Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Nano Lett ; 24(2): 576-583, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-37970822

RESUMEN

Dynamic access to quasi-bound states in the continuum (q-BICs) offers a highly desired platform for silicon-based active nanophotonic applications, while the prevailing tuning approaches by free carrier injections via an all-optical stimulus are yet limited to THz and infrared ranges and are less effective in visible bands. In this work, we present the realization of active manipulations on q-BICs for nanoscale optical switching in the visible by introducing a local index perturbation through a photothermal mechanism. The sharp q-BIC resonance exhibits an ultrasensitive susceptibility to the complex index perturbation, which can be flexibly fulfilled by optical heating of silicon. Consequently, a mild pump intensity of 1 MW/cm2 can yield a modification of the imaginary part of the refractive index of less than 0.05, which effectively suppresses the sharp q-BIC resonances and renders an active modulation depth of reflectance exceeding 80%. Our research might open up an enabling platform for ultrasensitive dynamic nanophotonic devices.

2.
Nano Lett ; 24(35): 10742-10749, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39191398

RESUMEN

Active functionalities of metasurfaces are of growing interest in nanophotonics. The main strategy employed to date is spectral resonance tuning affecting predominantly the far-field response. However, this barely influences other essential resonance properties like near-field enhancement, signal modulation, quality factor, and absorbance, which are all vital for numerous applications. Here we introduce an active metasurface approach that combines temperature-tunable losses in vanadium dioxide with far-field coupling tunable symmetry-protected bound states in the continuum. This method enables exceptional precision in independently controlling both radiative and nonradiative losses. Consequently, it allows for the adjustment of both the far-field response and, notably, the near-field characteristics like local field enhancement and absorbance. We experimentally demonstrate continuous tuning from under- through critical- to overcoupling, achieving quality factors of 200 and a relative switching contrast of 78%. Our research marks a significant step toward highly tunable metasurfaces, controlling both near- and far-field properties.

3.
Nano Lett ; 24(35): 10943-10948, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39166739

RESUMEN

This paper reports a silicon-organic hybrid lattice that can lase with vortex emission and allow all-optical control. We combine an array of amorphous silicon nanodisks with gain from dye molecules in organic solvents to generate vortex lasing from bound states in the continuum under pulsed optical pumping. Irradiating the device with an additional continuous wave green laser beam can cause optical heating in silicon and lead to negative change in the refractive index of the organic solvents; meanwhile, the green laser beam can provide additional gain. Dynamic tuning of the lasing wavelength is achieved by varying the intensity of the controlling beam. Furthermore, the vortex beam lasing can be switched to single-lobed beam lasing by moving the controlling spot to break the in-plane symmetry within the pumping spot. Our findings could shed new light on active silicon topological devices.

4.
Nano Lett ; 24(5): 1679-1686, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38262062

RESUMEN

The operation of photonic devices often relies on modulation of their refractive index. While the sub-bandgap index change through bound-electron optical nonlinearity offers a faster response than utilizing free carriers with an overbandgap pump, optical switching often suffers from inefficiency. Here, we use a recently observed metasurface based on mirror-induced optical bound states in the continuum, to enable superior modulation characteristics. We achieve a pulsewidth-limited switching time of 100 fs, reflectance change of 22%, remarkably low energy consumption of 255 µJ/cm2, and an enhancement of modulation contrast by a factor of 440 compared to unpatterned silicon. Additionally, the narrow photonic resonance facilitates the detection of the dispersive nondegenerate two-photon nonlinearity, allowing tunable pump and probe excitation. These findings are explained by a two-band theoretical model for the dispersive nonlinear index. The demonstrated efficient and rapid switching holds immense potential for applications, including quantum photonics, sensing, and metrology.

5.
Nano Lett ; 24(11): 3378-3385, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38456747

RESUMEN

This paper reports how a hybrid system composed of transparent dielectric lattices over a metal mirror can produce high-quality lattice resonances for unidirectional lasing. The enhanced electromagnetic fields are concentrated in the cladding of the periodic dielectric structures and away from the metal. Based on a mirror-image model, we reveal that such high-quality lattice resonances are governed by bound states in the continuum resulting from destructive interference. Using hexagonal arrays of titanium dioxide nanoparticles on a silica-coated silver mirror, we observed lattice resonances with quality factors of up to 2750 in the visible regime. With the lattice resonances as optical feedback and dye solution as the gain medium, we demonstrated unidirectional lasing under optical pumping, where the array size was down to 100 µm × 100 µm. Our scheme can be extended to other spectral regimes to simultaneously achieve strongly enhanced surface fields and high quality factors.

6.
Nano Lett ; 23(19): 9105-9113, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37694889

RESUMEN

Achieving perfect absorption in few-layer two-dimensional (2D) materials plays a crucial role in applications such as optoelectronics and sensing. However, the underlying mechanisms of all reported works imply a strongly inherent dependence of the central wavelength on the structural parameters. Here, we propose a structure-parameter-deviation immune method for achieving perfect absorption at any desired wavelength by harnessing the toroidal dipole-bound state in the continuum (TD BIC). We experimentally demonstrate the versatile design with a monolayer-graphene-loaded compound grating structure. Such a TD BIC built upon the TE31 mode allows for the transition from BIC to quasi-BIC without breaking the structural symmetry, enabling the stable resonance wavelength while tailoring the quality factors via variation of the gap distance. Comparison with traditional literature further reveals the superiority of our method in realizing highly robust perfect absorption, with a wavelength stability ratio of >15. Remarkably, this approach can be straightforwardly applied to other 2D materials.

7.
Nano Lett ; 23(8): 3209-3216, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37040479

RESUMEN

On-chip light sources are an essential component of scalable photonic integrated circuits (PICs), and coupling between light sources and waveguides has attracted a great deal of attention. Photonic waveguides based on bound states in the continuum (BICs) allow optical confinement in a low-refractive-index waveguide on a high-refractive-index substrate and thus can be employed for constructing PICs. In this work, we experimentally demonstrated that the photoluminescence (PL) from a monolayer of tungsten sulfide (WS2) could be coupled into a BIC waveguide on a lithium-niobate-on-insulator (LNOI) substrate. Using finite-difference time-domain simulations, we numerically obtained a coupling efficiency of ∼2.3% for an in-plane-oriented dipole and a near-zero loss at a wavelength of 620 nm. By breaking through the limits of 2D-material integration with conventional photonic architectures, our work offers a new perspective for light-matter coupling in monolithic PICs.

8.
Nano Lett ; 23(16): 7584-7592, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37539848

RESUMEN

Optical bound states in the continuum (BICs) offer strong interactions with quantum emitters and have been extensively studied for manipulating spontaneous emission, lasing, and polariton Bose-Einstein condensation. However, the out-coupling efficiency of quasi-BIC emission, crucial for practical light-emitting devices, has received less attention. Here, we report an adaptable approach for enhancing quasi-BIC emission from a resonant monocrystalline silicon (c-Si) metasurface through lattice and multipolar engineering. We identify dual-BICs originating from electric quadrupoles (EQ) and out-of-plane magnetic dipoles, with EQ quasi-BICs exhibiting concentrated near-fields near the c-Si nanodisks. The enhanced fractional radiative local density of states of EQ quasi-BICs overlaps spatially with the emitters, promoting efficient out-coupling. Furthermore, coupling the EQ quasi-BICs with Rayleigh anomalies enhances directional emission intensity, and we observe inherent opposite topological charges in the multipolarly controlled dual-BICs. These findings provide valuable insights for developing efficient nanophotonic devices based on quasi-BICs.

9.
Nano Lett ; 23(14): 6399-6405, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37404091

RESUMEN

The utilization of photonic bound states in the continuum (BIC) is a very attractive approach for many applications requiring efficient resonators. High-Q modes related to symmetry-protected BIC are formed due to perturbation defined by an asymmetry parameter, and the smaller this parameter is, the bigger the Q factor can be achieved. Inevitable fabrication imperfectness limits precise control of the Q factor through the asymmetry parameter. Here we propose an antenna-based design of metasurfaces for accurate tailoring of the Q factor where stronger perturbation leads to the same effect in the conventional design. This approach allows the fabrication of samples with equipment having lower tolerance keeping the Q factor at the same level. Furthermore, our findings reveal two regimes of the Q factor scaling law with saturated and unsaturated resonances dependent on the ratio of antenna particles to all particles. The boundary is defined by the efficient scattering cross section of the metasurface constituent particles.

10.
Nano Lett ; 23(22): 10441-10448, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37818981

RESUMEN

The low performance of sensors based on an all-dielectric metasurface limits their application compared to metallic counterparts. Here, for the first time, an all-dielectric BIC (bound states in the continuum) metasurface is employed for highly sensitive phase interrogation refractive index sensing. The proposed sensor is well analyzed, fabricated, and characterized. Experimentally, a high-performance BIC-based microfluidic sensing chip with a Q factor of 1200 is achieved by introducing symmetry breaking. A refractive index sensor with high figure of merit of 418 RIU-1 is demonstrated, which is beneficial to the phase interrogation. Notably, we measure a record phase interrogation sensitivity of 2.7 × 104 deg/RIU to the refractive index, thus enabling the all-dielectric BIC to rival the refractive index detection capabilities of metal-based sensors such as surface plasmon resonance. This scheme establishes a pivotal role of the all-dielectric metasurface in the field of ultrahigh sensitivity sensors and opens possibilities for trace detection in biochemical analysis and environment monitoring.

11.
Nano Lett ; 23(10): 4431-4438, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37129264

RESUMEN

We present a new approach to achieving strong coupling between electrically injected excitons and photonic bound states in the continuum of a dielectric metasurface. Here a high-finesse metasurface cavity is monolithically patterned in the channel of a perovskite light-emitting transistor to induce a large Rabi splitting of ∼200 meV and more than 50-fold enhancement of the polaritonic emission compared to the intrinsic excitonic emission of the perovskite film. Moreover, the directionality of polaritonic electroluminescence can be dynamically tuned by varying the source-drain bias, which induces an asymmetric distribution of exciton population within the transistor channel. We argue that this approach provides a new platform to study strong light-matter interactions in dispersion engineered photonic cavities under electrical injection and paves the way to solution-processed electrically pumped polariton lasers.

12.
Small ; 19(35): e2301165, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37162455

RESUMEN

Advanced sensing devices, highly sensitive, and reliable in detecting ultralow concentrations of circulating biomarkers, are extremely desirable and hold great promise for early diagnostics and real-time progression monitoring of diseases. Nowadays, the most commonly used clinical methods for diagnosing biomarkers suffer from complicated procedures and being time consumption. Here, a chip-based portable ultra-sensitive THz metasensor is reported by exploring quasi-bound states in the continuum (quasi-BICs) and demonstrate its capability for sensing low-concentration analytes. The designed metasensor is made of the designed split-ring resonator metasurface which supports magnetic dipole quasi-BIC combining functionalized gold nanoparticles (AuNPs) conjugated with the specific antibody. Attributed to the strong near-field enhancement near the surface of the microstructure enabled by the quasi-BICs, light-analyte interactions are greatly enhanced, and thus the device's sensitivity is boosted significantly. The system sensitivity slope is up to 674 GHz/RIU, allowing for repeatable resolving detecting ultralow concentration of C-reactive protein (CRP) and Serum Amyloid A (SAA), respectively, down to 1 pM. The results touch a range that cannot be achieved by ordinary immunological assays alone, offering a novel non-destructive and rapid trace measured approach for next-generation biomedical quantitative detection systems.


Asunto(s)
Oro , Nanopartículas del Metal , Anticuerpos , Bioensayo , Proteína Amiloide A Sérica
13.
Nanotechnology ; 34(40)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37352839

RESUMEN

In the past decades, nanophotonic biosensors have been extended from the extensively studied plasmonic platforms to dielectric metasurfaces. Instead of plasmonic resonance, dielectric metasurfaces are based on Mie resonance, and provide comparable sensitivity with superior resonance bandwidth, Q factor, and figure-of-merit. Although the plasmonic photothermal effect is beneficial in many biomedical applications, it is a fundamental limitation for biosensing. Dielectric metasurfaces solve the ohmic loss and heating problems, providing better repeatability, stability, and biocompatibility. We review the high-Q resonances based on various physical phenomena tailored by meta-atom geometric designs, and compare dielectric and plasmonic metasurfaces in refractometric, surface-enhanced, and chiral sensing for various biomedical and diagnostic applications. Departing from conventional spectral shift measurement using spectrometers, imaging-based and spectrometer-less biosensing are highlighted, including single-wavelength refractometric barcoding, surface-enhanced molecular fingerprinting, and integrated visual reporting. These unique modalities enabled by dielectric metasurfaces point to two important research directions. On the one hand, hyperspectral imaging provides massive information for smart data processing, which not only achieve better biomolecular sensing performance than conventional ensemble averaging, but also enable real-time monitoring of cellular or microbial behaviour in physiological conditions. On the other hand, a single metasurface can integrate both functions of sensing and optical output engineering, using single-wavelength or broadband light sources, which provides simple, fast, compact, and cost-effective solutions. Finally, we provide perspectives in future development on metasurface nanofabrication, functionalization, material, configuration, and integration, towards next-generation optical biosensing for ultra-sensitive, portable/wearable, lab-on-a-chip, point-of-care, multiplexed, and scalable applications.


Asunto(s)
Calefacción , Dispositivos Laboratorio en un Chip , Sistemas de Atención de Punto , Vibración
14.
Nano Lett ; 22(20): 8060-8067, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36214538

RESUMEN

Dielectric metasurfaces governed by bound states in the continuum (BIC) are actively investigated for achieving high-quality factors and strong electromagnetic field enhancements. Traditional approaches reported for tuning the performance of quasi-BIC metasurfaces include tuning the resonator size, period, and structure symmetry. Here we propose and experimentally demonstrate an alternative approach through engineering slots within a zigzag array of elliptical silicon resonators. Through analytical theory, three-dimensional electromagnetic modeling, and infrared spectroscopy, we systematically investigate the spectral responses and field distributions of the slotted metasurface in the mid-IR. Our results show that by introducing slots, the electric field intensity enhancement near the apex and the quality factor of the quasi-BIC resonance are increased by a factor of 2.1 and 3.3, respectively, in comparison to the metasurface without slots. Furthermore, the slotted metasurface also provides extra regions of electromagnetic enhancement and confinement, which holds enormous potential in particle trapping, sensing, and emission enhancement.


Asunto(s)
Campos Electromagnéticos , Silicio , Vibración , Espectrofotometría Infrarroja , Electricidad
15.
Nano Lett ; 22(24): 9982-9989, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36475737

RESUMEN

Spatial light modulators (SLMs) that could control diverse optical properties are highly demanded by many optoelectronic systems. Recently, the integration of nonlinear χ(2) materials and metasurfaces has been recognized as a promising strategy for next-generation SLMs. However, their modulation efficiency still encounters challenges due to low quality factor and weak light-matter interaction. Here, we demonstrate an efficient SLM by manipulating the dual bound state in continuum (BIC) with the assistance of a binary-pore anodic alumina oxide template technique. The coexistence of symmetry-protected BIC and Fabry-Pérot BIC is obtained by a desirable sandwich configuration with a BIC metasurface and EO polymer, which efficiently restrain radiative loss and generate a strong quasi-BIC resonance. The assembled SLM with large absorption and Q-factor delivers a modulation depth of 77% and an f3 dB of nearly 100 MHz. This dual BIC metasurface provides potential for applications including switches, LIDAR, augmented and virtual reality, and so on.

16.
Nano Lett ; 21(20): 8917-8923, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34459611

RESUMEN

Plasmonic metasurfaces supporting collective lattice resonances have attracted increasing interest due to their exciting properties of strong spatial coherence and enhanced light-matter interaction. Although the focusing of light by high-numerical-aperture (NA) objectives provides an essential way to boost the field intensities, it remains challenging to excite high-quality resonances by using high-NA objectives due to strong angular dispersion. Here, we address this challenge by employing the physics of bound states in the continuum (BICs). We design a novel anisotropic plasmonic metasurface combining a two-dimensional lattice of high-aspect-ratio pillars with a one-dimensional plasmonic grating, fabricated by a two-photon polymerization technique and gold sputtering. We demonstrate experimentally multiple resonances with absorption amplitudes exceeding 80% at mid-IR using an NA = 0.4 reflective objective. This is enabled by the weak angular dispersion of quasi-BIC resonances in such hybrid plasmonic metasurfaces. Our results suggest novel strategies for designing photonic devices that manipulate focused light with a strong field concentration.

17.
Nano Lett ; 21(17): 7405-7410, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34232665

RESUMEN

Two-dimensional (2D) layered materials such as GaSe recently have emerged as novel nonlinear optical materials with exceptional properties. Although exhibiting large nonlinear susceptibilities, the nonlinear responses of 2D materials are generally limited by the short interaction lengths with light, thus further enhancement via resonant photonic nanostructures is highly desired for building high-efficiency nonlinear devices. Here, we demonstrate a giant second-harmonic generation (SHG) enhancement by coupling 2D GaSe flakes to silicon metasurfaces supporting quasi-bound states in the continuum (quasi-BICs) under continuous-wave (CW) operation. Taking advantage of both high-quality factors and large mode areas of quasi-BICs, SHG from a GaSe flake is uniformly enhanced by nearly 4 orders of magnitude, which is promising for high-power coherent light sources. Our work provides an effective approach for enhancing nonlinear optical processes in 2D materials within the framework of silicon photonics, which also brings second-order nonlinearity associated with 2D materials to silicon photonic devices.

18.
Nano Lett ; 21(7): 2817-2823, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33544608

RESUMEN

Planar all-dielectric photonic crystals or metasurfaces host various resonant eigenmodes including leaky guided mode resonances (GMR) and bound states in the continuum (BIC). Engineering these resonant modes can provide new opportunities for diverse applications. Particularly, electrical control of the resonances will boost development of the applications by making them tunable. Here, we experimentally demonstrate nano-electromechanical tuning of both the GMR and the quasi-BIC modes in the telecom wavelength range. With electrostatic forces induced by a few volts, the devices achieve spectral shifts over 5 nm, absolute intensity modulation over 40%, and modulation speed exceeding 10 kHz. We also show that the interference between two resonances enables the enhancement of the phase response when two modes are overlapped in spectrum. A phase shift of 144° is experimentally observed with a bias of 4 V. Our work suggests a direct route toward optical modulators through the engineering of GMRs and quasi-BIC resonances.

19.
Nano Lett ; 21(4): 1765-1771, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33539099

RESUMEN

Sharp optical resonances in high-index dielectric nanostructures have recently attracted significant attention for their promising applications in nanophotonics. Fano resonances, as well as resonances associated with bound states in the continuum (BIC), have independently shown a great potential for applications in nanoscale lasers, sensors, and nonlinear optical devices. Here, we demonstrate experimentally a close connection between Fano and quasi-BIC resonances excited in individual dielectric nanoantennas. We analyze systematically the resonant response of AlGaAs nanoantennas pumped with a structured light in the near-infrared range. We trace a variation of the scattering spectrum that fully agrees with an analytical expression governed by a Fano parameter and observe directly a transition to a quasi-BIC resonance. Our results suggest a unified approach toward the analysis of sharp resonances in subwavelength nanostructures originating from strong coupling of optical modes that can provide high energy localization for enhanced light-matter interactions.

20.
Nano Lett ; 21(20): 8848-8855, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34633185

RESUMEN

High-index dielectric metasurfaces can support sharp optical resonances enabled by the physics of bound states in the continuum (BICs) often manifested in experiments as quasi-BIC resonances. They provide a way to enhance light-matter interaction at the subwavelength scale bringing novel opportunities for nonlinear nanophotonics. Strong narrow-band field enhancement in quasi-BIC metasurfaces leads to an extreme sensitivity to a change of the refractive index that may limit nonlinear functionalities for the pump intensities beyond the perturbative regime. Here we study ultrafast self-action effects observed in quasi-BIC silicon metasurfaces and demonstrate how they alter the power dependence of the third-harmonic generation efficiency. We study experimentally a transition from the subcubic to supercubic regimes for the generated third-harmonic power driven by a blue-shift of the quasi-BIC in the multiphoton absorption regime. Our results suggest a way to implement ultrafast nonlinear dynamics in high-index resonant dielectric metasurfaces for nonlinear meta-optics beyond the perturbative regime.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda