Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Comput Chem ; 45(28): 2352-2359, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39031704

RESUMEN

Acetonitrile, a polar molecule that cannot form hydrogen bonds on its own, interacts with solvent molecules mainly through the lone pair of its nitrogen atom and the π electrons of its CN triple bond [Correction added on 17 July 2024, after first online publication: Acetole has been changed to Acetonitrile in the preceeding sentence.]. Interestingly, acetonitrile exhibits an unexpected strengthening of the triple bond's force constant in an aqueous environment, leading to an upshift (blueshift) in the corresponding stretching vibration: this effect contrasts with the usual consequence of hydrogen bonding on the vibrational frequencies of the acceptor groups, that is, frequency redshift. This investigation elucidates this phenomenon using Raman spectroscopy to examine the behavior of acetonitrile in organic solvent, water, and silver ion aqueous solutions, where an even more pronounced upshift is observed. Raman spectroscopy is particularly well suited for analyzing aqueous solutions due to the minimal scattering effect of water molecules across most of the vibrational spectrum. Computational approaches, both static and dynamical, based on Density Functional Theory and hybrid functionals, are employed here to interpret these findings, and accurately reproduce the vibrational frequencies of acetonitrile in different environments. Our calculations also allow an explanation for this unique behavior in terms of electric charge displacements. On the other hand, the study of the interaction of acetonitrile with water molecules and metal ions is relevant for the use of this molecule as a solvent in both chemical and pharmaceutical applications.

2.
Molecules ; 29(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38930965

RESUMEN

The distinctive electron structures of luminescent radicals offer considerable potential for a diverse array of applications. Up to now, the luminescent properties of radicals have been modulated through the introduction of electron-donating substituents, predominantly derivatives of carbazole and polyaromatic amines with more and more complicated structures and redshifted luminescent spectra. Herein, four kinds of (N-carbazolyl)bis(2,4,6-tirchlorophenyl)-methyl (CzBTM) radicals, Ph2CzBTM, Mes2CzBTM, Ph2PyIDBTM, and Mes2PyIDBTM, were synthesized and characterized by introducing simple phenyl and 2,4,6-trimethylphenyl groups to CzBTM and PyIDBTM. These radicals exhibit rare blueshifted emission spectra compared to their parent radicals. Furthermore, modifications to CzBTM significantly enhanced the photoluminescence quantum yields (PLQYs), with a highest PLQY of 21% for Mes2CzBTM among CzBTM-type radicals. Additionally, the molecular structures, photophysical properties of molecular orbitals, and stability of the four radicals were systematically investigated. This study provides a novel strategy for tuning the luminescent color of radicals to shorter wavelengths and improving thermostability.

3.
Angew Chem Int Ed Engl ; : e202409099, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38924238

RESUMEN

Achieving enhanced or blue-shifted emission from piezochromic materials remains a major challenge. Covalent organic frameworks (COFs) are promising candidates for the development of piezochromic materials owing to their dynamic structures and adjustable optical properties, where the emission behaviors are not solely determined by the functional groups, but are also greatly influenced by the specific geometric arrangement. Nevertheless, this area remains relatively understudied. In this study, a successful synthesis of a series of bicarbazole-based COFs with varying topologies, dimensions, and linkages was conducted, followed by an investigation of their structural and emission properties under hydrostatic pressure generated by a diamond anvil cell. Consequently, these COFs exhibited distinct piezochromic behaviors, particularly a remarkable pressure-induced emission enhancement (PIEE) phenomenon with a 16-fold increase in fluorescence intensity from three-dimensional COFs, surpassing the performance of CPMs and most organic small molecules with PIEE behavior. On the contrary, three two-dimensional COFs with flexible structures exhibited rare blue-shifted emission, whereas the variants with rigid and conjugated structures showed common red-shifted and reduced emission. Mechanism research further revealed that these different piezochromic behaviors were primarily determined by interlayer distance and interaction. This study represents the first systematic exploration of the structures and emission properties of COFs through pressure-treated engineering and provides a new perspective on the design of piezochromic materials.

4.
Angew Chem Int Ed Engl ; 62(40): e202310047, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37593817

RESUMEN

The current availability of multi-resonance thermally activated delayed fluorescence (MR-TADF) materials with excellent color purity and high device efficiency in the deep-blue region is appealing. To address this issue in the emerged nitrogen/carbonyl MR-TADF system, we propose a spiro-lock strategy. By incorporating spiro functionalization into a concise molecular skeleton, a series of emitters (SFQ, SOQ, SSQ, and SSeQ) can enhance molecular rigidity, blue-shift the emission peak, narrow the emission band, increase the photoluminescence quantum yield by over 92 %, and suppress intermolecular interactions in the film state. The referent CZQ without spiro structure has a more planar skeleton, and its bluer emission in the solution state redshifts over 40 nm with serious spectrum broadening and a low PLQY in the film state. As a result, SSQ achieves an external quantum efficiency of 25.5 % with a peak at 456 nm and a small full width at half maximum of 31 nm in a simple unsensitized device, significantly outperforming CZQ. This work discloses the importance of spiro-junction in modulating deep-blue MR-TADF emitters.

5.
Angew Chem Int Ed Engl ; 61(37): e202207426, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-35860924

RESUMEN

Achieving blueshifted and enhanced emission from purely organic luminophors remains a major challenge. Herein, we report a tetracoordinate boron complex with polymorphism (Y-phase and O-phase)-dependent luminescence. Impressively, the Y-phase crystals exhibited rare piezochromic luminescent properties such as pressure-induced blue-shifted and enhanced emission. The results of theoretical and experimental tests demonstrated that this phenomenon results from the cooperative effect between the restriction of intramolecular motions and alterable charge transfer (CT) behavior during compression. This work provides an ideal model to investigate the optoelectronic properties of boron complexes. Importantly, manipulating the CT behavior through the electrophilicity of boron atoms may become a new principle for the design of piezochromic materials with blueshifted and enhanced emission.

6.
Chemphyschem ; 21(6): 540-545, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-31951312

RESUMEN

Triptycene derivatives are widely utilized in different fields of chemistry and materials sciences. Their physicochemical properties, often of pivotal importance for the rational design of triptycene-based functional materials, are influenced by noncovalent interactions between substituents mounted on the triptycene skeleton. Herein, a unique interaction between electron-rich substituents in the peri position and the silyl group located on the bridgehead sp3 -carbon is discussed on the example of 1,4-dichloro-9-(p-methoxyphenyl)-silyltriptycene (TRPCl) which exists in solution in the form of two rotamers differing by dispositions, syn or anti, of the Si-CPh (the CPh atom is from the p-methoxyphenyl group) bond against the peri-Cl atom. For the first time, substantial differences between the Si-CPh bonds in these two dispositions are identified, based on indirect experimental and direct theoretical evidence. For these two orientations, the experimental 1 J(Si,CPh ) values differ by as much as 10 percent. The differences are explained in terms of effective electron density transfer from the peri-Cl atom to the antibonding σ* orbitals of the Si-X bonds (X=H, CPh ) oriented anti to that atom. The electronic effects are revealed by an NBO analysis. Connections of these observations with the notion of blue-shifting hydrogen bonds are discussed.

7.
Nano Lett ; 19(3): 1488-1493, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30721622

RESUMEN

Recently rediscovered layered black phosphorus (BP) provides rich opportunities for investigations of device physics and applications. The band gap of BP is widely tunable by its layer number and a vertical electric field, covering a wide electromagnetic spectral range from visible to mid-infrared. Despite much progress in BP optoelectronics, the fundamental photoluminescence (PL) properties of thin-film BP in mid-infrared have rarely been investigated. Here, we report bright PL emission from thin-film BP (with thickness of 4.5 to 46 nm) from 80 to 300 K. The PL measurements indicate a band gap of 0.308 ± 0.003 eV in 46 nm thick BP at 80 K, and it increases monotonically to 0.334 ± 0.003 eV at 300 K. Such an anomalous blueshift agrees with the previous theoretical and photoconductivity spectroscopy results. However, the observed blueshift of 26 meV from 80 to 300 K is about 60% of the previously reported value. Most importantly, we show that the PL emission intensity from thin-film BP is only a few times weaker than that of an indium arsenide (InAs) multiple quantum well (MQW) structure grown by molecular beam epitaxy. Finally, we report the thickness-dependent PL spectra in thin-film BP in mid-infrared regime. Our work reveals the mid-infrared light emission properties of thin-film BP, suggesting its promising future in tunable mid-infrared light emitting and lasing applications.

8.
J Comput Chem ; 37(2): 270-9, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26279192

RESUMEN

The Continuum in the variation of the X-Z bond length change from blue-shifting to red-shifting through zero- shifting in the X-Z---Y complex is inevitable. This has been analyzed by ab-initio molecular orbital calculations using Z= Hydrogen, Halogens, Chalcogens, and Pnicogens as prototypical examples. Our analysis revealed that, the competition between negative hyperconjugation within the donor (X-Z) molecule and Charge Transfer (CT) from the acceptor (Y) molecule is the primary reason for the X-Z bond length change. Here, we report that, the proper tuning of X- and Y-group for a particular Z- can change the blue-shifting nature of X-Z bond to zero-shifting and further to red-shifting. This observation led to the proposal of a continuum in the variation of the X-Z bond length during the formation of X-Z---Y complex. The varying number of orbitals and electrons available around the Z-atom differentiates various classes of weak interactions and leads to interactions dramatically different from the H-Bond. Our explanations based on the model of anti-bonding orbitals can be transferred from one class of weak interactions to another. We further take the idea of continuum to the nature of chemical bonding in general.


Asunto(s)
Teoría Cuántica , Calcógenos/química , Halógenos/química , Hidrógeno/química , Enlace de Hidrógeno , Modelos Moleculares
9.
Materials (Basel) ; 16(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37687761

RESUMEN

Quantum-well intermixing (QWI) technology is commonly considered as an effective methodology to tune the post-growth bandgap energy of semiconductor composites for electronic applications in diode lasers and photonic integrated devices. However, the specific influencing mechanism of the interfacial strain introduced by the dielectric-layer-modulated multiple quantum well (MQW) structures on the photoluminescence (PL) property and interfacial quality still remains unclear. Therefore, in the present study, different thicknesses of SiO2-layer samples were coated and then annealed under high temperature to introduce interfacial strain and enhance atomic interdiffusion at the barrier-well interfaces. Based on the optical and microstructural experimental test results, it was found that the SiO2 capping thickness played a positive role in driving the blueshift of the PL peak, leading to a widely tunable PL emission for post-growth MQWs. After annealing, the blueshift in the InGaAs/AlGaAs MQW structures was found to increase with increased thickness of the SiO2 layer, and the largest blueshift of 30 eV was obtained in the sample covered with a 600 nm thick SiO2 layer that was annealed at 850 °C for 180 s. Additionally, significant well-width fluctuations were observed at the MQW interface after intermixing, due to the interfacial strain introduced by the thermal mismatch between SiO2 and GaAs, which enhanced the inhomogeneous diffusion rate of interfacial atoms. Thus, it can be demonstrated that the introduction of appropriate interfacial strain in the QWI process is of great significance for the regulation of MQW band structure as well as the control of interfacial quality.

10.
Front Aging Neurosci ; 15: 1208274, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37727319

RESUMEN

Background: Although clinically, Alzheimer's disease (AD) and vascular dementia (VaD) are the two major types of dementia, it is unclear whether the biophotonic activities associated with cognitive impairments in these diseases share common pathological features. Methods: We used the ultraweak biophoton imaging system (UBIS) and synaptosomes prepared by modified percoll method to directly evaluate the functional changes in synapses and neural circuits in AD and VaD model animals. Results: We found that biophotonic activities induced by glutamate were significantly reduced and spectral blueshifted in synaptosomes and brain slices. These changes could be partially reversed by pre-perfusion of the ifenprodil, a specific antagonist of the GluN2B subunit of N-methyl-D-aspartate receptors (NMDARs). Conclusion: Our findings suggest that AD and VaD pathology present similar but complex changes in biophotonic activities and transmission at synapses and neural circuits, implying that communications and information processing of biophotonic signals in the brain are crucial for advanced cognitive functions.

11.
Macromol Rapid Commun ; 33(2): 133-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22102518

RESUMEN

A quadruple-responsive nanocomposite that responds to temperature, pH, magnetic field, and NIR is obtained by incorporating superparamagnetic iron oxide nanoparticles (SPIONs) and gold nanorods (AuNRs) into a dextran-based smart copolymer network. The dual-sensitive copolymer is prepared by sequential RAFT polymerization of methacrylic acid and N-isopropylacrylamide from trithiocarbonate groups linked to dextran in one pot. These functionalized nanocomposites with superior stability can respond to the four stimuli mentioned above well. As evidenced by UV-vis and TEM measurements, the temperature-induced unusual blue-shift in the longitudinal plasmon band is possibly due to the side-to-side assembly of AuNRs.


Asunto(s)
Resinas Acrílicas/química , Dextranos/química , Compuestos Férricos/química , Oro/química , Nanocompuestos/química , Nanotubos/química , Ácidos Polimetacrílicos/química
12.
Biosensors (Basel) ; 12(11)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36421173

RESUMEN

Mechanochromic (MC) luminescence of organic molecules has been emerging as a promising smart material for optical recording and memory devices. At the same time, pressure-induced blue-shifted and enhanced luminescence are rarely reported now. Herein, a series of cyanostilbene-based AIEgens with different substituents were synthesized to evaluate the influence of morphology transformation and push-pull electronic effect on the MC luminescence. Among these luminophores, compound 1 with one cyano group and diethylamino group was more susceptible to mechanical stimuli and obtained blue-shifted and enhanced fluorescence in response to anisotropic grinding. Powder X-ray diffraction patterns indicated that the MC behaviors were ascribed to the solid-state morphology transition from crystal-to-crystal. Analysis of crystal structures revealed that loose molecular packing is a key factor for high high-contrast MC luminescence. The smart molecular design, together with the excellent performance, verified that luminophores with twisted structures are ideal candidates for MC luminogens.


Asunto(s)
Luminiscencia , Difracción de Rayos X , Anisotropía
13.
Nanomaterials (Basel) ; 11(3)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799548

RESUMEN

Fresh Ag nanoparticles (NPs) dispersed on a transparent SiO2 exhibit an intense optical extinction band originating in localized surface plasmon resonance (LSPR) in the visible range. The intensity of the LSPR band weakened when the Ag NPs was stored in ambient air for two weeks. The rate of the weakening and the LSPR wavelength shift, corresponding to visual chromatic changes, strongly depended on the environment in which Ag NPs were set. The origin of a chromatic change was discussed along with both compositional and morphological changes. In one case, bluish coloring followed by a prompt discoloring was observed for Ag NPs placed near the ventilation fan in our laboratory, resulted from adsorption of large amounts of S and Cl on Ag NP surfaces as well as particle coarsening. Such color changes deduce the presence of significant amounts of S and Cl in the environment. In another case, a remarkable blue-shift of the LSPR band was observed for the Ag NPs stored in the desiccator made of stainless steel, originated in the formation of CN and/or HCN compounds and surface roughening. Their color changed from maroon to reddish, suggesting that such molecules were present inside the desiccator.

14.
Adv Sci (Weinh) ; 8(19): e2100084, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34382362

RESUMEN

Understanding the origin of temperature-dependent bandgap in inorganic lead-halide perovskites is essential and important for their applications in photovoltaics and optoelectronics. Herein, it is found that the temperature dependence of bandgap in CsPbBr3 perovskites is variable with material dimensionality. In contrast to the monotonous redshift ordinarily observed in bulk-like CsPbBr3 nanocrystals (NCs), the bandgap of 2D CsPbBr3 nanoplatelets (NPLs) exhibits an initial blueshift then redshift trend with decreasing temperature (290-10 K). The Bose-Einstein two-oscillator modeling manifests that the blueshift-redshift crossover of bandgap in the NPLs is attributed to the significantly larger weight of contribution from electron-optical phonon interaction to the bandgap renormalization in the NPLs than in the NCs. These new findings may gain deep insights into the origin of bandgap shift with temperature for both fundamentals and applications of perovskite semiconductor materials.

15.
Brain Res ; 1749: 147133, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32971084

RESUMEN

The brain is considered to be a complex system with extremely low energy consumption and high-efficiency information transmission and processing, and this system has not been replicated by any artificial systems so far. Several studies indicate that the activity and transmission of biophotons in neural circuits may play an important role in neural information communication, while the biophotonic spectral redshift from lower to higher in animals may be related to the evolution of intelligence. The ageing processes of higher organisms are often accompanied by a decline in brain functions; however, the underlying mechanisms are unclear. Combining an ultraweak biophoton imaging system with the improved biophoton spectral analysis device, we compared and analyzed the spectra of glutamate-induced biophotonic emissions in mouse brain slices at different ages (newborn, 1, 3, 6, 12, 15, and 18 months). We found that the glutamate-induced biophotonic emissions presented a spectral blueshift from young to old mice, suggesting that the brain may transform to use relatively high-energy biophotons for neural information transmission and processing during the ageing process. Such a change may lead to a gradual decrease in the efficiency of the nervous system and provide a new biophysical mechanism for explaining the ageing-related changes in cognitive functions.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/fisiología , Animales , Biofisica , Ácido Glutámico , Ratones , Transmisión Sináptica/fisiología
16.
Materials (Basel) ; 12(3)2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-30754636

RESUMEN

The photoactive materials broadly applied in catalysis and energy conversion are generally composed of metal oxides. Among these oxides, ZnO showed a promising photocatalytic activity; however, traditional synthetic routes generated by-products and large amounts of secondary waste. Herein, we report the use of bipolar electrochemistry to generate ZnO nanoparticles using deionized water and a zinc metal to conform to green chemistry practices. TEM imaging demonstrated that the sizes of the bipolar-made ZnO particles were smaller than the commercial sample. The presence of structural defects in ZnO was correlated with the chemical shifts analyzed by X-ray photoelectron spectroscopy (XPS) and by different concentrations of O2- ions in stoichiometric and defected lattice. Further, the diffuse reflectance UV⁻Vis studies demonstrated a blue-shift in the reflectance spectrum for the bipolar-made oxide. This was also an indication of defects in the ZnO lattice, which related to the formation of shallow levels in the bandgap of the material. The structural and morphological differences influenced the photocatalytic characteristics, revealing a higher photocurrent for the bipolar-made ZnO when compared to the reference sample. This was further manifested in lower total resistivity for all anodes made from the non-stoichiometric ZnO, and also in their shorter diffusion length for charge exchange and electron lifetimes.

17.
Materials (Basel) ; 11(8)2018 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-30065194

RESUMEN

Bitumen ageing is a very complex process and poses a threat to the performance of pavements. In the present work, a fluorescence spectrophotometer was employed to research the change rule of components and the structure of bitumen after the ageing process. The Thin Film Oven Test (TFOT) and Ultraviolet (UV) light treatment were carried out as ageing methods. The properties and components of bitumen were tested before and after aging. The 2D and 3D fluorescence spectra of bitumen were analyzed. The vector of fluorescence peak was calculated for evaluating the ageing process. The results indicated that the ideal concentration of bitumen- tetrachloromethane solution was 0.1 g/L or smaller for avoiding the fluorescence quenching. The coordinates of fluorescent peak appeared "blue-shift" after ageing due to the change of aromatics. In addition, bitumen has already occurred serious ageing when the magnitude of a vector is more than 36.

18.
J Mol Model ; 24(9): 230, 2018 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-30097838

RESUMEN

The resulting distortion of the octahedral symmetry of the complex [CrIII(NH3)6]3+ upon replacing the axial ligands with halides (i.e., weaker ligands) affects the stability of the doublet state with respect to that of the quartet ground state. This substitution affects the doublet-to-quartet transition responsible for phosphorescence. The position of the halide with respect to ammonia in the spectrochemical series is a major influence on the emission wavelength of the complex. The close proximity of fluorine and ammonia in the spectrochemical series leads to a blueshift in the emission wavelength when fluoride ions are introduced into the complex, thus providing a rational approach to the design of blue-phosphorescent materials, which are desirable for OLEDs used in full-color displays. Graphical abstract Shifts in the phosphorescence emission wavelength of an octahedral Cr(III) complex caused by axial ligand substitution. Replacing the axial ligands leads to a change in the relative positions of the axial and equatorial ligands in the spectrochemical series, which in turn induces a redshift or a blueshift in the emission wavelength.

19.
ACS Appl Mater Interfaces ; 10(45): 39222-39227, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30350934

RESUMEN

All-inorganic CsPbI3 perovskite quantum dots (QDs) have attracted intense attention for their successful application in photovoltaics (PVs) and optoelectronics that are enabled by their superior absorption capability and great photoluminescence (PL) properties. However, their photostability remains a practical bottleneck and further optimization is highly desirable. Here, we studied the photostability of as-obtained colloidal CsPbI3 QDs suspended in hexane. We found that light illumination does induce photodegradation of CsPbI3 QDs. Steady-state spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and transient absorption spectroscopy verified that light illumination leads to detachment of the capping agent, collapse of the CsPbI3 QD surface, and finally aggregation of surface Pb0. Both dangling bonds containing surface and Pb0 serve as trap states causing PL quenching with a dramatic decrease of PL quantum yield. Our work provides a detailed insight about the correlation between the structural and photophysical consequences of the photodegradation process in CsPbI3 QDs and may lead to the optimization of such QDs toward device applications.

20.
ACS Nano ; 12(8): 8485-8493, 2018 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-30020767

RESUMEN

2D Ti3C2 T x MXenes were recently shown to exhibit intense surface plasmon (SP) excitations; however, their spatial variation over individual Ti3C2 T x flakes remains undiscovered. Here, we use scanning transmission electron microscopy (STEM) combined with ultra-high-resolution electron energy loss spectroscopy (EELS) to investigate the spatial and energy distribution of SPs (both optically active and forbidden modes) in mono- and multilayered Ti3C2 T x flakes. With STEM-EELS mapping, the inherent interband transition in addition to a variety of transversal and longitudinal SP modes (ranging from visible down to 0.1 eV in MIR) are directly visualized and correlated with the shape, size, and thickness of Ti3C2 T x flakes. The independent polarizability of Ti3C2 T x monolayers is unambiguously demonstrated and attributed to their unusual weak interlayer coupling. This characteristic allows for engineering a class of nanoscale systems, where each monolayer in the multilayered structure of Ti3C2 T x has its own set of SPs with distinctive multipolar characters. Moreover, the tunability of the SP energies is highlighted by conducting in situ heating STEM to monitor the change of the surface functionalization of Ti3C2 T x through annealing at temperatures up to 900 °C. At temperatures above 500 °C, the observed fluorine (F) desorption multiplies the metal-like free electron density of Ti3C2 T x flakes, resulting in a monotonic blue-shift in the SP energy of all modes. These results underline the great potential for the development of Ti3C2 T x-based applications, spanning the visible-MIR spectrum, relying on the excitation and detection of single SPs.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda