results showed that the type transformation of g-C3N4/BlueP heterojunction can be achieved by suitable biaxial strain. The CBM was found to be composed of g-C3N4as electron acceptor, while the VBM was contributed by BlueP as electron donor which solved the problem of high electron-hole recombination of type-I heterostructures. The band gap and band edge alignment under -6% to -8% compressive biaxial strain could satisfy the REDOX (reduction-oxidation) potential of photolysis water. A wide optical response range and good absorbance were also observed for the heterostructure under strain, which improved the solar utilization rate compared with individual g-C3N4and BlueP.

11.
J Phys Condens Matter ; 33(48)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34399408

RESUMEN

Blue phosphorene (BlueP) is a novel two-dimensional material that shares properties with black phosphorene and is potentially even more interesting for opto-electronic applications because of its layer dependent wide band gap of ≈ 2 to 3 eV and superior charge carrier mobility. It was first fabricated on Au(111), where, however, a network consisting of BlueP subunits and Au-linker atoms is formed. The physical properties of such an arrangement strongly differ from a freestanding BlueP monolayer. Here, we report on the growth of epitaxial BlueP on the Au(100) surface, which is an interesting alternative when aiming at quasi-freestanding BlueP domains. We find two different phosphorus phases by means of scanning tunneling microscopy and distortion-corrected low-energy electron diffraction. In the low coverage regime, we observe a commensurate (2 × 2) phase, whereas for higher coverage, a nearly hexagonal structure is formed. For the latter, the lattice parameters measured via atomically resolved scanning tunneling hydrogen microscopy closely resemble those of freestanding BlueP, and the typical height modulation of the phosphorus atoms is verified in our layers by means of x-ray photoelectron diffraction. We further analyze the chemical and electronic properties of these films by means of x-ray and (angle resolved) ultraviolet photoelectron spectroscopy.

12.
J Phys Condens Matter ; 34(8)2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34768253

RESUMEN

We have performed density functional theory calculations to study blue phosphorene and black phosphorene on metal substrates. The substrates considered are the (111) and (110) surfaces of Al, Cu, Ag, Ir, Pd, Pt and Au and the (0001) and (101¯0) surfaces of Zr and Sc. The formation energyEFis negative (energetically favorable) for all 36 combinations of overlayer and substrate. By comparing values of ΔΩ, the change in free energy per unit area, as well as the overlayer-substrate binding energyEb, we identify that Ag(111), Al(110), Cu(111), Cu(110) and possibly Au(110) may be especially suitable substrates for the synthesis and subsequent exfoliation of blue phosphorene, and the Ag(110) and Al(111) substrates for the synthesis of black phosphorene. However, these conclusions are drawn assuming the source of P atoms is bulk phosphorus, and can alter upon changing synthesis conditions (chemical potential of phosphorus). Thus, when the source of phosphorus atoms is P4, blue phosphorene is favored only over Pt(111). We find that for all combinations of overlayer and substrate, the charge transfer per bond can be captured by the universal descriptorD=Δχ/ΔR, where ΔχandΔRare, respectively, the differences in electronegativity and atomic size between phosphorus and the substrate metal.

13.
J Mol Model ; 27(5): 141, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33909152

RESUMEN

Structural, electronic, binding energies and magnetic properties of aluminum-doped and single vacancy blue phosphorene interacting with pollutant molecules are investigated using the density functional theory (DFT) with periodic boundary conditions. Acetylene, ozone, sulfur trioxide, hydrogen selenide, and sulfur dichloride molecules are considered to show the efficiency and enhancement of the sensing properties in comparison with the pristine blue phosphorene. Acetylene, sulfur trioxide, hydrogen selenide, and sulfur dichloride show chemisorption (> 0.5 eV/molecule) when interacting with the aluminum-doped system, but the ozone molecule dissociates in all configurations and symmetry sites. On the other hand, the acetylene, ozone, and sulfur trioxide with the single vacancy blue phosphorene exhibit chemisorption, the hydrogen selenide molecule exhibit a weak interaction energy, and the sulfur dichloride dissociates in all configurations and symmetry sites. In all the cases, the enhancement in the interaction energy was achieved when compared to other results for the same molecules. Finally, the single vacancy blue phosphorene shows a magnetic moment of ~1 µB/supercell, as induced by the vacancy.

14.
Chem Asian J ; 14(16): 2831-2837, 2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31226233

RESUMEN

In the present era of growing energy demands, low-dimensional materials are emerging as the suitable choices for energy storage due to their excellent ion transport properties, improved reversible capacity, fine rate performance and good cycling stability. In this context, we have investigated the applicability of black and blue phosphorene monolayers as potential cathodes for Al batteries. Both black and blue phosphorene monolayers show similar electrochemical behavior as that of experimentally reported graphite with a charge transfer from the surface in order to bind the tetrahedral geometry of AlCl4 during the charging process. The adsorption of AlCl4 drives semiconductor-to-metallic transformation of black/blue phosphorene, which ensures constant conductivity in Al batteries. Following the systematic adsorption of AlCl4 , the voltage for black and blue phosphorene is calculated to be ≈1.50 V and ≈1.80 V with storage capacities of 144 mAh g-1 and 108 mAh g-1 , respectively. Besides, low diffusion barriers of 0.11 eV and 0.14 eV are predicted for AlCl4 on the respective systems of black and blue phosphorene monolayers. Our work suggests that both black and blue phosphorene monolayers can be potential cathodes for Al batteries with delivery of high storage capacity and high voltage, respectively.

15.
ACS Appl Mater Interfaces ; 11(23): 20956-20964, 2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31046216

RESUMEN

We systematically study the device characteristics of the monolayer (ML) blue phosphorene metal-oxide semiconductor field-effect transistors (MOSFETs) by using ab initio quantum-transport simulations. The ML blue phosphorene MOSFETs show superior performances with ultrashort-channel length. We first predict the ultrascaled ML blue phosphorene MOSFETs with proper doping concentration and underlap structures are compliant with the high-performance (HP) and low-power (LP) requirements of the International Technology Roadmap for Semiconductors in the next decade in the aspects of the on-state current, delay time, and power dissipation. Encouragingly, the performances of the ML blue phosphorene MOSFETs are superior to that of the MOSFETs based on arsenene, antimonene, InSe, etc. in terms of the on-state current at similar device size. We also consider the electron-phonon scattering in 10.2 nm gate ML blue phosphorene MOSFET. It is found that the on-state current with the scattering of the blue phosphorene device is degraded by 25.4 and 23.6% for HP and LP applications, which can also fulfill the HP and LP application target. Therefore, we can deduce that ML blue phosphorene is an alternative channel material to silicon for ultrascaled FETs if the large-scale and high-quality blue phosphorene can be achieved.

16.
Nanoscale Res Lett ; 14(1): 174, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31139946

RESUMEN

The structural and electronic properties of a monolayer and bilayer blue phosphorene/graphene-like GaN van der Waals heterostructures are studied using first-principle calculations. The results show that the monolayer-blue phosphorene/graphene-like GaN heterostructure is an indirect bandgap semiconductor with intrinsic type II band alignment. More importantly, the external electric field tunes the bandgap of monolayer-blue phosphorene/graphene-like GaN and bilayer-blue phosphorene/graphene-like GaN, and the relationship between bandgap and external electric field indicates a Stark effect. The semiconductor-to-metal transition is observed in the presence of a strong electric field.

17.
ACS Nano ; 12(5): 5059-5065, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29741870

RESUMEN

Exploring stable two-dimensional materials with appropriate band gaps and high carrier mobility is highly desirable due to the potential applications in optoelectronic devices. Here, the electronic structures of phosphorene on a Au(111) substrate are investigated by scanning tunneling spectroscopy, angle-resolved photoemission spectroscopy (ARPES), and density functional theory (DFT) calculations. The substrate-induced phosphorene superstructure gives a superlattice potential, leading to a strong band folding effect of the sp band of Au(111) on the band structure. The band gap could be clearly identified in the ARPES results after examining the folded sp band. The value of the energy gap (∼1.1 eV) and the high charge carrier mobility comparable to that of black phosphorus, which is engineered by the tensile strain, are revealed by the combination of ARPES results and DFT calculations. Furthermore, the phosphorene layer on the Au(111) surface displays high surface inertness, leading to the absence of multilayer phosphorene. All these results suggest that the phosphorene on Au(111) could be a promising candidate, not only for fundamental research but also for nanoelectronic and optoelectronic applications.

18.
ACS Appl Mater Interfaces ; 10(10): 8630-8639, 2018 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-29436225

RESUMEN

In the wake of blue phosphorene's (BP) computational discovery and experimental realization, it has emerged as a versatile material with interesting optical, electrical, and mechanical properties. In this study, using first principles density functional theory calculations, we have investigated the adsorption and diffusion of Na and K over monolayer BP to assess its suitability as Na-ion and K-ion battery anodes. The optimized adsorption energies were found to be -0.96 eV for Na and -1.54 eV for K, which are sufficiently large to ensure stability and safety during operation. In addition, BP could adsorb Na and K atoms up to a stoichiometric ratio of 1:1 which yields a high storage capacity of 865 mA h/g for both adatom species. Through examination of the electronic structure and projected density of states of BP as a function of Na/K concentration, we predict that the band gap of the system increasingly shrinks, and in the case of maximum K adsorption, the band gap diminishes completely. Additionally, the diffusion of Na and K over BP is observed to be ultrafast, especially for K, and anisotropic with modest energy barriers of 0.11 and 0.093 eV for Na and K, respectively. Building upon these findings, we employed vibrational analysis techniques with transition state theory to incorporate kinetic effects and predicted a diffusivity of 7.2 × 10-5 cm2/s for Na and 8.58 × 10-5 cm2/s for K on BP. Given these advantages, that is, ultrahigh capacity, electrical conductivity, and high Na/K diffusivity, we conclude that BP can be considered as an excellent candidate for anodes in Na- and K-ion batteries.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda